Challenges in the Analytical Preparation of a Biological Matrix in Analyses of Endocrine-Disrupting Bisphenols
Abstract
:1. Introduction
2. Biological Matrices
2.1. Urine
2.2. Blood and Cell-Free Fractions
2.3. Saliva
2.4. Cordial Blood
2.5. Amniotic Fluid
2.6. Breast Milk
2.7. Human Semen/Seminal Plasma
2.8. Sweat
2.9. Head Hair
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Owczarek, K.; Kubica, P.; Kudłak, B.; Rutkowska, A.; Konieczna, A.; Rachoń, D.; Namieśnik, J.; Wasik, A. Determination of trace levels of eleven bisphenol A analogues in human blood serum by high performance liquid chromatography-tandem mass spectrometry. Sci. Total Environ. 2018, 628–629, 1362–1368. [Google Scholar] [CrossRef]
- Milić, N.; Četojević-Simin, D.; Milanović, M.; Sudji, J.; Milošević, N.; Ćurić, N.; Abenavoli, L.; Medić-Stojanoska, M. Estimation of in vivo and in vitro exposure to bisphenol A as food contaminant. Food Chem. Toxicol. 2015, 83, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Lin, X.; Wu, M.; Lu, G.; Hao, Y.; Mo, C.; Li, Q.; Wu, J.; Wu, J.; Hu, B.X. Combined Effects of Polyamide Microplastics and Hydrochemical Factors on the Transport of Bisphenol A in Groundwater. Separations 2023, 10, 123. [Google Scholar] [CrossRef]
- González, N.; Cunha, S.C.; Monteiro, C.; Fernandes, J.O.; Marquès, M.; Domingo, J.L.; Nadal, M. Quantification of eight bisphenol analogues in blood and urine samples of workers in a hazardous waste incinerator. Environ. Res. 2019, 176, 108576. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhou, L.; Wu, X.C.; Guan, T.Y.; Zou, X.M.; Chen, C.; Yuan, M.Y.; Li, Y.H.; Wang, S.; Tao, F.B.; et al. Association of serum bisphenol AF concentration with depressive symptoms in adolescents: A nested case–control study in China. Ecotoxicol. Environ. Saf. 2022, 241, 113734. [Google Scholar] [CrossRef]
- Milanović, M.; Suđi, J.; Grujić-Letić, N.; Radonić, J.; Turk-Sekulić, M.; Vojinović-Miloradov, M.; Milić, N. Seasonal variations of bisphenol A in the Danube River by the municipality of Novi Sad, Serbia. J. Serb. Chem. Soc. 2016, 81, 333–345. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhang, L.; Lu, G.; Jiang, R.; Yan, Z.; Li, Y. Occurrence, toxicity and ecological risk of Bisphenol A analogues in aquatic environment-A review. Ecotoxicol. Environ. Saf. 2021, 208, 111481. [Google Scholar] [CrossRef]
- Vasiljevic, T.; Harner, T. Bisphenol A and its analogues in outdoor and indoor air: Properties, sources and global levels. Sci. Total Environ. 2021, 789, 148013. [Google Scholar] [CrossRef]
- Ronderos-Lara, J.G.; Saldarriaga-Noreña, H.; Murillo-Tovar, M.A.; Alvarez, L.; Vergara-Sánchez, J.; Barba, V.; Guerrero-Alvarez, J.A. Distribution and Estrogenic Risk of Alkylphenolic Compounds, Hormones and Drugs Contained in Water and Natural Surface Sediments, Morelos, Mexico. Separations 2022, 9, 19. [Google Scholar] [CrossRef]
- Fernández, J.H.; Guerra, Y.; Cano, H. Detection of Bisphenol A and Four Analogues in Atmospheric Emissions in Petrochemical Complexes Producing Polypropylene in South America. Molecules 2022, 27, 4832. [Google Scholar] [CrossRef]
- Czarny-Krzymińska, K.; Krawczyk, B.; Szczukocki, D. Bisphenol A and its substitutes in the aquatic environment: Occurrence and toxicity assessment. Chemosphere 2023, 315, 137763. [Google Scholar] [CrossRef]
- Yu, Y.; Song, Z.; Zhu, Z.; Yin, D.; Qiu, Y. Occurrence, removal efficiency and exposure assessment of bisphenols in drinking water treatment plants. Environ. Sci. Water Res. Technol. 2023, 9, 806–817. [Google Scholar] [CrossRef]
- Xing, J.; Zhang, S.; Zhang, M.; Hou, J. A critical review of presence, removal and potential impacts of endocrine disruptors bisphenol A. Comp. Biochem. Physiol. Part-C Toxicol. Pharmacol. 2022, 254, 109275. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.F.M.; Sajid, M.; Abd Halim, W.I.T.; Mohamed, A.H.; Zain, N.N.M.; Kamaruzaman, S.; Hanapi, N.S.M.; Ibrahim, W.N.W.; Yahaya, N. Recent advances in solid phase extraction methods for the determination of bisphenol A and its analogues in environmental matrices: An updated review. Microchem. J. 2023, 184, 108158. [Google Scholar]
- Rigopoulos, A.T.; Samanidou, V.F.; Touraki, M. Development and Validation of an HPLC-DAD Method for the Simultaneous Extraction and Quantification of Bisphenol-A, 4-Hydroxybenzoic Acid, 4-Hydroxyacetophenone and Hydroquinone in Bacterial Cultures of Lactococcus lactis. Separations 2018, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Andújar, N.; Gálvez-Ontiveros, Y.; Zafra-Gómez, A.; Rodrigo, L.; Álvarez-Cubero, M.J.; Aguilera, M.; Monteagudo, C.; Rivas, A.A. Bisphenol A Analogues in Food and Their Hormonal and Obesogenic Effects: A Review. Nutrients 2019, 11, 2136. [Google Scholar] [CrossRef] [Green Version]
- Zhao, N.; Zhu, J.; Zhao, M.; Jin, H. Twenty bisphenol analogues in take-out polystyrene-made food containers: Concentration levels, simulated migration, and risk evaluation. Environ. Sci. Pollut. Res. Int. 2023, 30, 10516–10526. [Google Scholar] [CrossRef]
- Kumar, P.; Aruna Priyanka, R.S.; Shalini Priya, P.; Gunasree, B.; Srivanth, S.; Jayasakthi, S.; Kapoor, A.; MuthuKumar, R. Bisphenol A contamination in processed food samples: An overview. Int. J. Environ. Sci. Technol. 2023, 20, 1–20. [Google Scholar] [CrossRef]
- González, N.; Cunha, S.C.; Ferreira, R.; Fernandes, J.O.; Marquès, M.; Nadal, M.; Domingo, J.L. Concentrations of nine bisphenol analogues in food purchased from Catalonia (Spain): Comparison of canned and non-canned foodstuffs. Food Chem. Toxicol. 2020, 136, 110992. [Google Scholar] [CrossRef]
- European Commission 2018. Regulation (EU) 2018/213 of 12 February 2018 on the Use of Bisphenol A in Varnishes and Coatings Intended to Come into Contact with Food and Amending Regulation (EU) No 10/2011 as Regards the Use of That Substance in Plastic Food Contact Materials. Available online: https://eur-lex.europa.eu/eli/reg/2018/213/oj (accessed on 10 December 2022).
