Visible Light-Assisted Periodate Activation Using Carbon Nitride for the Efficient Elimination of Acid Orange 7
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Catalyst Preparation
2.3. Experimental Procedures
2.4. Methods of Analysis
2.5. Characterization
3. Results and Discussion
3.1. Characterization of CN
3.2. PI Activation Systems for AO7 Removal
3.3. Mechanism
3.4. Impacts of Operating Parameters
3.5. Effects of Coexisting Anions
3.6. Stability and Reuse of Catalysts
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mahbub, P.; Duke, M. Scalability of advanced oxidation processes (AOPs) in industrial applications: A review. J. Environ. Manag. 2023, 345, 118861. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Tian, N.; Li, Z.; Li, J.; Yao, X.; Vakili, M.; Lu, Y.; Zhang, T. Intrinsic defect engineering in graphitic carbon nitride for photocatalytic environmental purification: A review to fill existing knowledge gaps. Chem. Eng. J. 2021, 421, 127729. [Google Scholar] [CrossRef]
- Subodh; Prakash, K.; Chaudhary, K.; Masram, D.T. A new triazine-cored covalent organic polymer for catalytic applications. Appl. Catal. A Gen. 2020, 593, 117411. [Google Scholar] [CrossRef]
- Wu, N.; Zhao, B.; Liu, J.; Li, Y.; Chen, Y.; Chen, L.; Wang, M.; Guo, Z. MOF-derived porous hollow Ni/C composites with optimized impedance matching as lightweight microwave absorption materials. Adv. Compos. Hybrid Mater. 2021, 4, 707–715. [Google Scholar] [CrossRef]
- Ghanbari, F.; Zirrahi, F.; Lin, K.-Y.A.; Kakavandi, B.; Hassani, A. Enhanced electro-peroxone using ultrasound irradiation for the degradation of organic compounds: A comparative study. J. Environ. Chem. Eng. 2020, 8, 104167. [Google Scholar] [CrossRef]
- Hu, P.; Long, M. Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications. Appl. Catal. B Environ. 2016, 181, 103–117. [Google Scholar] [CrossRef]
- Hu, J.; Zou, Y.; Li, Y.; Yu, Z.; Bao, Y.; Lin, L.; Li, B.; Li, X.-Y. Periodate activation by atomically dispersed Mn on carbon nanotubes for the production of iodate radicals and rapid degradation of sulfadiazine. Chem. Eng. J. 2023, 472, 144862. [Google Scholar] [CrossRef]
- Gong, J.; Jiang, H.; Li, X.; Cheng, H.; Wang, Z.; Cai, J.; Li, M.; Wang, P.; Wang, H.; Hu, X.; et al. Highly efficient activation of periodate by a manganese-modified biochar to rapidly degrade methylene blue. Environ. Res. 2024, 241, 117657. [Google Scholar] [CrossRef]
- Zong, Y.; Zhang, H.; Shao, Y.; Ji, W.; Zeng, Y.; Xu, L.; Wu, D. Surface-mediated periodate activation by nano zero-valent iron for the enhanced abatement of organic contaminants. J. Hazard. Mater. 2023, 423, 126991. [Google Scholar] [CrossRef]
- Lee, Y.C.; Chen, M.J.; Huang, C.P.; Kuo, J.; Lo, S.L. Efficient sonochemical degradation of perfluorooctanoic acid using periodate. Ultrason. Sonochem. 2016, 31, 499–505. [Google Scholar] [CrossRef]
- Choi, Y.; Yoon, H.I.; Lee, C.; Vetrakova, L.; Heger, D.; Kim, K.; Kim, J. Activation of Periodate by Freezing for the Degradation of Aqueous Organic Pollutants. Environ. Sci. Technol. 2018, 52, 5378–5385. [Google Scholar] [CrossRef] [PubMed]
