Optimizing Natural Organic Matter Removal from Water by UV/H2O2 Advanced Oxidation Using Central Composite Design
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthetic Water Preparation and Reagents
2.2. Analytical Methods
2.3. Experimental Methods
2.3.1. Experimental Set-Up
2.3.2. Experimental Design
3. Results and Discussion
3.1. Optimization with RSM
3.2. Energy Efficiency of NOM Degradation
3.3. Identification of Degradation Products
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matilainen, A.; Sillanpää, M. Removal of Natural Organic Matter from Drinking Water by Advanced Oxidation Processes. Chemosphere 2010, 80, 351–365. [Google Scholar] [CrossRef]
- García, A.M.; Torres-Palma, R.A.; Galeano, L.A.; Vicente, M.Á.; Gil, A. Separation and Characterization of NOM Intermediates along AOP Oxidation. In Handbook of Environmental Chemistry; Springer: Cham, Switzerland, 2019; pp. 99–132. [Google Scholar]
- Bellar, T.A.; Lichtenberg, J.J.; Kroner, R.C. The Occurrence of Organohalides in Chlorinated Drinking Waters. J. Am. Water Work. Assoc. 1974, 66, 703–706. [Google Scholar] [CrossRef]
- Amy, G. WHO Task Group on Environmental Health Criteria for Disinfectants and Disinfectant By-Products. Environ. Health Criteria 1999, 216, XXII–438. [Google Scholar]
- Tak, S.; Vellanki, B.P. Natural Organic Matter as Precursor to Disinfection Byproducts and Its Removal Using Conventional and Advanced Processes: State of the Art Review. J. Water Health 2018, 16, 681–703. [Google Scholar] [CrossRef] [PubMed]
- Andersson, A.; Lavonen, E.; Harir, M.; Gonsior, M.; Hertkorn, N.; Schmitt-Kopplin, P.; Kylin, H.; Bastviken, D. Selective Removal of Natural Organic Matter during Drinking Water Production Changes the Composition of Disinfection By-Products. Environ. Sci. Water Res. Technol. 2020, 6, 779–794. [Google Scholar] [CrossRef]
- Richardson, S.D.; Thruston, A.D.; Rav-Acha, C.; Groisman, L.; Popilevsky, I.; Juraev, O.; Glezer, V.; McKAgue, A.B.; Plewa, M.J.; Wagner, E.D. Tribromopyrrole, Brominated Acids, and Other Disinfection Byproducts Produced by Disinfection of Drinking Water Rich in Bromide. Environ. Sci. Technol. 2003, 37, 3782–3793. [Google Scholar] [CrossRef]
- Richardson, S.D.; Plewa, M.J.; Wagner, E.D.; Schoeny, R.; DeMarini, D.M. Occurrence, Genotoxicity, and Carcinogenicity of Regulated and Emerging Disinfection by-Products in Drinking Water: A Review and Roadmap for Research. Mutat. Res./Rev. Mutat. Res. 2007, 636, 178–242. [Google Scholar] [CrossRef]
- Siddiqui, M.; Amy, G.; Ryan, J.; Odem, W. Membranes for the Control of Natural Organic Matter from Surface Waters. Water Res. 2000, 34, 3355–3370. [Google Scholar] [CrossRef]
- Chellam, S.; Krasner, S.W. Disinfection Byproduct Relationships and Speciation in Chlorinated Nanofiltered Waters. Environ. Sci. Technol. 2001, 35, 3988–3999. [Google Scholar] [CrossRef]
- Richardson, S.D.; Postigo, C. Drinking Water Disinfection By-Products. In The Handbook of Environmental Chemistry; Barceló, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 93–137. [Google Scholar]
- Von Gunten, U.; Hoigné, J. Bromate Formation during Ozonization of Bromide-Containing Waters: Interaction of Ozone and Hydroxyl Radical Reactions. Environ. Sci. Technol. 1994, 28, 1234–1242. [Google Scholar] [CrossRef]
- Buxton, G.V.; Greenstock, C.L.; Helman, W.P.; Ross, A.B. Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (⋅OH/⋅O− in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17, 513–886. [Google Scholar] [CrossRef]