- Andra, S.S.; Austin, C.; Yang, J.; Patel, D.; Arora, M. Recent advances in simultaneous analysis of bisphenol A and its conjugates in human matrices: Exposure biomarker perspectives. Sci. Total Environ. 2016, 572, 770–781. [Google Scholar] [CrossRef] [Green Version]
- Goldstone, A.E.; Chen, Z.; Perry, M.J.; Kannan, K.; Louis, G.M. Urinary bisphenol A and semen quality, the LIFE Study. Reprod. Toxicol. 2015, 51, 7–13. [Google Scholar] [CrossRef]
- Gély, C.A.; Huesca, A.; Picard-Hagen, N.; Toutain, P.L.; Berrebi, A.; Gauderat, G.; Gayrard, V.; Lacroix, M.Z. A new LC/MS method for specific determination of human systemic exposure to bisphenol A, F and S through their metabolites: Application to cord blood samples. Environ. Int. 2021, 151, 106429. [Google Scholar] [CrossRef] [PubMed]
- Ocaña-Rios, I.; de Jesús Olmos-Espejel, J.; Donkor, K.K. Recent advances in analysis of bisphenols and their derivatives in biological matrices. Anal. Bioanal. Chem. 2022, 414, 807–846. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, M.E.; de Souza, I.D. Sample preparation techniques for biological samples. Sci. Chromatogr. 2018, 10, 174–194. [Google Scholar] [CrossRef]
- Markham, D.; Waechter, J.; Budinsky, R.; Gries, W.; Beyer, D.; Snyder, S.; Dimond, S.; Rajesh, V.N.; Rao, N.; Connolly, P.; et al. Development of a method for the determination of total bisphenol a at trace levels in human blood and urine and elucidation of factors influencing method accuracy and sensitivity. J. Anal. Toxicol. 2014, 38, 194–203. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Han, L.; Chen, X.; Wei, X.; Zhou, X.; Liang, D.; Yin, R.; Jiao, X.; Li, H.; Li, A.J.; et al. Occurrence of emerging bisphenol S analogues in urine from five occupational populations in South China. Environ. Int. 2023, 172, 107773. [Google Scholar] [CrossRef]
- Faÿs, F.; Palazzi, P.; Hardy, E.M.; Schaeffer, C.; Phillipat, C.; Zeimet, E.; Vaillant, M.; Beausoleil, C.; Rousselle, C.; Slama, R.; et al. Is there an optimal sampling time and number of samples for assessing exposure to fast elimination endocrine disruptors with urinary biomarkers? Sci. Total Environ. 2020, 747, 141185. [Google Scholar] [CrossRef]
- Simonelli, A.; Guadagni, R.; De Franciscis, P.; Colacurci, N.; Pieri, M.; Basilicata, P.; Pedata, P.; Lamberti, M.; Sannolo, N.; Miraglia, N. Environmental and occupational exposure to bisphenol A and endometriosis: Urinary and peritoneal fluid concentration levels. Int. Arch. Occup. Environ. Health 2017, 90, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Rocha, B.A.; da Costa, B.R.; de Albuquerque, N.C.; de Oliveira, A.R.; Souza, J.M.; Al-Tameemi, M.; Campiglia, A.D.; Barbosa, F., Jr. A fast method for bisphenol A and six analogues (S, F, Z, P, AF, AP) determination in urine samples based on dispersive liquid-liquid microextraction and liquid chromatography-tandem mass spectrometry. Talanta 2016, 154, 511–519. [Google Scholar] [CrossRef]
- Fernandez, M.A.; André, L.C.; de Lourdes Cardeal, Z. Hollow fiber liquid-phase microextraction-gas chromatography-mass spectrometry method to analyze bisphenol A and other plasticizer metabolites. J. Chromatogr. A 2017, 1481, 31–36. [Google Scholar] [CrossRef]
- Ballesteros-Gómez, A.; Rubio, S. Tunable solvency mixtures of tetrahydrofuran:water for efficient and fast extraction/clean-up of trace contaminants. J. Chromatogr. A 2019, 1602, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Salatti-Dorado, J.Á.; Caballero-Casero, N.; Sicilia, M.D.; Lunar, M.L.; Rubio, S. The use of a restricted access volatile supramolecular solvent for the LC/MS-MS assay of bisphenol A in urine with a significant reduction of phospholipid-based matrix effects. Anal. Chim. Acta 2017, 950, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Correia-Sá, L.; Norberto, S.; Delerue-Matos, C.; Calhau, C.; Domingues, V.F. Micro-QuEChERS extraction coupled to GC–MS for a fast determination of Bisphenol A in human urine. J. Chromatogr. B 2018, 1072, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Aris, A. Estimation of bisphenol A (BPA) concentrations in pregnant women, fetuses and nonpregnant women in Eastern Townships of Canada. Reprod. Toxicol. 2014, 45, 8–13. [Google Scholar] [CrossRef]
- Chen, L.; He, Y.; Lei, Z.; Gao, C.; Xie, Q.; Tong, P.; Lin, Z. Preparation of core-shell structured magnetic covalent organic framework nanocomposites for magnetic solid-phase extraction of bisphenols from human serum sample. Talanta 2018, 181, 296–304. [Google Scholar] [CrossRef]
- Pednekar, P.P.; Gajbhiye, R.K.; Patil, A.D.; Surve, S.V.; Datar, A.G.; Balsarkar, G.D.; Chuahan, A.; Vanage, G.R. Estimation of plasma levels of bisphenol-A & phthalates in fertile & infertile women by gas chromatography-mass spectrometry. Indian J. Med. Res. 2018, 148, 734. [Google Scholar]
- Li, A.; Zhuang, T.; Shi, W.; Liang, Y.; Liao, C.; Song, M.; Jiang, G. Serum concentration of bisphenol analogues in pregnant women in China. Sci. Total Environ. 2020, 707, 136100. [Google Scholar] [CrossRef]
- Song, S.; Shao, M.; Wang, W.; He, Y.; Dai, X.; Wang, H.; Liu, L.; Guo, F. Development and evaluation of microwave-assisted and ultrasound-assisted methods based on a quick, easy, cheap, effective, rugged, and safe sample preparation approach for the determination of bisphenol analogues in serum and sediments. J. Sep. Sci. 2017, 40, 4610–4618. [Google Scholar] [CrossRef] [PubMed]
- Caballero-Casero, N.; Rubio, S. Comprehensive supramolecular solvent-based sample treatment platform for evaluation of combined exposure to mixtures of bisphenols and derivatives by liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta 2021, 1144, 14–25. [Google Scholar] [CrossRef]
- Berge, T.L.L.; Lygre, G.B.; Lie, S.A.; Lindh, C.H.; Björkman, L. Bisphenol A in human saliva and urine before and after treatment with dental polymer-based restorative materials. Eur. J. Oral Sci. 2019, 127, 435–444. [Google Scholar] [CrossRef] [Green Version]
- Gomes, J.M.; Almeida, T.F.A.; da Silva, T.A.; de Lourdes Cardeal, Z.; Menezes, H.C. Saliva biomonitoring using LPME-GC/MS method to assess dentistry exposure to plasticizers. Anal. Bioanal. Chem. 2020, 412, 7799–7810. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, M.L.; Rocha, B.A.; Souza, V.C.O.; Barbosa, F., Jr. Determination of 17 potential endocrine-disrupting chemicals in human saliva by dispersive liquid-liquid microextraction and liquid chromatography-tandem mass spectrometry. Talanta 2019, 196, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Romera-García, E.; Caballero-Casero, N.; Rubio, S. Saliva-induced coacervation of inverted aggregates of hexanol for simplifying human biomonitoring: Application to the determination of free bisphenols. Talanta 2019, 204, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Chou, W.C.; Chen, J.L.; Lin, C.F.; Chen, Y.C.; Shih, F.C.; Chuang, C.Y. Biomonitoring of bisphenol A concentrations in maternal and umbilical cord blood in regard to birth outcomes and adipokine expression: A birth cohort study in Taiwan. Environ. Health 2011, 10, 94. [Google Scholar] [CrossRef] [Green Version]
