Deep Eutectic Solvent-Based Microwave-Assisted Extraction for the Extraction of Seven Main Flavonoids from Ribes mandshuricum (Maxim.) Kom. Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Chemicals and Reagents
2.3. HPLC Analysis
2.4. Preparation of DESs
2.5. Sample Extraction Procedure
2.5.1. Microwave Assisted Extraction (MAE)
2.5.2. Common Extraction Methods
2.6. Experimental Design
2.7. Purification and Separation of Seven Major Flavonoids Extracted by DES-MAE
2.8. Statistical Analysis
3. Result and Discussion
3.1. HPLC Analysis
3.1.1. Linearity and Sensitivity
3.1.2. Precision and Recovery
3.2. Screening of DESs
3.3. Single-Factor Experiments
3.3.1. The Effect of ChCl/Lactic Acid Ratio
3.3.2. The Effect of Water Content of ChCl/Lactic Acid DES
3.4. Optimization of DES-MAE Using BBD
3.5. Verification of the Models
3.6. Contrast of Conventional Extraction Methods
3.7. Purification and Separation of Seven Major Flavonoids from DES-MAE Extraction Solution
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tomaszewski, D.; Zieliński, J. Epicuticular wax structures on stems and comparison between stems and leaves—A survey. Flora Morphol. Distrib. Funct. Ecol. Plants 2014, 209, 215–232. [Google Scholar] [CrossRef]
- Nowak, A.; Czyzowska, A.; Efenberger, M.; Krala, L. Polyphenolic extracts of cherry (Prunus cerasus L.) and blackcurrant (Ribes nigrum L.) leaves as natural preservatives in meat products. Food Microbiol. 2016, 59, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Tang, H.; Zhang, Z.; Zhang, Y.; Qiu, C.; Zhang, L.; Huang, P.; Li, F. Kaempferol slows intervertebral disc degeneration by modifying LPS-induced osteogenesis/adipogenesis imbalance and inflammation response in BMSCs. Int. Immunopharmacol. 2017, 43, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhang, H.; Wang, Y.; Song, F.; Yuan, Y. Inhibitory effects of quercetin on the progression of liver fibrosis through the regulation of NF-κB/IκBα, p38 MAPK, and Bcl-2/Bax signaling. Int. Immunopharmacol. 2017, 47, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Soromou, L.W.; Chen, N.; Jiang, L.; Huo, M.; Wei, M.; Chu, X.; Millimouno, F.M.; Feng, H.; Sidime, Y.; Deng, X. Astragalin attenuates lipopolysaccharide-induced inflammatory responses by down-regulating NF-κB signaling pathway. Biochem. Biophys. Res. Commun. 2012, 419, 256–261. [Google Scholar] [CrossRef]
- Nour, V.; Trandafir, I.; Cosmulescu, S. Antioxidant capacity, phenolic compounds and minerals content of blackcurrant (Ribes nigrum L.) leaves as influenced by harvesting date and extraction method. Ind. Crops Prod. 2014, 53, 133–139. [Google Scholar] [CrossRef]
- Ma, Z.; Piao, T.; Wang, Y.; Liu, J. Astragalin inhibits IL-1β-induced inflammatory mediators production in human osteoarthritis chondrocyte by inhibiting NF-κB and MAPK activation. Int. Immunopharmacol. 2015, 25, 83–87. [Google Scholar] [CrossRef]
- Lian, J.-J.; Cheng, B.-F.; Gao, Y.-X.; Xue, H.; Wang, L.; Wang, M.; Yang, H.-J.; Feng, Z.-W. Protective effect of kaempferol, a flavonoid widely present in varieties of edible plants, on IL-1β-induced inflammatory response via inhibiting MAPK, Akt, and NF-κB signalling in SW982 cells. J. Funct. Foods 2016, 27, 214–222. [Google Scholar] [CrossRef]
- Li, F.; Liang, D.; Yang, Z.; Wang, T.; Wang, W.; Song, X.; Guo, M.; Zhou, E.; Li, D.; Cao, Y.; et al. Astragalin suppresses inflammatory responses via down-regulation of NF-κB signaling pathway in lipopolysaccharide-induced mastitis in a murine model. Int. Immunopharmacol. 2013, 17, 478–482. [Google Scholar] [CrossRef]
- Kim, M.-J.; Kwon, S.-B.; Kim, M.-S.; Jin, S.W.; Ryu, H.W.; Oh, S.-R.; Yoon, D.-Y. Trifolin induces apoptosis via extrinsic and intrinsic pathways in the NCI-H460 human non-small cell lung-cancer cell line. Phytomedicine 2016, 23, 998–1004. [Google Scholar] [CrossRef]
- Kashafi, E.; Moradzadeh, M.; Mohamadkhani, A.; Erfanian, S. Kaempferol increases apoptosis in human cervical cancer HeLa cells via PI3K/AKT and telomerase pathways. Biomed. Pharmacother. Biomed. Pharmacother. 2017, 89, 573–577. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Guan, H.; Liu, D.; Wu, X.; Fan, M.; Han, J. Flavonoids from sea buckthorn inhibit the lipopolysaccharide-induced inflammatory response in RAW264.7 macrophages through the MAPK and NF-κB pathways. Food Funct. 2017, 8, 1313–1322. [Google Scholar] [CrossRef] [PubMed]
