Effect of Na+ on the Adsorption Behavior of Polystyrene Nanoparticles onto Coal and Quartz Surfaces
Abstract
:1. Introduction
2. Experimental Materials and Methods
2.1. Preparation and Particle Size Characterization of PS Nanoparticles
2.2. QCM-D Test Mechanism
2.3. Adsorption Tests of the Nanoparticles onto Mineral Surfaces
3. Results and Discussion
3.1. PS Nanoparticle Size Analysis
3.2. Adsorption of the PS Nanoparticles onto Amorphous Carbon and SiO2 Surfaces in Pure Water
3.3. Effect of Different Concentrations of Na+ on the Adsorption Behavior of PS Nanoparticles onto Amorphous Carbon Surface
3.4. Effect of Different Concentrations of Na+ on the Adsorption Behavior of PS Nanoparticles onto the Surface of SiO2
3.5. Adsorption Kinetic Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gomez-Flores, A.; Heyes, G.W.; Ilyas, S.; Kim, H. Prediction of Grade and Recovery in Flotation from Physicochemical and Operational Aspects Using Machine Learning Models. Miner. Eng. 2022, 183, 107627. [Google Scholar] [CrossRef]
- Sun, Y.; Xie, G.; Peng, Y.; Chen, Y.; Ma, G. How Does High Intensity Conditioning Affect Flotation Performance? Int. J. Coal Prep. Util. 2019, 39, 302–316. [Google Scholar] [CrossRef]
- Hu, X.; Tong, Z.; Sha, J.; Bilal, M.; Sun, Y.; Gu, R.; Ni, C.; Li, C.; Deng, Y. Effects of Flotation Reagents on Flotation Kinetics of Aphanitic (Microcrystalline) Graphite. Separations 2022, 9, 416. [Google Scholar] [CrossRef]
- Zhou, S.; Bu, X.; Wang, X.; Ni, C.; Ma, G.; Sun, Y.; Xie, G.; Bilal, M.; Alheshibri, M.; Hassanzadeh, A.; et al. Effects of Surface Roughness on the Hydrophilic Particles-Air Bubble Attachment. J. Mater. Res. Technol. 2022, 18, 3884–3893. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Y.; Dong, X.; Bu, X.; Drelich, J.W. Spreading and Adhesion Forces for Water Droplets on Methylated Glass Surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2020, 591, 124562. [Google Scholar] [CrossRef]
- Kosmulski, M. The pH-dependent surface charging and the points of zero charge. J. Colloid Interface Sci. 2002, 253, 77–87. [Google Scholar] [CrossRef]
- Sahasrabudhe, G.; DeIuliis, G.; Galvin, K. Hydrophobization of minerals by sorbitan mono oleate (Span® 80): Selectivity of a novel agglomeration process. Colloids Surf. A Physicochem. Eng. Asp. 2021, 630, 127460. [Google Scholar] [CrossRef]
- An, M.; Liao, Y.; Gui, X.; Zhao, Y.; He, Y.; Liu, Z.; Lai, Q. An Investigation of Coal Flotation Using Nanoparticles as a Collector. Int. J. Coal Prep. Util. 2020, 40, 679–690. [Google Scholar] [CrossRef]
- Cheng, G.; Zhang, M.; Li, Y.; Lau, E. Improving Micro-Fine Mineral Flotation via Micro/Nano Technologies. Sep. Sci. Technol. 2023, 58, 520–537. [Google Scholar] [CrossRef]
- Kim, H.; You, J.; Gomez-Flores, A.; Solongo, S.K.; Hwang, G.; Zhao, H.; Lee, B.; Choi, J. Malachite Flotation Using Carbon Black Nanoparticles as Collectors: Negative Impact of Suspended Nanoparticle Aggregates. Miner. Eng. 2019, 137, 19–26. [Google Scholar] [CrossRef]