- Bokare, A.D.; Choi, W. Singlet-Oxygen Generation in Alkaline Periodate Solution. Environ. Sci. Technol. 2015, 49, 14392–14400. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; He, F.; Choi, W. Production of Reactive Oxygen Species by the Reaction of Periodate and Hydroxylamine for Rapid Removal of Organic Pollutants and Waterborne Bacteria. Environ. Sci Technol. 2020, 54, 6427–6437. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Li, B.; Zhang, T. Bacteria That Make a Meal of Sulfonamide Antibiotics: Blind Spots and Emerging Opportunities. Environ. Sci. Technol. 2018, 52, 3854–3868. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Qi, C.; Lin, C. Activation of periodate by granular activated carbon for acid orange 7 decolorization. J. Taiwan Inst. Chem. Eng. 2016, 68, 211–217. [Google Scholar] [CrossRef]
- Li, R.; Wang, J.; Wu, H.; Zhu, Z.; Guo, H. Periodate activation for degradation of organic contaminants processes, performance and mechanism. Sep. Purif. Technol. 2022, 292, 120928. [Google Scholar] [CrossRef]
- Védrine, J.C. Metal Oxides in Heterogeneous Oxidation Catalysis: State of the Art and Challenges for a More Sustainable World. ChemSusChem 2019, 12, 577–588. [Google Scholar] [CrossRef]
- Van Velthoven, N.; Wang, Y.; Van Hees, H.; Henrion, M.; Bugaev, A.L.; Gracy, G.; Amro, K.; Soldatov, A.V.; Alauzun, J.G.; Mutin, P.H.; et al. Heterogeneous Single-Site Catalysts for C–H Activation Reactions: Pd(II)-Loaded S,O-Functionalized Metal Oxide-Bisphosphonates. ACS Appl. Mater. Interfaces 2020, 12, 47457–47466. [Google Scholar] [CrossRef]
- Xu, C.; Yang, G.; Li, J.; Zhang, S.; Fang, Y.; Peng, F.; Zhang, S.; Qiu, R. Efficient purification of tetracycline wastewater by activated persulfate with heterogeneous Co-V bimetallic oxides. J. Colloid Interface Sci. 2022, 619, 188–197. [Google Scholar] [CrossRef]
- Zeng, T.; Yu, M.; Zhang, H.; He, Z.; Zhang, X.; Chen, J.; Song, S. In situ synthesis of cobalt ferrites-embedded hollow N-doped carbon as an outstanding catalyst for elimination of organic pollutants. Sci. Total Environ. 2017, 593–594, 286–296. [Google Scholar] [CrossRef]
- Meng, Y.; Li, Z.; Tan, J.; Li, J.; Wu, J.; Zhang, T.; Wang, X. Oxygen-doped porous graphitic carbon nitride in photocatalytic peroxymonosulfate activation for enhanced carbamazepine removal: Performance, influence factors and mechanisms. Chem. Eng. J. 2022, 429, 130860. [Google Scholar] [CrossRef]
- Long, Y.; Dai, J.; Zhao, S.; Huang, S.; Zhang, Z. Metal–organic framework-derived magnetic carbon for efficient decontamination of organic pollutants via periodate activation: Surface atomic structure and mechanistic considerations. J. Hazard. Mater. 2022, 424, 126786. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yuan, X.; Jiang, L.; Zhao, Y.; Chen, H.; Shangguan, Z.; Qin, C.; Wang, H. Insights into periodate oxidation of antibiotics mediated by visible-light-induced polymeric carbon nitride: Performance and mechanism. Chem. Eng. J. 2023, 457, 141147. [Google Scholar] [CrossRef]