- Ihde, E.S.; Zamudio, S.; Loh, J.M.; Zhu, Y.; Woytanowski, J.; Rosen, L.; Liu, M.; Buckley, B. Application of a novel mass spectrometric (MS) method to examine exposure to Bisphenol-A and common substitutes in a maternal fetal cohort. Hum. Ecol. Risk Assess. 2018, 24, 331–346. [Google Scholar] [CrossRef]
- Foster, W.G.; Kubwabo, C.; Kosarac, I.; Gregorovich, S.; Aryal, G.; Coleman, K. Free bisphenol A (BPA), BPA-Glucuronide (BPA-G), and total BPA concentrations in maternal serum and urine during pregnancy and umbilical cord blood at delivery. Emerg. Contam. 2019, 5, 279–287. [Google Scholar] [CrossRef]
- Zhang, B.; He, Y.; Zhu, H.; Huang, X.; Bai, X.; Kannan, K.; Zhang, T. Concentrations of bisphenol A and its alternatives in paired maternal-fetal urine, serum and amniotic fluid from an e-waste dismantling area in China. Environ. Int. 2020, 136, 105407. [Google Scholar] [CrossRef]
- Szubartowski, S.; Tuzimski, T. Application of High-Performance Liquid Chromatography Combined with Fluorescence Detector and Dispersive Liquid-Liquid Microextraction to Quantification of Selected Bisphenols in Human Amniotic Fluid Samples. Int. J. Environ. Res. Public Health 2022, 20, 297. [Google Scholar] [CrossRef]
- Edlow, A.G.; Chen, M.; Smith, N.A.; Lu, C.; McElrath, T.F. Fetal bisphenol A exposure: Concentration of conjugated and unconjugated bisphenol A in amniotic fluid in the second and third trimesters. Reprod. Toxicol. 2012, 34, 1–7. [Google Scholar] [CrossRef]
- Tuzimski, T.; Szubartowski, S. Application of Solid-Phase Extraction and High-Performance Liquid Chromatography with Fluorescence Detection to Analyze Eleven Bisphenols in Amniotic Fluid Samples Collected during Amniocentesis. Int. J. Environ. Res. Public Health 2022, 19, 2309. [Google Scholar] [CrossRef]
- Yamada, H.; Furuta, I.; Kato, E.H.; Kataoka, S.; Usuki, Y.; Kobashi, G.; Sata, F.; Kishi, R.; Fujimoto, S. Maternal serum and amniotic fluid bisphenol A concentrations in the early second trimester. Reprod. Toxicol. 2002, 16, 735–739. [Google Scholar] [CrossRef] [PubMed]
- Iribarne-Durán, L.M.; Serrano, L.; Peinado, F.M.; Peña-Caballero, M.; Hurtado, J.A.; Vela-Soria, F.; Fernández, M.F.; Freire, C.; Artacho-Cordón, F.; Olea, N. Biomonitoring bisphenols, parabens, and benzophenones in breast milk from a human milk bank in Southern Spain. Sci. Total Environ. 2022, 830, 154737. [Google Scholar] [CrossRef] [PubMed]
- Szubartowski, S.; Tuzimski, T. A Fast Method for Determination of Seven Bisphenols in Human Breast Milk Samples with the Use of HPLC-FLD. Molecules 2023, 28, 1432. [Google Scholar] [CrossRef]
- Vela-Soria, F.; Jiménez-Díaz, I.; Díaz, C.; Pérez, J.; Iribarne-Durán, L.M.; Serrano-López, L.; Arrebola, J.P.; Fernández, M.F.; Olea, N. Determination of endocrine-disrupting chemicals in human milk by dispersive liquid-liquid microextraction. Bioanalysis 2016, 8, 1777–1791. [Google Scholar] [CrossRef]
- Luo, D.; Pan, Y.; Zeng, L.; Du, B.; Li, J.; Mei, S. Occurrence of multiple bisphenol S derivatives in breast milk from Chinese lactating women and implications for exposure in breast-fed infants. Environ. Sci. Technol. Lett. 2020, 8, 176–182. [Google Scholar] [CrossRef]
- Deceuninck, Y.; Bichon, E.; Marchand, P.; Boquien, C.Y.; Legrand, A.; Boscher, C.; Antignac, J.P.; Le Bizec, B. Determination of bisphenol A and related substitutes/analogues in human breast milk using gas chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2015, 407, 2485–2497. [Google Scholar] [CrossRef]
- Filippou, O.; Deliyanni, E.A.; Samanidou, V.F. Fabrication and evaluation of magnetic activated carbon as adsorbent for ultrasonic assisted magnetic solid phase dispersive extraction of bisphenol A from milk prior to high performance liquid chromatographic analysis with ultraviolet detection. J. Chromatogr. A 2017, 1479, 20–31. [Google Scholar] [CrossRef]
- Niu, Y.; Wang, B.; Zhao, Y.; Zhang, J.; Shao, B. Highly Sensitive and High-Throughput Method for the Analysis of Bisphenol Analogues and Their Halogenated Derivatives in Breast Milk. J. Agric. Food. Chem. 2017, 65, 10452–10463. [Google Scholar] [CrossRef] [PubMed]
- Tuzimski, T.; Szubartowski, S. Method Development for Selected Bisphenols Analysis in Sweetened Condensed Milk from a Can and Breast Milk Samples by HPLC-DAD and HPLC-QqQ-MS: Comparison of Sorbents (Z-SEP, Z-SEP Plus, PSA, C18, Chitin and EMR-Lipid) for Clean-Up of QuEChERS Extract. Molecules 2019, 24, 2093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitku, J.; Chlupacova, T.; Sosvorova, L.; Hampl, R.; Hill, M.; Heracek, J.; Bicikova, M.; Starka, L. Development and validation of LC–MS/MS method for quantification of bisphenol A and estrogens in human plasma and seminal fluid. Talanta 2015, 140, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Genuis, S.J.; Beesoon, S.; Birkholz, D.; Lobo, R.A. Human excretion of bisphenol A: Blood, urine, and sweat (BUS) study. J. Environ. Public Health 2012, 2012, 185731. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Ying, G.G.; Hong, H.; Tsang, E.P.K.; Deng, W.J. Plasticizer contamination in the urine and hair of preschool children, airborne particles in kindergartens, and drinking water in Hong Kong. Environ. Pollut. 2021, 271, 116394. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.J.; Hardy, E.M.; Béranger, R.; Mezzache, S.; Bourokba, N.; Bastien, P.; Li, J.; Zaros, C.; Chevrier, C.; Palazzi, P.; et al. Human exposure to PCBs, PBDEs and bisphenols revealed by hair analysis: A comparison between two adult female populations in China and France. Environ. Pollut. 2020, 267, 115425. [Google Scholar] [CrossRef] [PubMed]
- Nehring, I.; Staniszewska, M.; Falkowska, L. Human hair, Baltic grey seal (Halichoerus grypus) fur and herring gull (Larus argentatus) feathers as accumulators of bisphenol A and alkylphenols. Arch. Environ. Contam. Toxicol. 2017, 72, 552–561. [Google Scholar] [CrossRef] [Green Version]
- Karzi, V.; Tzatzarakis, M.N.; Vakonaki, E.; Alegakis, T.; Katsikantami, I.; Sifakis, S.; Rizos, A.; Tsatsakis, A.M. Biomonitoring of bisphenol A, triclosan and perfluorooctanoic acid in hair samples of children and adults. J. Appl. Toxicol. 2018, 38, 1144–1152. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, J.; Cheng, Y.; Chen, J.; Zhao, H.; Ren, X. Urine analysis has a very broad prospect in the future. Front. Anal. Sci. 2022, 1, 13. [Google Scholar] [CrossRef]
- Ye, X.; Wong, L.Y.; Bishop, A.M.; Calafat, A.M. Variability of urinary concentrations of bisphenol A in spot samples, first morning voids, and 24-hour collections. Environ. Health Perspect. 2011, 119, 983–988. [Google Scholar] [CrossRef] [Green Version]
- Koch, H.M.; Kolossa-Gehring, M.; Schröter-Kermani, C.; Angerer, J.; Brüning, T. Bisphenol A in 24 h urine and plasma samples of the German Environmental Specimen Bank from 1995 to 2009: A retrospective exposure evaluation. J. Expo. Sci. Environ. Epidemiol. 2012, 22, 610–616. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, P.; Zhou, X.; Powell, T.G.; Calafat, A.M.; Ye, X. Impact of enzymatic hydrolysis on the quantification of total urinary concentrations of chemical biomarkers. Chemosphere 2018, 199, 256–262. [Google Scholar] [CrossRef]
- Provencher, G.; Bérubé, R.; Dumas, P.; Bienvenu, J.F.; Gaudreau, E.; Bélanger, P.; Ayotte, P. Determination of bisphenol A, triclosan and their metabolites in human urine using isotope-dilution liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2014, 1348, 97–104. [Google Scholar] [CrossRef]