- Minakata, D.; Song, W.; Mezyk, S.P.; Cooper, W.J. Experimental and Theoretical Studies on Aqueous-Phase Reactivity of Hydroxyl Radicals with Multiple Carboxylated and Hydroxylated Benzene Compounds. Phys. Chem. Chem. Phys. 2015, 17, 11796–11812. [Google Scholar] [CrossRef]
- Tufail, A.; Price, W.E.; Hai, F.I. A Critical Review on Advanced Oxidation Processes for the Removal of Trace Organic Contaminants: A Voyage from Individual to Integrated Processes. Chemosphere 2020, 260, 127460. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.S.; Hsieh, S.T.; Hong, C.S. Destruction of Humic Acid in Water by UV Light—Catalyzed Oxidation with Hydrogen Peroxide. Water Res. 2000, 34, 3882–3887. [Google Scholar] [CrossRef]
- Sarathy, S.R.; Mohseni, M. The Impact of UV/H2O2 Advanced Oxidation on Molecular Size Distribution of Chromophoric Natural Organic Matter. Environ. Sci. Technol. 2007, 41, 8315–8320. [Google Scholar] [CrossRef] [PubMed]
- Sarathy, S.; Mohseni, M. The Fate of Natural Organic Matter during UV/H2O2 Advanced Oxidation of Drinking Water. J. Environ. Eng. Sci. 2013, 8, 36–44. [Google Scholar] [CrossRef]
- De Laat, J.; Stefan, M. UV/Chlorine Process. In Water Intelligence Online; Stefan, M.I., Ed.; IWA Publishing: London, UK, 2017; Volume 16, pp. 383–428. [Google Scholar]
- Beltrán, F.J.; Ovejero, G.; Acedo, B. Oxidation of Atrazine in Water by Ultraviolet Radiation Combined with Hydrogen Peroxide. Water Res. 1993, 27, 1013–1021. [Google Scholar] [CrossRef]
- Wang, G.S.; Liao, C.H.; Chen, H.W.; Yang, H.C. Characteristics of Natural Organic Matter Degradation in Water by UV/H2O2 Treatment. Environ. Technol. 2006, 27, 277–287. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, Y.; Zhang, J.; Chang, V.W.C.; Lim, T.T. Degradation of Cyclophosphamide and 5-Fluorouracil in Water Using UV and UV/H2O2: Kinetics Investigation, Pathways and Energetic Analysis. J. Environ. Chem. Eng. 2017, 5, 1133–1139. [Google Scholar] [CrossRef]
- Montgomery, D.C. (Ed.) Design and Analysis of Experiments, 8th ed.; John Wiley & Sons, Inc: Hoboken, NJ, USA, 2013; ISBN 978-1-118-14692-7. [Google Scholar]
- Rezaee, R.; Maleki, A.; Jafari, A.; Mazloomi, S.; Zandsalimi, Y.; Mahvi, A.H. Application of Response Surface Methodology for Optimization of Natural Organic Matter Degradation by UV/H2O2 Advanced Oxidation Process. J. Environ. Health Sci. Eng. 2014, 12, 67. [Google Scholar] [CrossRef]
- Dixit, F.; Barbeau, B.; Lompe, K.M.; Kheyrandish, A.; Mohseni, M. Performance of the HSDM to Predict Competitive Uptake of PFAS, NOM and Inorganic Anions by Suspended Ion Exchange Processes. Environ. Sci. Water Res. Technol. 2021, 7, 1417–1429. [Google Scholar] [CrossRef]
- Chekli, L.; Phuntsho, S.; Roy, M.; Shon, H.K. Characterisation of Fe-Oxide Nanoparticles Coated with Humic Acid and Suwannee River Natural Organic Matter. Sci. Total Environ. 2013, 461–462, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Nicole, I.; De Laat, J.; Dore, M.; Duguet, J.P.; Bonnel, C. Utilisation Du Rayonnement Ultraviolet Dans Le Traitement Des Eaux: Mesure Du Flux Photonique Par Actinometrie Chimique Au Peroxyde d’hydrogene. Water Res. 1990, 24, 157–168. [Google Scholar] [CrossRef]
- Ahn, Y.; Lee, D.; Kwon, M.; Choi, I.-h.; Nam, S.N.; Kang, J.W. Characteristics and Fate of Natural Organic Matter during UV Oxidation Processes. Chemosphere 2017, 184, 960–968. [Google Scholar] [CrossRef]