- He, L.; Yang, C.; Ding, J.; Lu, M.-Y.; Chen, C.-X.; Wang, G.-Y.; Jiang, J.-Q.; Ding, L.; Liu, G.-S.; Ren, N.-Q.; et al. Fe, N-doped carbonaceous catalyst activating periodate for micropollutant removal: Significant role of electron transfer. Appl. Catal. B Environ. 2022, 303, 120880. [Google Scholar] [CrossRef]
- Gogoi, D.; Shah, A.K.; Qureshi, M.; Golder, A.K.; Peela, N.R. Silver grafted graphitic-carbon nitride ternary hetero-junction Ag/gC3N4(Urea)-gC3N4(Thiourea) with efficient charge transfer for enhanced visible-light photocatalytic green H2 production. Appl. Surf. Sci. 2021, 558, 149900. [Google Scholar] [CrossRef]
- Chen, F.; Liu, L.L.; Chen, J.J.; Li, W.W.; Chen, Y.P.; Zhang, Y.J.; Wu, J.H.; Mei, S.C.; Yang, Q.; Yu, H.Q. Efficient decontamination of organic pollutants under high salinity conditions by a nonradical peroxymonosulfate activation system. Water Res. 2021, 191, 116799. [Google Scholar] [CrossRef]
- Wang, Y.; Du, P.; Pan, H.; Fu, L.; Zhang, Y.; Chen, J.; Du, Y.; Tang, N.; Liu, G. Increasing Solar Absorption of Atomically Thin 2D Carbon Nitride Sheets for Enhanced Visible-Light Photocatalysis. Adv Mater. 2019, 31, 1807540. [Google Scholar] [CrossRef]
- Chen, F.; Liu, L.L.; Wu, J.H.; Rui, X.H.; Chen, J.J.; Yu, Y. Single-Atom Iron Anchored Tubular g-C(3) N(4) Catalysts for Ultrafast Fenton-Like Reaction: Roles of High-Valency Iron-Oxo Species and Organic Radicals. Adv Mater. 2022, 34, 2202891. [Google Scholar] [CrossRef]
- Prakash, K.; Kumar, P.S.; Pandiaraj, S.; Karuthapandian, S. Versatile, metal free and temperature-controlled g-C3N4 as a highly efficient and robust photocatalyst for the degradation of organic pollutants. Res. Chem. Intermed. 2018, 45, 1147–1167. [Google Scholar] [CrossRef]
- Jiang, X.; Li, J.; Fang, J.; Gao, L.; Cai, W.; Li, X.; Xu, A.; Ruan, X. The photocatalytic performance of g-C3N4 from melamine hydrochloride for dyes degradation with peroxymonosulfate. J. Photochem. Photobiol. A Chem. 2017, 336, 54–62. [Google Scholar] [CrossRef]
- Sun, P.; Xiong, J.; Sun, P.; Fang, Y.; Liu, H.; Liu, H.; Xiong, B.; Wang, H.; Li, X.A. Additional O doping significantly improved the catalytic performance of Mn/O co-doped g-C3N4 for activating periodate and degrading organic pollutants. Sep. Purif. Technol. 2024, 331, 125593. [Google Scholar] [CrossRef]
- Wang, Q.; Zeng, H.; Liang, Y.; Cao, Y.; Xiao, Y.; Ma, J. Degradation of bisphenol AF in water by periodate activation with FeS (mackinawite) and the role of sulfur species in the generation of sulfate radicals. Chem. Eng. J. 2021, 407, 126738. [Google Scholar] [CrossRef]
- Liu, W.; Li, Y.; Liu, F.; Jiang, W.; Zhang, D.; Liang, J. Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C(3)N(4): Mechanisms, degradation pathway and DFT calculation. Water Res. 2019, 150, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Hu, H.; Ma, Y.; Liu, X.; Zhang, L.; Zhou, S.; Deng, B.; Lin, H.; Zhang, H. Persulfate enhanced photocatalytic degradation of bisphenol A over wasted batteries-derived ZnFe2O4 under visible light. J. Clean. Prod. 2020, 276, 124246. [Google Scholar] [CrossRef]