- Yang, Y.; Guan, J.; Yin, J.; Shao, B.; Li, H. Urinary levels of bisphenol analogues in residents living near a manufacturing plant in south China. Chemosphere 2014, 112, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Tang, S.; Zhou, X.; Gao, R.; Liu, Z.; Song, X.; Zeng, F. Urinary concentrations of bisphenol analogues in the south of China population and their contribution to the per capital mass loads in wastewater. Environ. Res. 2022, 204 Pt D, 112398. [Google Scholar] [CrossRef]
- Liao, C.; Liu, F.; Alomirah, H.; Loi, V.D.; Mohd, M.A.; Moon, H.B.; Nakata, H.; Kannan, K. Bisphenol S in urine from the United States and seven Asian countries: Occurrence and human exposures. Environ. Sci. Technol. 2012, 46, 6860–6866. [Google Scholar] [CrossRef]
- Xue, J.; Wu, Q.; Sakthivel, S.; Pavithran, P.V.; Vasukutty, J.R.; Kannan, K. Urinary levels of endocrine-disrupting chemicals, including bisphenols, bisphenol A diglycidyl ethers, benzophenones, parabens, and triclosan in obese and non-obese Indian children. Environ. Res. 2015, 137, 120–128. [Google Scholar] [CrossRef]
- Yang, Y.; Shi, Y.; Chen, D.; Chen, H.; Liu, X. Bisphenol A and its analogues in paired urine and house dust from South China and implications for children’s exposure. Chemosphere 2022, 294, 133701. [Google Scholar] [CrossRef] [PubMed]
- Trufelli, H.; Palma, P.; Famiglini, G.; Cappiello, A. An overview of matrix effects in liquid chromatography-mass spectrometry. Mass Spectrom. Rev. 2011, 30, 491–509. [Google Scholar] [CrossRef]
- Rebai, I.; Fernandes, J.O.; Azzouz, M.; Benmohammed, K.; Bader, G.; Benmbarek, K.; Cunha, S.C. Urinary bisphenol levels in plastic industry workers. Environ. Res. 2021, 202, 111666. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Shao, Y.; Zhan, M.; Zou, X.; Qu, W.; Zhou, Y. Rapid and sensitive determination of nine bisphenol analogues, three amphenicol antibiotics, and six phthalate metabolites in human urine samples using UHPLC-MS/MS. Anal. Bioanal. Chem. 2018, 410, 3871–3883. [Google Scholar] [CrossRef]
- Zhou, X.; Kramer, J.P.; Calafat, A.M.; Ye, X. Automated on-line column-switching high performance liquid chromatography isotope dilution tandem mass spectrometry method for the quantification of bisphenol A, bisphenol F, bisphenol S, and 11 other phenols in urine. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2014, 944, 152–156. [Google Scholar] [CrossRef]
- Kubwabo, C.; Kosarac, I.; Lalonde, K.; Foster, W.G. Quantitative determination of free and total bisphenol A in human urine using labeled BPA glucuronide and isotope dilution mass spectrometry. Anal. Bioanal. Chem. 2014, 406, 4381–4392. [Google Scholar] [CrossRef]
- Ho, K.L.; Yuen, K.K.; Yau, M.S.; Murphy, M.B.; Wan, Y.; Fong, B.M.; Tam, S.; Giesy, J.P.; Leung, K.S.; Lam, M.H. Glucuronide and Sulfate Conjugates of Bisphenol A: Chemical Synthesis and Correlation Between Their Urinary Levels and Plasma Bisphenol A Content in Voluntary Human Donors. Arch. Environ. Contam. Toxicol. 2017, 73, 410–420. [Google Scholar] [CrossRef] [PubMed]
- Arbuckle, T.E.; Marro, L.; Davis, K.; Fisher, M.; Ayotte, P.; Bélanger, P.; Dumas, P.; LeBlanc, A.; Bérubé, R.; Gaudreau, É.; et al. Exposure to free and conjugated forms of bisphenol A and triclosan among pregnant women in the MIREC cohort. Environ. Health Perspect. 2015, 123, 277–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nachman, R.M.; Fox, S.D.; Golden, W.C.; Sibinga, E.; Veenstra, T.D.; Groopman, J.D.; Lees, P.S. Urinary free bisphenol A and bisphenol A-glucuronide concentrations in newborns. J. Pediatr. 2013, 162, 870–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battal, D.; Cok, I.; Unlusayin, I.; Aktas, A.; Tunctan, B. Determination of urinary levels of Bisphenol A in a Turkish population. Environ. Monit. Assess. 2014, 186, 8443–8452. [Google Scholar] [CrossRef]
- Trabert, B.; Falk, R.T.; Figueroa, J.D.; Graubard, B.I.; Garcia-Closas, M.; Lissowska, J.; Peplonska, B.; Fox, S.D.; Brinton, L.A. Urinary bisphenol A-glucuronide and postmenopausal breast cancer in Poland. Cancer Causes Control 2014, 25, 1587–1593. [Google Scholar] [CrossRef] [Green Version]
- Ashley-Martin, J.; Gaudreau, É.; Dumas, P.; Liang, C.L.; Logvin, A.; Bélanger, P.; Provencher, G.; Gagne, S.; Foster, W.; Lanphear, B.; et al. Direct LC-MS/MS and indirect GC-MS/MS methods for measuring urinary bisphenol A concentrations are comparable. Environ. Int. 2021, 157, 106874. [Google Scholar] [CrossRef]
- Wang, H.; Gao, R.; Liang, W.; Wei, S.; Zhou, Y.; Zeng, F. Assessment of BPA and BPS exposure in the general population in Guangzhou, China-Estimation of daily intakes based on urinary metabolites. Environ. Pollut. 2022, 315, 120375. [Google Scholar] [CrossRef]
- Cunha, S.C.; Fernandes, J.O. Quantification of free and total bisphenol A and bisphenol B in human urine by dispersive liquid-liquid microextraction (DLLME) and heart-cutting multidimensional gas chromatography-mass spectrometry (MD-GC/MS). Talanta 2010, 83, 117–125. [Google Scholar] [CrossRef]
- Milošević, N.; Jakšić, V.; Sudji, J.; Vuković, B.; Ičin, T.; Milić, N.; Medić Stojanoska, M. Possible influence of the environmental pollutant bisphenol A on the cardiometabolic risk factors. Int. J. Environ. Health Res. 2017, 27, 11–26. [Google Scholar] [CrossRef]
- Chen, Y.; Fang, J.; Ren, L.; Fan, R.; Zhang, J.; Liu, G.; Zhou, L.; Chen, D.; Yu, Y.; Lu, S. Urinary bisphenol analogues and triclosan in children from south China and implications for human exposure. Environ. Pollut. 2018, 238, 299–305. [Google Scholar] [CrossRef]
- Li, A.J.; Xue, J.; Lin, S.; Al-Malki, A.L.; Al-Ghamdi, M.A.; Kumosani, T.A.; Kannan, K. Urinary concentrations of environmental phenols and their association with type 2 diabetes in a population in Jeddah, Saudi Arabia. Environ. Res. 2018, 166, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Katuri, G.P.; Caza, A.A.; Rasmussen, P.E.; Kubwabo, C. Simultaneous measurement of 16 bisphenol A analogues in house dust and evaluation of two sampling techniques. Emerg. Contam. 2021, 7, 1–9. [Google Scholar] [CrossRef]
- Sun, F.; Kang, L.; Xiang, X.; Li, H.; Luo, X.; Luo, R.; Lu, C.; Peng, X. Recent advances and progress in the detection of bisphenol A. Anal. Bioanal. Chem. 2016, 408, 6913–6927. [Google Scholar] [CrossRef]
- Milanović, M.; Milošević, N.; Sudji, J.; Stojanoski, S.; Atanacković Krstonošić, M.; Bjelica, A.; Milić, N.; Medić Stojanoska, M. Can environmental pollutant bisphenol A increase metabolic risk in polycystic ovary syndrome? Clin. Chim. Acta 2020, 507, 257–263. [Google Scholar] [CrossRef]
- Brock, J.W.; Yoshimura, Y.; Barr, J.R.; Maggio, V.L.; Graiser, S.R.; Nakazawa, H.; Needham, L.L. Measurement of Bisphenol A Levels in Human Urine. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 323–328. [Google Scholar] [CrossRef] [Green Version]
- Völkel, W.; Kiranoglu, M.; Fromme, H. Determination of Free and Total Bisphenol A in Human Urine to Assess Daily Uptake as a Basis for a Valid Risk Assessment. Toxicol. Lett. 2008, 179, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Geens, T.; Neels, H.; Covaci, A. Sensitive and Selective Method for the Determination of Bisphenol-A and Triclosan in Serum and Urine as Pentafluorobenzoate-Derivatives Using GC-ECNI/MS. J. Chromatogr. B 2009, 877, 4042–4046. [Google Scholar] [CrossRef]