- Bolton, J.R.; Bircher, K.G.; Tumas, W.; Tolman, C.A. Figures-of-Merit for the Technical Development and Application of Advanced Oxidation Technologies for Both Electric- and Solar-Driven Systems. Pure Appl. Chem. 2001, 73, 627–637. [Google Scholar] [CrossRef]
- Keen, O.; Bolton, J.; Litter, M.; Bircher, K.; Oppenländer, T. Standard Reporting of Electrical Energy per Order (EEO) for UV/H2O2 Reactors (IUPAC Technical Report). Pure Appl. Chem. 2018, 90, 1487–1499. [Google Scholar] [CrossRef]
- Sindelar, H.R.; Brown, M.T.; Boyer, T.H. Evaluating UV/H2O2, UV/Percarbonate, and UV/Perborate for Natural Organic Matter Reduction from Alternative Water Sources. Chemosphere 2014, 105, 112–118. [Google Scholar] [CrossRef]
- Gowland, D.C.A.; Robertson, N.; Chatzisymeon, E. Photocatalytic Oxidation of Natural Organic Matter in Water. Water 2021, 13, 288. [Google Scholar] [CrossRef]
- Palma, D.; Khaled, A.; Sleiman, M.; Voyard, G.; Richard, C. Effect of UVC Pre-Irradiation on the Suwannee River Natural Organic Matter (SRNOM) Photooxidant Properties. Water Res. 2021, 202, 117395. [Google Scholar] [CrossRef]
- Sanly, M.; Lim, K.C.; Amal, R.; Fabris, R.; Chow, C.; Drikas, M. A Study on the Removal of Humic Acid Using Advanced Oxidation Processes. Sep. Sci. Technol. 2007, 42, 1391–1404. [Google Scholar] [CrossRef]
- Xiang, Y.; Gonsior, M.; Schmitt-Kopplin, P.; Shang, C. Influence of the UV/H2O2 Advanced Oxidation Process on Dissolved Organic Matter and the Connection between Elemental Composition and Disinfection Byproduct Formation. Environ. Sci. Technol. 2020, 54, 14964–14973. [Google Scholar] [CrossRef] [PubMed]
- Sarathy, S.; Mohseni, M. Effects of UV/H2O2 Advanced Oxidation on Chemical Characteristics and Chlorine Reactivity of Surface Water Natural Organic Matter. Water Res. 2010, 44, 4087–4096. [Google Scholar] [CrossRef] [PubMed]
- Schmitt-Kopplin, P.; Hertkorn, N.; Schulten, H.R.; Kettrup, A. Structural Changes in a Dissolved Soil Humic Acid during Photochemical Degradation Processes under O2 and N2 Atmosphere. Environ. Sci. Technol. 1998, 32, 2531–2541. [Google Scholar] [CrossRef]
- Dasilva, G.; Muñoz, S.; Lois, S.; Medina, I. Non-Targeted LC-MS/MS Assay for Screening Over 100 Lipid Mediators from ARA, EPA, and DHA in Biological Samples Based on Mass Spectral Fragmentations. Molecules 2019, 24, 2276. [Google Scholar] [CrossRef]
- Toor, R.; Mohseni, M. UV-H2O2 Based AOP and Its Integration with Biological Activated Carbon Treatment for DBP Reduction in Drinking Water. Chemosphere 2007, 66, 2087–2095. [Google Scholar] [CrossRef]
# | Run | Natural Variables | Coded Variables | ∆DOC Observed (%) | ∆DOC Predicted (%) | ||
---|---|---|---|---|---|---|---|
H2O2 (mg L−1) | DOC (mg L−1) | x1 | x2 | ||||
7 | 1 | 250 | 0.4 | 0 | −1.414 | 13.98 | 14.64 |
4 | 2 | 350 | 10 | 1 | 1 | 28.87 | 28.31 |
12 | 3 | 250 | 6 | 0 | 0 | 35.59 | 34.42 |
3 | 4 | 150 | 10 | −1 | 1 | 34.60 | 33.86 |
11 | 5 | 250 | 6 | 0 | 0 | 37.68 | 34.42 |
8 | 6 | 250 | 11.7 | 0 | 1.414 | 34.27 | 34.92 |
1 | 7 | 150 | 2 | −1 | −1 | 24.66 | 23.92 |
6 | 8 | 391.4 | 6 | 1.414 | 0 | 35.22 | 35.75 |
9 | 9 | 250 | 6 | 0 | 0 | 29.76 | 34.42 |
5 | 10 | 108.6 | 6 | −1.414 | 0 | 32.80 | 33.57 |
2 | 11 | 350 | 2 | 1 | −1 | 33.13 | 32.57 |
13 | 12 | 250 | 6 | 0 | 0 | 33.99 | 34.42 |
10 | 13 | 250 | 6 | 0 | 0 | 35.10 | 34.42 |
Source | Sum of Squares | DF | Mean Square | F-Value | Prob > F | Remark |