- Xu, Y.; Tang, X.; Xiao, Y.; Tang, H.; Lin, H.; Lv, Y.; Zhang, H. Persulfate promoted visible photocatalytic elimination of bisphenol A by g-C(3)N(4)-CeO(2) S-scheme heterojunction: The dominant role of photo-induced holes. Chemosphere 2023, 331, 138765. [Google Scholar] [CrossRef]
- Tang, H.; Li, R.; Fan, X.; Xu, Y.; Lin, H.; Zhang, H. A novel S-scheme heterojunction in spent battery-derived ZnFe2O4/g-C3N4 photocatalyst for enhancing peroxymonosulfate activation and visible light degradation of organic pollutant. J. Environ. Chem. Eng. 2022, 10, 107797. [Google Scholar] [CrossRef]
- Sun, Y.-J.; Fang, Z.-Y.; Huang, X.-T.; Bai, C.-W.; Zhu, K.-A.; Chen, X.-J.; Zhang, B.-B.; Zhang, Y.-S.; Yang, Q.; Zheng, J.-X.; et al. Efficient photo-switchable activation of periodate by nitrogen-vacancy-rich carbon nitride for organic contaminant removal: Theoretical predictions and experimental validations. Appl. Catal. B Environ. 2023, 337, 122994. [Google Scholar] [CrossRef]
- Wang, X.; Tang, W.; Jiang, L.; Feng, J.; Yang, J.; Zhou, S.; Li, W.; Yuan, X.; Wang, H.; Wang, J.; et al. Mechanism insights into visible light-induced crystalline carbon nitride activating periodate for highly efficient ciprofloxacin removal. Chem. Eng. J. 2023, 471, 144521. [Google Scholar] [CrossRef]
- Wu, M.; He, X.; Jing, B.; Wang, T.; Wang, C.; Qin, Y.; Ao, Z.; Wang, S.; An, T. Novel carbon and defects co-modified g-C(3)N(4) for highly efficient photocatalytic degradation of bisphenol A under visible light. J. Hazard. Mater. 2020, 384, 121323. [Google Scholar] [CrossRef]
- Kim, H.; Yoo, H.-Y.; Hong, S.; Lee, S.; Lee, S.; Park, B.-S.; Park, H.; Lee, C.; Lee, J. Effects of inorganic oxidants on kinetics and mechanisms of WO3-mediated photocatalytic degradation. Appl. Catal. B. 2015, 162, 515–523. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, S.; Cui, M.; Ren, Y.; Park, B.; Ma, J.; Han, Z.; Khim, J. Activation of peroxodisulfate and peroxymonosulfate by ultrasound with different frequencies: Impact on ibuprofen removal efficient, cost estimation and energy analysis. Chem. Eng. J. 2021, 413, 127487. [Google Scholar] [CrossRef]
- Levason, W. The coordination chemistry of periodate and tellurate ligands. Coord. Chem. Rev. 1997, 161, 33–79. [Google Scholar] [CrossRef]
- He, L.; Yang, S.; Shen, S.; Ma, Y.; Chen, Y.; Xue, J.; Wang, J.; Zheng, L.; Wu, L.; Zhang, Z.; et al. Novel insights into the mechanism of periodate activation by heterogeneous ultrasonic-enhanced sludge biochar: Relevance for efficient degradation of levofloxacin. J. Hazard. Mater. 2022, 434, 128860. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Lin, C.; Qi, C.; Zhang, H.; Ma, J. Enhanced activation of periodate by iodine-doped granular activated carbon for organic contaminant degradation. Chemosphere 2017, 181, 609–618. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Shi, Y.; Chen, Y.; Shen, S.; Xue, J.; Ma, Y.; Zheng, L.; Wu, L.; Zhang, Z.; Yang, L. Iron-manganese oxide loaded sludge biochar as a novel periodate activator for thiacloprid efficient degradation over a wide pH range. Sep. Purif. Technol. 2022, 288, 120703. [Google Scholar] [CrossRef]