- Lee, J.; Ahn, Y.A.; Choi, K.; Park, J.; Moon, H.B.; Choi, G.; Lee, J.J.; Suh, E.; Kim, H.J.; Eun, S.H.; et al. Bisphenol A in infant urine and baby-food samples among 9- to 15-month-olds. Sci. Total Environ. 2019, 697, 133861. [Google Scholar] [CrossRef]
- Tkalec, Ž.; Kosjek, T.; Snoj Tratnik, J.; Stajnko, A.; Runkel, A.A.; Sykiotou, M.; Mazej, D.; Horvat, M. Exposure of Slovenian children and adolescents to bisphenols, parabens and triclosan: Urinary levels, exposure patterns, determinants of exposure and susceptibility. Environ. Int. 2021, 146, 106172. [Google Scholar] [CrossRef]
- Hauck, Z.Z.; Huang, K.; Li, G.; van Breemen, R.B. Determination of bisphenol A-glucuronide in human urine using ultrahigh-pressure liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2016, 30, 400–406. [Google Scholar] [CrossRef]
- Gys, C.; Bamai, Y.A.; Araki, A.; Bastiaensen, M.; Caballero-Casero, N.; Kishi, R.; Covaci, A. Biomonitoring and temporal trends of bisphenols exposure in Japanese school children. Environ. Res. 2020, 191, 110172. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, Y.; Huang, C.; Jiao, Y.; Chen, J. A Phenolphthalein-Dummy Template Molecularly Imprinted Polymer for Highly Selective Extraction and Clean-Up of Bisphenol A in Complex Biological, Environmental and Food Samples. Polymers 2018, 10, 1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, D.; Jin, J.; Wang, L.; He, X.; Guo, C.; Lu, X.; Chen, J. Quantification of bisphenol A and its selected analogs in serum using pre-column derivatization with high-performance liquid chromatography and tandem mass spectrometry. J. Sep. Sci. 2019, 42, 991–998. [Google Scholar]
- Polovkov, N.Y.; Starkova, J.E.; Borisov, R.S. A simple, inexpensive, non-enzymatic microwave-assisted method for determining bisphenol-A in urine in the form of trimethylsilyl derivative by GC/MS with single quadrupole. J. Pharm. Biomed. Anal. 2020, 188, 113417. [Google Scholar] [CrossRef]
- Kawaguchi, M.; Ito, R.; Okanouchi, N.; Saito, K.; Nakazawa, H. Miniaturized hollow fiber assisted liquid-phase microextraction with in situ derivatization and gas chromatography-mass spectrometry for analysis of bisphenol A in human urine sample. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2008, 870, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Pastor-Belda, M.; Bastida, D.; Campillo, N.; Pérez-Cárceles, M.D.; Motas, M.; Viñas, P. A study of the influence on diabetes of free and conjugated bisphenol A concentrations in urine: Development of a simple microextraction procedure using gas chromatographymass spectrometry. J. Pharm. Biomed. Anal. 2016, 129, 458–465. [Google Scholar] [CrossRef]
- Han, X.; Chen, J.; Qiu, H.; Shi, Y.P. Solid/liquid phase microextraction of five bisphenol-type endocrine disrupting chemicals by using a hollow fiber reinforced with graphene oxide nanoribbons, and determination by HPLC-PDA. Mikrochim. Acta 2019, 186, 375. [Google Scholar] [CrossRef]
- Cao, X.L. A review recent development on analytical methods for determination of bisphenol a in food and biological samples. J. Liq. Chromatogr. Relat. Technol. 2012, 35, 2795–2829. [Google Scholar] [CrossRef]
- Ali, S.M.; Elbashir, A.A.; Elamin, M.B.; Aboul-Enein, H.Y. Sample extraction techniques and high-performance liquid chromatographic methods for the analysis of bisphenols. J. Iran. Chem. Soc. 2022, 19, 2663–2677. [Google Scholar] [CrossRef]
- Farajzadeh, M.A.; Nouri, N.; Khorram, P. Derivatization and microextraction methods for determination of organic compounds by gas chromatography. Trends Analyt. Chem. 2014, 55, 14–23. [Google Scholar] [CrossRef]
- Chung, S.H.; Ding, W.H. Isotope-dilution gas chromatography-mass spectrometry coupled with injection-port butylation for the determination of 4-t-octylphenol, 4-nonylphenols and bisphenol A in human urine. J. Pharm. Biomed. Anal. 2018, 149, 572–576. [Google Scholar] [CrossRef]
- Azzouz, A.; Rascón, A.J.; Ballesteros, E. Determination of free and conjugated forms of endocrine-disrupting chemicals in human biological fluids by GC−MS. Bioanalysis 2016, 8, 1145–1158. [Google Scholar] [CrossRef] [PubMed]
- Khmiri, I.; Côté, J.; Mantha, M.; Khemiri, R.; Lacroix, M.; Gely, C.; Toutain, P.L.; Picard-Hagen, N.; Gayrard, V.; Bouchard, M. Toxicokinetics of bisphenol-S and its glucuronide in plasma and urine following oral and dermal exposure in volunteers for the interpretation of biomonitoring data. Environ. Int. 2020, 138, 105644. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Kastenmüller, G.; He, Y.; Belcredi, P.; Möller, G.; Prehn, C.; Mendes, J.; Wahl, S.; Roemisch-Margl, W.; Ceglarek, U.; et al. Differences between Human Plasma and Serum Metabolite Profiles. PLoS ONE 2011, 6, e21230. [Google Scholar] [CrossRef] [PubMed]
- Sotelo-Orozco, J.; Chen, S.Y.; Hertz-Picciotto, I.; Slupsky, C.M. A Comparison of Serum and Plasma Blood Collection Tubes for the Integration of Epidemiological and Metabolomics Data. Front. Mol. Biosci. 2021, 8, 682134. [Google Scholar] [CrossRef]
- Vignoli, A.; Tenori, L.; Morsiani, C.; Turano, P.; Capri, M.; Luchinat, C. Serum or Plasma (and Which Plasma), That Is the Question. J. Proteome Res. 2022, 21, 1061–1072. [Google Scholar] [CrossRef]
- Liao, C.; Kannan, K. Determination of free and conjugated forms of bisphenol A in human urine and serum by liquid chromatography–tandem mass spectrometry. Environ. Sci. Technol. 2012, 46, 5003–5009. [Google Scholar] [CrossRef]
- Kosarac, I.; Kubwabo, C.; Lalonde, K.; Foster, W. A novel method for the quantitative determination of free and conjugated bisphenol A in human maternal and umbilical cord blood serum using a two-step solid phase extraction and gas chromatography/tandem mass spectrometry. J. Chrom. B 2012, 898, 90–94. [Google Scholar] [CrossRef]
- Ye, X.; Zhou, X.; Hennings, R.; Kramer, J.; Calafat, A.M. Potential external contamination with bisphenol A and other ubiquitous organic environmental chemicals during biomonitoring analysis: An elusive laboratory challenge. Environ. Health Perspect. 2013, 121, 283–286. [Google Scholar] [CrossRef] [Green Version]
- Kolatorova Sosvorova, L.; Chlupacova, T.; Vitku, J.; Vlk, M.; Heracek, J.; Starka, L.; Saman, D.; Simkova, M.; Hampl, R. Determination of selected bisphenols, parabens and estrogens in human plasma using LC-MS/MS. Talanta 2017, 174, 21–28. [Google Scholar] [CrossRef]