---|---|---|---|---|---|---|
Model | 435.19 | 6 | 72.53 | 11.50 | 0.0045 | Significant |
A-H2O2 | 4.77 | 1 | 4.77 | 0.76 | 0.4180 | |
B-DOC | 212.43 | 1 | 212.43 | 33.67 | 0.0011 | |
AB | 50.38 | 1 | 50.38 | 7.99 | 0.0301 | |
A2 | 0.099 | 1 | 0.999 | 0.016 | 0.9044 | |
B2 | 164.92 | 1 | 164.92 | 26.14 | 0.0022 | |
A2B | 69.05 | 1 | 69.05 | 10.95 | 0.0162 | |
Residual | 37.85 | 6 | 6.31 | |||
Lack of fit | 3.47 | 2 | 1.73 | 0.20 | 0.8252 | Not significant |
Pure error | 34.38 | 4 | 8.50 | |||
Corr. total | 473.04 | 12 |
Verification Point | DOC (mg L−1) | H2O2 (mg L−1) | Mean ΔDOC (%) | −95% CI ΔDOC (%) | +95% CI ΔDOC (%) |
---|---|---|---|---|---|
1 | 5.132 | 193.0 | 30.13 | 29.49 | 34.88 |
2 | 7.766 | 314.7 | 32.82 | 32.33 | 37.96 |
3 | 3.444 | 211.0 | 26.32 | 24.24 | 30.10 |
# | Name | Mass (DB) | Formula (DB) | Base Peak | Mass | m/z | RT |
---|---|---|---|---|---|---|---|
1 | Myristoleic acid | 226.1933 | C14H26O2 | 225.1892 | 226.1965 | 225.1893 | 18.741 |
2 | 13,14-dihydro Prostaglandin F1α | 358.2719 | C20H38O5 | 357.2646 | 358.2720 | 357.2647 | 19.380 |
3 | 12-Methyltridecanoic acid | 228.2089 | C14H28O2 | 227.2049 | 228.2121 | 227.2048 | 19.508 |
4 | Δ2-trans-Hexadecenoic Acid | 254.2246 | C16H30O2 | 253.2204 | 254.2278 | 253.2206 | 19.538 |
5 | Pentadecanoic acid | 242.2246 | C15H30O2 | 241.2205 | 242.2277 | 241.2204 | 19.82 |
6 | Stearolic acid | 280.2402 | C18H32O2 | 279.2364 | 280.2435 | 279.2362 | 19.821 |
7 | Elaidic acid | 282.2559 | C18H34O2 | 281.2519 | 282.2593 | 281.2521 | 20.177 |
8 | 14(Z)-Eicosenoic acid | 310.2872 | C20H38O2 | 309.284 | 310.2911 | 309.2838 | 20.659 |
9 | Stearic acid | 284.2715 | C18H36O2 | 283.2678 | 284.275 | 283.2677 | 20.848 |
10 | Docosanoic acid | 340.3341 | C22H44O2 | 339.3304 | 340.3377 | 339.3304 | 21.438 |
11 | Tricosanoic acid | 354.3498 | C23H46O2 | 353.3461 | 354.3535 | 353.3462 | 21.596 |
12 | Lignoceric acid | 368.3654 | C24H48O2 | 367.3619 | 368.3692 | 367.3619 | 21.878 |
13 | Isoundecylic acid | 214.1933 | C13H26O2 | 213.1892 | 214.1965 | 213.1893 | 18.783 |
14 | Myristic acid | 228.2089 | C14H28O2 | 227.2047 | 228.2121 | 227.2048 | 19.263 |
15 | 15-Methyl palmitic acid | 270.2559 | C17H34O2 | 269.2521 | 270.2592 | 269.2519 | 20.238 |
16 | Arachidic acid | 312.3028 | C20H40O2 | 311.2994 | 312.3066 | 311.2993 | 20.978 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juretić, H.; Smoljan, D.; Cajner, H.; Stipaničev, D. Optimizing Natural Organic Matter Removal from Water by UV/H2O2 Advanced Oxidation Using Central Composite Design. Separations 2025, 12, 261. https://doi.org/10.3390/separations12100261
Juretić H, Smoljan D, Cajner H, Stipaničev D. Optimizing Natural Organic Matter Removal from Water by UV/H2O2 Advanced Oxidation Using Central Composite Design. Separations. 2025; 12(10):261. https://doi.org/10.3390/separations12100261
Chicago/Turabian StyleJuretić, Hrvoje, Darko Smoljan, Hrvoje Cajner, and Draženka Stipaničev. 2025. "Optimizing Natural Organic Matter Removal from Water by UV/H2O2 Advanced Oxidation Using Central Composite Design" Separations 12, no. 10: 261. https://doi.org/10.3390/separations12100261
APA StyleJuretić, H., Smoljan, D., Cajner, H., & Stipaničev, D. (2025). Optimizing Natural Organic Matter Removal from Water by UV/H2O2 Advanced Oxidation Using Central Composite Design. Separations, 12(10), 261. https://doi.org/10.3390/separations12100261