- Niu, J.; Zhou, Y.; He, W.; Xiao, Y.; Song, X.; Zeng, X.; Huang, G.; Feng, D.; Liang, B.; Zhang, J. The controllable oxygen vacancies in N doped Bi2WO6-x for periodate activation: The synergy of superoxide and iodate radical. J. Water Process Eng. 2024, 64, 105747. [Google Scholar] [CrossRef]
- Xiao, P.; Yi, X.; Wu, M.; Wang, X.; Zhu, S.; Gao, B.; Liu, Y.; Zhou, H. Catalytic performance and periodate activation mechanism of anaerobic sewage sludge-derived biochar. J Hazard Mater 2022, 424, 127692. [Google Scholar] [CrossRef]
- Guo, X.; Yang, F.; Deng, S.; Ding, Y. Activation of periodate by ABTS as an electron shuttle for degradation of aqueous organic pollutants and enhancement effect of phosphate. Chemosphere 2024, 349, 140793. [Google Scholar] [CrossRef]
- Lei, Y.; Yu, Y.; Lei, X.; Liang, X.; Cheng, S.; Ouyang, G.; Yang, X. Assessing the Use of Probes and Quenchers for Understanding the Reactive Species in Advanced Oxidation Processes. Environ. Sci. Technol. 2023, 57, 5433–5444. [Google Scholar] [CrossRef]
- Bianco, G.V.; Sacchetti, A.; Grande, M.; D’orazio, A.; Milella, A.; Bruno, G. Effective hole conductivity in nitrogen-doped CVD-graphene by singlet oxygen treatment under photoactivation conditions. Sci. Rep. 2022, 12, 8703. [Google Scholar] [CrossRef]
- Wu, Y.; Tan, X.; Zhao, J.; Ma, J. alpha-Fe(2)O(3) mediated periodate activation for selective degradation of phenolic compounds via electron transfer pathway under visible irradiation. J. Hazard. Mater. 2023, 454, 131506. [Google Scholar] [CrossRef] [PubMed]
- Song, T.; Gao, Y.; Yu, X.; Su, R.; Deng, Q.; Wang, Z. Advances in photo-mediated advanced oxidation of periodate toward organics degradation. J. Water Process Eng. 2024, 61, 105261. [Google Scholar] [CrossRef]
- Sun, H.; Guo, F.; Pan, J.; Huang, W.; Wang, K.; Shi, W. One-pot thermal polymerization route to prepare N-deficient modified g-C3N4 for the degradation of tetracycline by the synergistic effect of photocatalysis and persulfate-based advanced oxidation process. Chem. Eng. J. 2021, 406, 126844. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, M.; Dionysiou, D.D. What is the role of light in persulfate-based advanced oxidation for water treatment? Water Res. 2021, 189, 116627. [Google Scholar] [CrossRef]
- Long, Y.; Li, S.; Yang, P.; Chen, X.; Liu, W.; Zhan, X.; Xue, C.; Liu, D.; Huang, W. Synthesis of ZIF-67 derived honeycomb porous Co/NC catalyst for AO7 degradation via activation of peroxymonosulfate. Sep. Purif. Technol. 2022, 286, 120470. [Google Scholar] [CrossRef]
- Santos, V.P.; Pereira, M.F.R.; Faria, P.C.C.; Órfão, J.J.M. Decolourisation of dye solutions by oxidation with H2O2 in the presence of modified activated carbons. J. Hazard. Mater. 2009, 162, 736–742. [Google Scholar] [CrossRef]
- Guillard, C.; Puzenat, E.; Lachheb, H.; Houas, A.; Herrmann, J.M. Why inorganic salts decrease the TiO2 photocatalytic efficiency. J. Alloys Compd. 2007, 503, 485–489. [Google Scholar] [CrossRef]
- Xu, L.; Ye, Z.; Pan, Y.; Zhang, Y.; Gong, H.; Mei, X.; Qiao, W.; Gan, L. Effect of lignocellulosic biomass composition on the performance of biochar for the activation of peroxymonosulfate to degrade diclofenac. Sep. Purif. Technol. 2023, 311, 123312. [Google Scholar] [CrossRef]