- Wiraagni, I.A.; Mohd, M.A.; Bin Abd Rashid, R.; Haron, D.E.B.M. Validation of a simple extraction procedure for bisphenol A identification from human plasma. PLoS ONE 2019, 14, e0221774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohkuma, H.; Abe, K.; Ito, M.; Kokado, A.; Kambegawa, A.; Maeda, M. Development of a highly sensitive enzyme-linked immunosorbent assay for bisphenol A in serum. Analyst 2002, 127, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Savastano, S.; Tarantino, G.; D’Esposito, V.; Passaretti, F.; Cabaro, S.; Liotti, A.; Liguoro, D.; Perruolo, G.; Ariemma, F.; Finelli, C.; et al. Bisphenol-A plasma levels are related to inflammatory markers, visceral obesity and insulin-resistance: A cross-sectional study on adult male population. J. Transl. Med. 2015, 13, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markham, D.A.; Waechter, J.M., Jr.; Wimber, M.; Rao, N.; Connolly, P.; Chuang, J.C.; Hentges, S.; Shiotsuka, R.N.; Dimond, S.; Chappelle, A.H. Development of a method for the determination of bisphenol A at trace concentrations in human blood and urine and elucidation of factors influencing method accuracy and sensitivity. J. Anal. Toxicol. 2010, 34, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Yamamoto, H.; Inoue, K.; Yamaguchi, A.; Yoshimura, Y.; Kato, K.; Nakazawa, H.; Kuroda, N.; Nakashima, K. Development of Sensitive High-Performance Liquid Chromatography with Fluorescence Detection Using 4-(4,5-diphenyl-1H-imidazol-2-yl)-benzoyl Chloride as a Labeling Reagent for Determination of Bisphenol A in Plasma Samples. J. Chromatogr. B 2001, 762, 1–7. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Brock, J.W.; Makino, T.; Nakazawa, H. Measurement of Bisphenol A in Human Serum by Gas Chromatography/Mass Spectrometry. Anal. Chim. Acta 2002, 458, 331–336. [Google Scholar] [CrossRef]
- Wan, Y.; Choi, K.; Kim, S.; Ji, K.; Chang, H.; Wiseman, S.; Jones, P.D.; Khim, J.S.; Park, S.; Park, J.; et al. Hydroxylated polybrominated diphenyl ethers and bisphenol A in pregnant women and their matching fetuses: Placental transfer and potential risks. Environ. Sci. Technol. 2010, 44, 5233–5239. [Google Scholar] [CrossRef]
- Sajiki, J.; Takahashi, K.; Yonekubo, J. Sensitive method for the determination of bisphenol-A in serum using two systems of high-performance liquid chromatography. J. Chromatogr. B Biomed. Sci. Appl. 1999, 736, 255–261. [Google Scholar] [CrossRef]
- Shen, Y.; Dong, Y.M.; Lu, Q.; Xu, J.; Wu, Y.T.; Yun, S.S.; Ren, M.L. Phenolic environmental estrogens in urine and blood plasma from women with uterine leiomyoma: Epidemiological survey. J. Obstet. Gynaecol. Res. 2016, 42, 440–445. [Google Scholar] [CrossRef]
- Lee, J.; Choi, K.; Park, J.; Moon, H.B.; Choi, G.; Lee, J.J.; Suh, E.; Kim, H.J.; Eun, S.H.; Kim, G.H.; et al. Bisphenol A distribution in serum, urine, placenta, breast milk, and umbilical cord serum in a birth panel of mother-neonate pairs. Sci. Total Environ. 2018, 626, 1494–1501. [Google Scholar] [CrossRef]
- Wang, Y.; Li, G.; Zhu, Q.; Liao, C. A multi-residue method for determination of 36 endocrine disrupting chemicals in human serum with a simple extraction procedure in combination of UPLC-MS/MS analysis. Talanta 2019, 205, 120144. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Deng, M.; Li, J.; Du, B.; Lan, S.; Liang, X.; Zeng, L. Occurrence and Maternal Transfer of Multiple Bisphenols, Including an Emerging Derivative with Unexpectedly High Concentrations, in the Human Maternal-Fetal-Placental Unit. Environ. Sci. Technol. 2020, 54, 3476–3486. [Google Scholar] [CrossRef] [PubMed]
- Asimakopoulos, A.G.; Thomaidis, N.S. Bisphenol A, 4-t-octylphenol, and 4-nonylphenol determination in serum by Hybrid Solid Phase Extraction-Precipitation Technology technique tailored to liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2015, 986–987, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Shiddiky, M.J.; Park, J.S.; Shim, Y.B. An impedimetric immunosensor for the label-free detection of bisphenol A. Biosens. Bioelectron. 2007, 22, 2464–2470. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhou, C.; Yan, X.; Yan, Y.; Wang, Q. Aptamer-functionalized nanoporous gold film for high-performance direct electrochemical detection of bisphenol A in human serum. Anal. Chim. Acta 2015, 883, 81–89. [Google Scholar] [CrossRef]
- Lin, X.; Cheng, C.; Terry, P.; Chen, J.; Cui, H.; Wu, J. Rapid and sensitive detection of bisphenol a from serum matrix. Biosens. Bioelectron. 2017, 91, 104–109. [Google Scholar] [CrossRef] [Green Version]
- Kaya, S.I.; Ozcelikay, G.; Armutcu, C.; Ozkan, S.A. An Ultra-Sensitive Molecularly Imprinted Poly (Aniline) Based Electrochemical Sensor for the Determination of Bisphenol A in Synthetic Human Serum Specimen and Plastic Bottled Water Samples. J. Electrochem. Soc. 2022, 169, 017506. [Google Scholar] [CrossRef]
- Staff, J.F.; Harding, A.H.; Morton, J.; Jones, K.; Guice, E.A.; McCormick, T. Investigation of saliva as an alternative matrix to blood for the biological monitoring of inorganic lead. Toxicol. Lett. 2014, 231, 270–276. [Google Scholar] [CrossRef] [Green Version]
- Dinis-Oliveira, R.J.; Vieira, D.N.; Magalhães, T. Guidelines for Collection of Biological Samples for Clinical and Forensic Toxicological Analysis. Forensic. Sci. Res. 2017, 1, 42–51. [Google Scholar] [CrossRef] [Green Version]
- Berge, T.L.L.; Lygre, G.B.; Jönsson, B.A.G.; Lindh, C.H.; Björkman, L. Bisphenol A concentration in human saliva related to dental polymer-based fillings. Clin. Oral Investig. 2017, 21, 2561–2568. [Google Scholar] [CrossRef]
- Kawaguchi, M.; Inoue, K.; Yoshimura, M.; Ito, R.; Sakui, N.; Okanouchi, N.; Nakazawa, H. Determination of bisphenol A in river water and body fluid samples by stir bar sorptive extraction with in situ derivatization and thermal desorption-gas chromatography-mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2004, 805, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Morin, A.M.; Gatev, E.; McEwen, L.M.; MacIsaac, J.L.; Lin, D.T.S.; Koen, N.; Czamara, D.; Räikkönen, K.; Zar, H.J.; Koenen, K.; et al. Maternal blood contamination of collected cord blood can be identified using DNA methylation at three CpGs. Clin. Epigenetics 2017, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Gerona, R.R.; Woodruff, T.J.; Dickenson, C.A.; Pan, J.; Schwartz, J.M.; Sen, S.; Friesen, M.W.; Fujimoto, V.Y.; Hunt, P.A. Bisphenol-A (BPA), BPA glucuronide, and BPA sulfate in midgestation umbilical cord serum in a northern and central California population. Environ. Sci. Technol. 2013, 47, 12477–12485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, J.; Minatoya, M.; Sasaki, S.; Araki, A.; Miyashita, C.; Matsumura, T.; Kishi, R. Quantifying bisphenol A in maternal and cord whole blood using isotope dilution liquid chromatography/tandem mass spectrometry and maternal characteristics associated with bisphenol A. Chemosphere 2016, 164, 25–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minatoya, M.; Sasaki, S.; Araki, A.; Miyashita, C.; Itoh, S.; Yamamoto, J.; Matsumura, T.; Mitsui, T.; Moriya, K.; Cho, K.; et al. Cord Blood Bisphenol A Levels and Reproductive and Thyroid Hormone Levels of Neonates: The Hokkaido Study on Environment and Children’s Health. Epidemiology 2017, 28 (Suppl. 1), S3–S9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalkan, C.; Uncu, M.; Duran, S.; Bahçeciler, N.N. Association of cord blood bisphenol A (BPA) with cord blood adiponectin, leptin, fetal growth; adiposity and neoantal complications in a newborn cohort. J. Matern. Fetal Neonatal Med. 2020, 33, 2588–2593. [Google Scholar] [CrossRef]
- Virgiliou, C.; Gika, H.G.; Witting, M.; Bletsou, A.A.; Athanasiadis, A.; Zafrakas, M.; Thomaidis, N.S.; Raikos, N.; Makrydimas, G.; Theodoridis, G.A. Amniotic Fluid and Maternal Serum Metabolic Signatures in the Second Trimester Associated with Preterm Delivery. J. Proteome Res. 2017, 16, 898–910. [Google Scholar] [CrossRef]