- Nasirimoghaddam, S.; Mohebbi, A.; Karimi, M.; Reza Yarahmadi, M. Assessment of PH-Responsive Nanoparticles Performance on Laboratory Column Flotation Cell Applying a Real Ore Feed. Int. J. Min. Sci. Technol. 2020, 30, 197–205. [Google Scholar] [CrossRef]
- Yang, S.; Pelton, R. Nanoparticle Flotation Collectors II: The Role of Nanoparticle Hydrophobicity. Langmuir 2011, 27, 11409–11415. [Google Scholar] [CrossRef]
- Yang, S.; Pelton, R.; Abarca, C.; Dai, Z.; Montgomery, M.; Xu, M.; Bos, J.-A. Towards Nanoparticle Flotation Collectors for Pentlandite Separation. Int. J. Miner. Process. 2013, 123, 137–144. [Google Scholar] [CrossRef]
- Yang, S.; Pelton, R.; Montgomery, M.; Cui, Y. Nanoparticle Flotation Collectors III: The Role of Nanoparticle Diameter. ACS Appl. Mater. Interfaces 2012, 4, 4882–4890. [Google Scholar] [CrossRef]
- Yang, S.; Pelton, R.; Raegen, A.; Montgomery, M.; Dalnoki-Veress, K. Nanoparticle Flotation Collectors: Mechanisms Behind a New Technology. Langmuir 2011, 27, 10438–10446. [Google Scholar] [CrossRef]
- Yang, S.; Razavizadeh, B.B.M.; Pelton, R.; Bruin, G. Nanoparticle Flotation Collectors—The Influence of Particle Softness. ACS Appl. Mater. Interfaces 2013, 5, 4836–4842. [Google Scholar] [CrossRef]
- Dong, X.; Price, M.; Dai, Z.; Xu, M.; Pelton, R. Mineral-Mineral Particle Collisions during Flotation Remove Adsorbed Nanoparticle Flotation Collectors. J. Colloid Interface Sci. 2017, 504, 178–185. [Google Scholar] [CrossRef]
- Dong, X.; Marway, H.S.; Cranston, E.D.; Pelton, R.H. Relating Nanoparticle Shape and Adhesiveness to Performance as Flotation Collectors. Ind. Eng. Chem. Res. 2016, 55, 9633–9638. [Google Scholar] [CrossRef]
- Mabudi, A.; Noaparast, M.; Gharabaghi, M.; Vasquez, V.R. Polystyrene Nanoparticles as a Flotation Collector: A Molecular Dynamics Study. J. Mol. Liq. 2019, 275, 554–566. [Google Scholar] [CrossRef]
- Hajati, A.; Shafaei, S.Z.; Noaparast, M.; Farrokhpay, S.; Aslani, S. Novel Application of Talc Nanoparticles as Collector in Flotation. RSC Adv. 2016, 6, 98096–98103. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, S.; Liu, Q.; Masliyah, J.; Xu, Z. QCM-D Study of Nanoparticle Interactions. Adv. Colloid Interface Sci. 2016, 233, 94–114. [Google Scholar] [CrossRef]
- Hou, Y.; Sobhy, A.; Wang, Y. Significance of Reagents Addition Sequence on Iron Anionic Reverse Flotation and Their Adsorption Characteristics Using QCM-D. Physicochem. Probl. Miner. Process. 2021, 57, 284–293. [Google Scholar] [CrossRef]
- Kou, J.; Tao, D.; Xu, G. Fatty Acid Collectors for Phosphate Flotation and Their Adsorption Behavior Using QCM-D. Int. J. Miner. Process. 2010, 95, 1–9. [Google Scholar] [CrossRef]
- Kou, J.; Xu, S. In Situ Kinetics and Conformation Studies of Dodecylamine Adsorption onto Zinc Sulfide Using a Quartz Crystal Microbalance with Dissipation (QCM-D). Colloids Surf. A Physicochem. Eng. Asp. 2016, 490, 110–120. [Google Scholar] [CrossRef]