- Guo, W.; Zhao, Q.; Du, J.; Wang, H.; Li, X.; Ren, N. Enhanced removal of sulfadiazine by sulfidated ZVI activated persulfate process: Performance, mechanisms and degradation pathways. Chem. Eng. J. 2020, 388, 124303. [Google Scholar] [CrossRef]
- Long, Y.; Bu, S.; Huang, Y.; Shao, Y.; Xiao, L.; Shi, X. N-doped hierarchically porous carbon for highly efficient metal-free catalytic activation of peroxymonosulfate in water: A non-radical mechanism. Chemosphere 2019, 216, 545–555. [Google Scholar] [CrossRef]
- Chen, B.; Liu, X.; Liu, B.; Han, Q.; Li, L.; Wang, L.; Shu, Y.; Zang, L.; Zhu, W.; Wang, Z. Singlet oxygen generation in light-assisted peroxymonosulfate activation by carbon nitride: Role of elevated crystallinity. Chemosphere 2023, 321, 138112. [Google Scholar] [CrossRef] [PubMed]
Samples | SBET (m2/g) | Pore Volume (cm3/g) | Ref. |
---|---|---|---|
CN | 32.28 | 0.11 | This work |
MCN | 6.18 | 0.003 | [23] |
CN-bulk | 22.41 | 0.12 | [37] |
PCN | 26.04 | / | [38] |
C1.0CN | 32.1 | / | [39] |
Reaction System | Pollutant | Apparent Rate Constants (min−1) | Operating Conditions | Ref. |
---|---|---|---|---|
CN/PI/Vis | AO7 | 0.0408 | [catalyst] = 0.5 g/L; [PI] = 0.25 mM; initial pH = 5.50; T = 24 °C | This work |
WO3/PI | 4-CP | 0.0172 | [catalyst] = 0.5 g/L; [PI] = 1 mM; initial pH = 4.0; T = 22 °C | [40] |
SBC/PI | DCF | 0.0244 | [catalyst] = 0.1 g/L; [PI] = 5 mM; initial pH = 6.28; T = 25 °C | [43] |
I-GAC/PI | AO7 | 0.0521 | [catalyst] = 1.0 g/L; [PI] = 2.5 mM; initial pH = 5.27 | [44] |
Fe/Mn-SBC/PI | TCP | 0.0257 | [catalyst] = 1.0 g/L; [PI] = 5 mM; initial pH = 5.30; T = 25 °C | [45] |
N-BWO/PI/Vis | TC | 0.0277 | [catalyst] = 10 mg; [PI] = 0.1 g/L; initial pH = 7.0; T = 25 °C | [46] |
CWBC/PI | SDZ | 0.0586 | [catalyst] = 0.5 g/L; [PI] = 5 mM; initial pH = 3.0; T = 25 °C | [24] |
SBC-700/PI | AO7 | 0.0279 | [catalyst] = 0.4 g/L; [PI] = 1 mM; initial pH = 3.0; T = 25 °C | [47] |
ABTS/PI | BPA | 0.0352 | [catalyst] = 100 μM; [PI] = 1 mM; initial pH = 7.0 | [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Wang, Q.; He, J.; Liu, F.; Yan, X.; Xu, Y. Visible Light-Assisted Periodate Activation Using Carbon Nitride for the Efficient Elimination of Acid Orange 7. Separations 2024, 11, 274. https://doi.org/10.3390/separations11090274
Xu W, Wang Q, He J, Liu F, Yan X, Xu Y. Visible Light-Assisted Periodate Activation Using Carbon Nitride for the Efficient Elimination of Acid Orange 7. Separations. 2024; 11(9):274. https://doi.org/10.3390/separations11090274
Chicago/Turabian StyleXu, Wenjun, Qianyi Wang, Jintao He, Fuzhen Liu, Xiang Yan, and Yin Xu. 2024. "Visible Light-Assisted Periodate Activation Using Carbon Nitride for the Efficient Elimination of Acid Orange 7" Separations 11, no. 9: 274. https://doi.org/10.3390/separations11090274
APA StyleXu, W., Wang, Q., He, J., Liu, F., Yan, X., & Xu, Y. (2024). Visible Light-Assisted Periodate Activation Using Carbon Nitride for the Efficient Elimination of Acid Orange 7. Separations, 11(9), 274. https://doi.org/10.3390/separations11090274