- Ginsberg, G.; Rice, D.C. Does rapid metabolism ensure negligible risk from bisphenol A? Environ. Health Perspect. 2009, 117, 1639–1643. [Google Scholar] [CrossRef]
- Pajewska-Szmyt, M.; Sinkiewicz-Darol, E.; Gadzała-Kopciuch, R. The impact of environmental pollution on the quality of mother’s milk. Environ. Sci. Pollut. Res. Int. 2019, 26, 7405–7427. [Google Scholar] [CrossRef] [Green Version]
- Czarczyńska-Goślińska, B.; Grześkowiak, T.; Frankowski, R.; Lulek, J.; Pieczak, J.; Zgoła-Grześkowiak, A. Determination of bisphenols and parabens in breast milk and dietary risk assessment for Polish breastfed infants. J. Food. Compost. Anal. 2021, 98, 103839. [Google Scholar] [CrossRef]
- Dualde, P.; Pardo, O.; Fernández, S.; Pastor, A.; Yusà, V. Determination of four parabens and bisphenols A, F and S in human breast milk using QuEChERS and liquid chromatography coupled to mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2019, 1114–1115, 154–166. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Gómez, R.; Jiménez-Díaz, I.; Zafra-Gómez, A.; Ballesteros, O.; Navalón, A. A multiresidue method for the determination of selected endocrine disrupting chemicals in human breast milk based on a simple extraction procedure. Talanta 2014, 130, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Tuzimski, T.; Pieniążek, D.; Buszewicz, G.; Teresiński, G. QuEChERS-Based Extraction Procedures for the Analysis of Bisphenols S and A in Breast Milk Samples by LC-QqQ-MS. J. AOAC Int. 2019, 102, 23–32. [Google Scholar] [CrossRef]
- Jin, H.; Xie, J.; Mao, L.; Zhao, M.; Bai, X.; Wen, J.; Shen, T.; Wu, P. Bisphenol analogue concentrations in human breast milk and their associations with postnatal infant growth. Environ. Pollut. 2020, 259, 113779. [Google Scholar] [CrossRef]
- Tuzimski, T.; Szubartowski, S.; Gadzała-Kopciuch, R.; Miturski, A.; Wójtowicz-Marzec, M.; Kwaśniewski, W.; Buszewski, B. Comparison of DAD and FLD Detection for Identification of Selected Bisphenols in Human Breast Milk Samples and Their Quantitative Analysis by LC-MS/MS. J. AOAC Int. 2020, 103, 1029–1042. [Google Scholar] [CrossRef]
- Mendonca, K.; Hauser, R.; Calafat, A.M.; Arbuckle, T.E.; Duty, S.M. Bisphenol A concentrations in maternal breast milk and infant urine. Int. Arch. Occup. Environ. Health 2014, 87, 13–20. [Google Scholar] [CrossRef]
- Cariot, A.; Dupuis, A.; Albouy-Llaty, M.; Legube, B.; Rabouan, S.; Migeot, V. Reliable quantification of bisphenol A and its chlorinated derivatives in human breast milk using UPLC-MS/MS method. Talanta 2012, 100, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Gómez, R.; Zafra-Gómez, A.; Camino-Sánchez, F.J.; Ballesteros, O.; Navalón, A. Gas chromatography and ultra high performance liquid chromatography tandem mass spectrometry methods for the determination of selected endocrine disrupting chemicals in human breast milk after stir-bar sorptive extraction. J. Chromatogr. A 2014, 1349, 69–79. [Google Scholar] [CrossRef]
- Ye, X.; Kuklenyik, Z.; Needham, L.L.; Calafat, A.M. Measuring environmental phenols and chlorinated organic chemicals in breast milk using automated on-line column-switching-high performance liquid chromatography-isotope dilution tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2006, 831, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Niu, Y.; Wang, B.; Yang, R.; Wu, Y.; Zhao, Y.; Li, C.; Zhang, J.; Xing, Y.; Shao, B. Bisphenol Analogues and Their Chlorinated Derivatives in Breast Milk in China: Occurrence and Exposure Assessment. J. Agric. Food Chem. 2021, 69, 1391–1397. [Google Scholar] [CrossRef]
- Knapke, E.T.; Magalhaes, D.P.; Dalvie, M.A.; Mandrioli, D.; Perry, M.J. Environmental and occupational pesticide exposure and human sperm parameters: A Navigation Guide review. Toxicology 2022, 465, 153017. [Google Scholar] [CrossRef] [PubMed]
- Palak, E.; Lebiedzińska, W.; Anisimowicz, S.; Sztachelska, M.; Pierzyński, P.; Wiczkowski, W.; Żelazowska-Rutkowska, B.; Niklińska, G.N.; Ponikwicka-Tyszko, D.; Wołczyński, S. The Association between Bisphenol A, Steroid Hormones, and Selected MicroRNAs Levels in Seminal Plasma of Men with Infertility. J. Clin. Med. 2021, 10, 5945. [Google Scholar] [CrossRef] [PubMed]
- Ghayda, R.A.; Williams, P.L.; Chavarro, J.E.; Ford, J.B.; Souter, I.; Calafat, A.M.; Hauser, R.; Mínguez-Alarcón, L. Urinary bisphenol S concentrations: Potential predictors of and associations with semen quality parameters among men attending a fertility center. Environ. Int. 2019, 131, 105050. [Google Scholar] [CrossRef]
- Pollard, S.H.; Cox, K.J.; Blackburn, B.E.; Wilkins, D.G.; Carrell, D.T.; Stanford, J.B.; Porucznik, C.A. Male exposure to bisphenol A (BPA) and semen quality in the Home Observation of Periconceptional Exposures (HOPE) cohort. Reprod. Toxicol. 2019, 90, 82–87. [Google Scholar] [CrossRef]
- Mena-Bravo, A.; Luque de Castro, M.D. Sweat: A sample with limited present applications and promising future in metabolomics. J. Pharm. Biomed. Anal. 2014, 90, 139–147. [Google Scholar] [CrossRef]
- Luque de Castro, M.D. Sweat as a clinical sample: What is done and what should be done. Bioanalysis 2016, 8, 85–88. [Google Scholar] [CrossRef] [Green Version]
- Porucznik, C.A.; Cox, K.J.; Wilkins, D.G.; Anderson, D.J.; Bailey, N.M.; Szczotka, K.M.; Stanford, J.B. A Preliminary Study of Biomonitoring for Bisphenol-A in Human Sweat. J. Anal. Toxicol. 2015, 39, 562–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzatzarakis, M.N.; Vakonaki, E.; Kavvalakis, M.P.; Barmpas, M.; Kokkinakis, E.N.; Xenos, K.; Tsatsakis, A.M. Biomonitoring of bisphenol A in hair of Greek population. Chemosphere 2015, 118, 336–341. [Google Scholar] [CrossRef]
- Sen, J.; Das Chaudhuri, A.B. Brief communication: Choice of washing method of hair samples for trace element analysis in environmental studies. Am. J. Phys. Anthropol. 2001, 115, 289–291. [Google Scholar] [CrossRef]
- Robin, J.; Binson, G.; Albouy, M.; Sauvaget, A.; Pierre-Eugène, P.; Migeot, V.; Dupuis, A.; Venisse, N. Analytical method for the biomonitoring of bisphenols and parabens by liquid chromatography coupled to tandem mass spectrometry in human hair. Ecotoxicol. Environ. Saf. 2022, 243, 113986. [Google Scholar] [CrossRef]
- Katsikantami, I.; Tzatzarakis, M.N.; Karzi, V.; Stavroulaki, A.; Xezonaki, P.; Vakonaki, E.; Alegakis, A.K.; Sifakis, S.; Rizos, A.K.; Tsatsakis, A.M. Biomonitoring of bisphenols A and S and phthalate metabolites in hair from pregnant women in Crete. Sci. Total Environ. 2020, 712, 135651. [Google Scholar] [CrossRef] [PubMed]
Matrix | Analytes | Preparation Technique (Sorbent/Extraction Solvent) | Instrumental Analysis | Recovery (%) | RSD (%) | The Lowest LOD | The Lowest LOQ | Reference |
---|---|---|---|---|---|---|---|---|
URINE | ||||||||
BPS, 2,4-BPS, BPSIP, BPS-MAE, BPS-DAE, TGSA, DBSP, DPS, DDS, DD-70, TDP | LLE (ethyl acetate) | LC-MS/MS | 62–95 | 2–14 | 6–7 pg/mL | Data not reported | [27] | |
BPA, BPF, BPS, BPB | SPE (HLB) | LC-MS/MS | 98–118 | 7–25 | 0.004–0.01 ng/mL | 0.05–0.5 ng/mL | [28] | |
BPA | SPE (not reported) | GC-MS/MS | 104.4 | 1.5–9.7 | 0.05 ng/mL | Data not reported | [29] | |
BPA, BPS, BPF, BPZ, BPP, BPAF, BPAP | DLLME (acetonitrile) | LC-MS/MS | 90–112 | 1.9–14.8 | 0.005–0.2 ng/mL | 0.02–0.5 ng/mL | [30] | |