- Li, X.; Bai, Y.; Sui, H.; He, L. Understanding Desorption of Oil Fractions from Mineral Surfaces. Fuel 2018, 232, 257–266. [Google Scholar] [CrossRef]
- Molaei, N.; Bashir Wani, O.; Bobicki, E.R. A Comparative Study of Biopolymer Adsorption on Model Anisotropic Clay Surfaces Using Quartz Crystal Microbalance with Dissipation (QCM-D). J. Colloid Interface Sci. 2022, 615, 543–553. [Google Scholar] [CrossRef]
- Liu, S.; Kim, J. Application of Kevin—Voigt model in quantifying whey protein adsorption on polyethersulfone using QCM-D. JALA J. Assoc. Lab. Autom. 2009, 14, 213–220. [Google Scholar] [CrossRef]
- Liu, Z.; Hedayati, P.; Ghatkesar, M.K.; Sun, W.; Onay, H.; Groenendijk, D.; Sudhölter, E.J. Reducing anionic surfactant adsorption using polyacrylate as sacrificial agent investigated by QCM-D. J. Colloid Interface Sci. 2021, 585, 1–11. [Google Scholar] [CrossRef]
Ingredients | H2O/g | St/g | CTAB/g | V50/g | T/°C |
---|---|---|---|---|---|
Content | 100 | 10 | 0.2 | 0.1 | 75 |
Concentrations of Na+ Ions, M | PS Nanoparticle Adsorption Capacity, ng/cm2 | |
---|---|---|
Amorphous Carbon Surface | SiO2 Surface | |
0.0 | 59,379 | 23,325 |
0.1 | 56,155 | 21,364 |
0.5 | 49,552 | 18,130 |
1.0 | 44,900 | 16,114 |
Sensors | Na+ Concentrations | Quasi-Primary Kinetics | Quasi-Secondary Kinetics | ||||
---|---|---|---|---|---|---|---|
qe1 (ng·cm−2) | k1 (min−1) | R2 | qe2 (ng·cm−2) | k2 (cm2·(ng·min)−1) | R2 | ||
Amorphous carbon | 0.1 M | 56,119.58 | 0.060 | 0.997 | 55,834.73 | 4.732 × 10−6 | 0.996 |
0.5 M | 50,008.59 | 0.049 | 0.998 | 53,150.45 | 1.206 × 10−6 | 0.997 | |
1.0 M | 40,595.40 | 0.038 | 0.998 | 56,053.81 | 0.288 × 10−6 | 0.996 | |
SiO2 | 0.1 M | 19,400.61 | 0.782 | 0.995 | 24,289.53 | 0.017 × 10−3 | 0.990 |
0.5 M | 16,491.99 | 0.456 | 0.993 | 21,920.21 | 0.016 × 10−3 | 0.991 | |
1.0 M | 15,440.05 | 0.198 | 0.991 | 22,899.06 | 0.003 × 10−3 | 0.974 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Jiang, N.; Dong, X.; Fan, Y.; Yang, M.; Xiong, P.; Chen, Y. Effect of Na+ on the Adsorption Behavior of Polystyrene Nanoparticles onto Coal and Quartz Surfaces. Separations 2023, 10, 285. https://doi.org/10.3390/separations10050285
Sun Y, Jiang N, Dong X, Fan Y, Yang M, Xiong P, Chen Y. Effect of Na+ on the Adsorption Behavior of Polystyrene Nanoparticles onto Coal and Quartz Surfaces. Separations. 2023; 10(5):285. https://doi.org/10.3390/separations10050285
Chicago/Turabian StyleSun, Yujin, Ning Jiang, Xianshu Dong, Yuping Fan, Maoqing Yang, Peng Xiong, and Yuran Chen. 2023. "Effect of Na+ on the Adsorption Behavior of Polystyrene Nanoparticles onto Coal and Quartz Surfaces" Separations 10, no. 5: 285. https://doi.org/10.3390/separations10050285
APA StyleSun, Y., Jiang, N., Dong, X., Fan, Y., Yang, M., Xiong, P., & Chen, Y. (2023). Effect of Na+ on the Adsorption Behavior of Polystyrene Nanoparticles onto Coal and Quartz Surfaces. Separations, 10(5), 285. https://doi.org/10.3390/separations10050285