BPAF, BPF, BPE, BPA, BPB, BPS, BPZ, BPAP | DLLME (acetonitrile + tetrachloroethylene + acetic anhydride) | GC-MS | 62–103 | 1–20 | 0.03–4.55 ng/mL | 0.1–2.5 ng/mL | [4] | |
BPA | HF-LPME (octanol) | GC-MS | Data not reported | 13.9–17.1 | 1.82 ng/mL | 3.04 ng/mL | [31] | |
BPA | Salting out-LLME (tetrahydrofuran) | LC-MS/MS | 95–108 | 6 | 0.1 ng/mL | 0.2 ng/mL | [32] | |
BPA | Restricted-access volatile SUPRAS-based microextraction (hexanol + tetrahydrofuran) | LC-MS/MS | 96–107 | 4.5 | 0.015 ng/mL | 0.025 ng/mL | [33] | |
BPA | Micro-QuEChERS + dSPE (acetonitrile + C18 and magnesium sulphate) | GC-MS | 74–118 | 3–10 | 0.13 ng/mL | 0.43 ng/mL | [34] | |
BLOOD and CELL-FREE FRACTIONS | ||||||||
BPA, BPS, BPC, BPE, BPF, BPG, BPM, BPP, BPZ, BPFL, BPBP | LLE (acetonitrile) | LC-MS/MS | 87.6–134.6 | 1.2–15 | 0.008–0.039 ng/mL | 0.024–0.12 ng/mL | [1] | |
BPA | LLE (ethyl acetate) | GC-MS | Data not reported | Data not reported | 0.01 ng/mL | 0.10 ng/mL | [35] | |
BPA, BPS, BPF, BPB, BPAF | MSPE (core-shell structured magnetic covalent organic framework nanocomposite) | LC-MS/MS | 93–107.8 | 1.2–6.9 | 0.1–78.4 ng/mL | 3.2 −260.3 ng/mL | [36] | |
BPA | SPE (polymer divinylbenzene) | GC-MS/MS | 83.31–104.01 | 5.97–15.25 | Data not reported | 1 ng/mL | [37] | |
BPS, BPF, BPAF, BPB, BPP, BPZ, BPAP, TBBPA, TBBPS, TCBPA | UAE + SPE (MCX) | LC-MS/MS | 66.6–101 | 0.8–14 | 0.001–0.197 ng/mL | 0.002–0.658 ng/mL | [38] | |
BPA, BPB, BPE, BPF, BPS, BPAF, BPZ, TBBPA | UAE + QuEChERS (acetonitrile + primary secondary amine + C18 + magnesium sulphate + graphitized carbon black) | LC-MS/MS | 62–91 | 2.6–5.5 | 0.1–1.0 ng/mL | 0.3–2.5 ng/mL | [39] | |
BPA, BPB, BPE, BPF, BPP, BPS, BPZ, BPAP, BPAF, MCBPA, DCBPA, TriCBPA, TCBPA, BADGE, BADGE × H2O, BADGE × 2H2O, BADGE × HCl, BADGE × 2HCl, BADGE × H2O × HCl, BFDGE, BFDGE × 2H2O | SUPRAS-based microextraction (hexanol + tetrahydrofuran) | LC-MS/MS | 72–107 | 1–10 | Data not reported | 0.019–0.19 ng/mL | [40] | |
BPA, BPS, BPF, BPB, BPAF, BPZ, BPE, BPAP | DLLME (acetonitrile + tetrachloroethylene + acetic anhydride) | GC-MS | 74–116 | 2–17 | 0.03–4.55 ng/mL | 0.1–15 ng/mL | [4] | |
SALIVA | ||||||||
BPA | LLE (acetonitrile) | LC-MS/MS | Data not reported | 2.8–4 | 0.1 ng/mL | Data not reported | [41] | |
BPA | HF-LPME (octanol + ethyl octanoat) | GC-MS | 93 | 7.36–13.02 | 0.07 ng/mL | 0.24 ng/mL | [42] | |
BPA, BPS, BPAF, BPAP, BPP, BPZ | DLLME (acetone + chloroform) | LC-MS/MS | 85–114 | 2–19 | 0.01–0.1 ng/mL | 0.1–0.4 ng/mL | [43] | |
BPA, BPB, BPE, BPF, BPP, BPS, BPZ, BPAF, BPAP, MCBPA, DCBPA, TriCBPA, TCBPA | SUPRAS-based microextraction (hexanol + tetrahydrofuran) | LC-MS/MS | 95–105.6 | 0.6–16 | 0.012–0.049 ng/mL | 0.024–0.098 ng/mL | [44] | |
CORDIAL BLOOD | ||||||||
BPA | LLE (hexane + diethyl ether + perchloric acid) | HPLC-UV | 96.1 | 1.99–7.53 | 0.13 ng/mL | Data not reported | [45] | |
BPA, BPB, BPE, BPF, BPS, BPAF | LLE (dichloromethane) | LC-MS | Data not reported | Data not reported | 0.14–2.5 ng/mL | Data not reported | [46] | |
BPA | SPE (HLB) | GC-MS/MS | Data not reported | Data not reported | 0.026 ng/mL | Data not reported | [47] | |
BPA, BPF, BPS | SPE (HR-XAW) | LC-MS/MS | 92–103 | Data not reported | 0.023–0.038 ng/mL | 0.046–0.052 ng/mL | [23] | |
AMNIOTIC FLUID | ||||||||
BPA, BPAF, BPAP, BPB, BPP, BPS and BPZ | LLE (ethyl acetate) | LC-MS/MS | 80–110 | 3–16 | Data not reported | 0.01–0.2 ng/mL | [48] | |
BPF, BPE, BPAF, BPP, BADGE × 2HCl | DLLME (acetone + chloroform) | HPLC-FLD | 76.5–113.3 | 5–12 | 2.04–7.50 ng/mL | 6.17–22.72 ng/mL | [49] | |
BPA | SPE (not reported) | LC-MS | Data not reported | Data not reported | 0.1 ng/mL | 0.3 ng/mL | [50] | |
BADGE × 2H2O, BPE, BADGE·H2O, BPAF, BADGE, BPF, BADGE × H2O × HCl, BPB, BPAP, BPP, BADGE × 2HCl | SPE (HLB) | HPLC-FLD | 49–121 | 1.3–17.9 | 1.1–5.2 ng/mL | 3.2–15.6 ng/mL | [51] | |
BPA | SPE (not reported) | ELISA | Data not reported | Data not reported | 0.2 ng/mL | Data not reported | [52] | |
BREAST MILK | ||||||||
BPA | LLE (acetonitrile + chloroform) | GC-MS/MS | 85–115 | Data not reported | 0.2 ng/mL | 0.5 ng/mL | [53] | |
BPA, BPF, BPE, BPP, BADGE, BADGE × 2H2O, BADGE × 2HCl | DLLME (acetone + dichloromethane) | HPLC-FLD | 67–110 | 7–17 | 0.5–2.1 ng/mL | 1.4–6.3 ng/mL | [54] | |
BPA, BPF, BPS | DLLME (acetone + chloroform) | LC-MS/MS | 94.5–110.4 | 5.1–14.8 | 0.1 ng/mL | 0.4–0.5 ng/mL | [55] | |
BPA, BPAP, BPAF, BPE, BPF, BPSIP, 2,4-BPS, BPS-MAE, BPS-DAE, BPS-MPE, DDS, TDP, TGSA, DPS | SPE (HLB) | LC-MS/MS | 63–109 | Data not reported | 0.3–37 pg/mL | Data not reported | [56] | |
BPA, BPB, BPAP, BPAF, BPBP, BPC, BPCl2, BPE, BPPH, BPS, BPF, DHDPE, BPFL, BPZ, BP4,4′, BPM, BPP, BIS2, BP2,2′ | SPE (polystyrene-divinylbenzene, molecularly imprinted polymers) | GC-MS/MS | 90–109 | 13–20 | 0.001–0.030 ng/g | 0.002–0.050 ng/g | [57] | |
BPA | UA-MSPE (magnetic micro-meso porous activated carbon) | LC-UV | 89.1–99.4 | 0.5–3.7 | 0.75 ng/mL | 2.5 ng/mL | [58] | |
BPA, BPB, BPC, BPE, BPF, BPM, BPP, BPS, BPZ, BPAP, BPAF, BPBP, BPFL, DHDPE, MCBPA, 3,5-DCBPA, 3,3-DCBPA, TriCBPA, TCBPA, TBBPA, MCBPF, DCBPF, TriCBPF, TCBPF, MCBPS, 3,5-DCBPS, 3,3-DCBPS, TriCBPS, TCBPS | QuEChERS (acetonitrile + EMR lipid powder) | LC-MS/MS | 86.11–119.05 | 0.59–13.49 | 0.0003–0.067 ng/mL | 0.001–0.200 ng/mL | [59] | |
BPA, BPF, BPS, BPB, BADGE, BADGE × H2O, BADGE × 2HCl | QuEChERS + dSPE (acetonitrile + sodium chloride and magnesium sulphate + zirconium-based sorbent and primary secondary amine) | HPLC-DAD | 15–107 | <10 | 142–693 ng/mL | 430–2102 ng/mL | [60] | |
SEMEN/SEMINAL PLASMA | ||||||||
BPA | LLE (methyl tert-butyl ether) | LC-MS/MS | 99.7–103.8 | 4.9 | Data not reported | 28.9 pg/mL | [61] | |
SWEAT | ||||||||
BPA | SPE (HLB) | LC-MS/MS | Data not reported | Data not reported | 0.2 ng/mL | Data not reported | [62] | |
HEAD HAIR | ||||||||
BPZ, BPP, BPM, BPS, BPF, BDP, TBBPA, BPAP, BPAF, BPDP | SPE (HLB) | LC-MS/MS | 86–101 | 3–9 | 0.04–0.5 ng/g | Data not reported | [63] | |
BPA | SPE (HLB) | GC-MS/MS | 106–112 | 6–16 | 5.47 pg/mg | 50 pg/mg | [64] | |
BPA | UAE + SPE (HLB) | LC-FLD | 85 | < 10 | Data not reported | 2.0 ng/g | [65] | |
BPA | UAE | LC-MS | 98 | 9.8–19.8 | 0.2 pg/mg | 0.7 pg/mg | [66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milić, N.; Milanović, M.; Drljača, J.; Sudji, J.; Milošević, N. Challenges in the Analytical Preparation of a Biological Matrix in Analyses of Endocrine-Disrupting Bisphenols. Separations 2023, 10, 226. https://doi.org/10.3390/separations10040226
Milić N, Milanović M, Drljača J, Sudji J, Milošević N. Challenges in the Analytical Preparation of a Biological Matrix in Analyses of Endocrine-Disrupting Bisphenols. Separations. 2023; 10(4):226. https://doi.org/10.3390/separations10040226
Chicago/Turabian StyleMilić, Nataša, Maja Milanović, Jovana Drljača, Jan Sudji, and Nataša Milošević. 2023. "Challenges in the Analytical Preparation of a Biological Matrix in Analyses of Endocrine-Disrupting Bisphenols" Separations 10, no. 4: 226. https://doi.org/10.3390/separations10040226
APA StyleMilić, N., Milanović, M., Drljača, J., Sudji, J., & Milošević, N. (2023). Challenges in the Analytical Preparation of a Biological Matrix in Analyses of Endocrine-Disrupting Bisphenols. Separations, 10(4), 226. https://doi.org/10.3390/separations10040226