- Iskender, H.; Dokumacioglu, E.; Sen, T.M.; Ince, I.; Kanbay, Y.; Saral, S. The effect of hesperidin and quercetin on oxidative stress, NF-κB and SIRT1 levels in a STZ-induced experimental diabetes model. Biomed. Pharmacother. Biomed. Pharmacother. 2017, 90, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Derksen, A.; Kühn, J.; Hafezi, W.; Sendker, J.; Ehrhardt, C.; Ludwig, S.; Hensel, A. Antiviral activity of hydroalcoholic extract from Eupatorium perfoliatum L. against the attachment of influenza A virus. J. Ethnopharmacol. 2016, 188, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-L.; Yang, J.; Fu, Y.-F.; Meng, X.-N.; Zhao, W.-D.; Hu, T.-J. Effect of total flavonoids of Spatholobus suberectus Dunn on PCV2 induced oxidative stress in RAW264.7 cells. BMC Complement. Altern. Med. 2017, 17, 244. [Google Scholar] [CrossRef] [Green Version]
- Bubalo, M.C.; Ćurko, N.; Tomašević, M.; Ganić, K.K.; Redovniković, I.R. Green extraction of grape skin phenolics by using deep eutectic solvents. Food Chem. 2016, 200, 159–166. [Google Scholar] [CrossRef]
- Bi, W.; Tian, M.; Row, K.H. Evaluation of alcohol-based deep eutectic solvent in extraction and determination of flavonoids with response surface methodology optimization. J. Chromatogr. A 2013, 1285, 22–30. [Google Scholar] [CrossRef]
- Zhuang, B.; Dou, L.-L.; Li, P.; Liu, E.-H. Deep eutectic solvents as green media for extraction of flavonoid glycosides and aglycones from Platycladi Cacumen. J. Pharm. Biomed. Anal. 2017, 134, 214–219. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 39, 70–71. [Google Scholar] [CrossRef] [Green Version]
- Cui, Q.; Peng, X.; Yao, X.-H.; Wei, Z.-F.; Luo, M.; Wang, W.; Zhao, C.-J.; Fu, Y.-J.; Zu, Y.-G. Deep eutectic solvent-based microwave-assisted extraction of genistin, genistein and apigenin from pigeon pea roots. Sep. Purif. Technol. 2015, 150, 63–72. [Google Scholar] [CrossRef]
- Huang, Y.; Feng, F.; Jiang, J.; Qiao, Y.; Wu, T.; Voglmeir, J.; Chen, Z.-G. Green and efficient extraction of rutin from tartary buckwheat hull by using natural deep eutectic solvents. Food Chem. 2017, 221, 1400–1405. [Google Scholar] [CrossRef]
- Liu, W.; Fu, Y.; Zu, Y.; Kong, Y.; Zhang, L.; Zu, B.; Efferth, T. Negative-pressure cavitation extraction for the determination of flavonoids in pigeon pea leaves by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2009, 1216, 3841–3850. [Google Scholar] [CrossRef]
- Magnusson, M.; Yuen, A.K.; Zhang, R.; Wright, J.T.; Taylor, R.B.; Maschmeyer, T.; de Nys, R. A comparative assessment of microwave assisted (MAE) and conventional solid-liquid (SLE) techniques for the extraction of phloroglucinol from brown seaweed. Algal Res. 2017, 23, 28–36. [Google Scholar] [CrossRef]
- Dang, Y.Y.; Zhang, H.; Xiu, Z.L. Microwave-assisted aqueous two-phase extraction of phenolics from grape (Vitis vinifera) seed. J. Chem. Technol. Biotechnol. 2014, 89, 1576–1581. [Google Scholar] [CrossRef]
- Liang, H.; Wang, W.; Xu, J.; Zhang, Q.; Shen, Z.; Zeng, Z.; Li, Q. Optimization of ionic liquid-based microwave-assisted extraction technique for curcuminoids from Curcuma longa L. Food Bioprod. Process. 2017, 104, 57–65. [Google Scholar] [CrossRef]
- Li, L.; Li, Y.; Huang, Y.; Wang, W. Extraction and antioxidant activity of total flavonoids from citronella. For. Eng. 2022, 38, 106–114. [Google Scholar] [CrossRef]
- Li, X.X.; Wang, F.; Cui, X.S.; Yang, F.J. Optimization of extraction technology of flavonoids from Perilla frutescens leaves by response surface methodology. For. Eng. 2019, 35, 48–54. [Google Scholar] [CrossRef]
- Wu, S.; Wang, Y.; Gong, G.; Li, F.; Ren, H.; Liu, Y. Adsorption and desorption properties of macroporous resins for flavonoids from the extract of Chinese wolfberry (Lycium barbarum L.). Food Bioprod. Process. 2015, 93, 148–155. [Google Scholar] [CrossRef]
- Wei, Z.-F.; Wang, X.-Q.; Peng, X.; Wang, W.; Zhao, C.-J.; Zu, Y.-G.; Fu, Y.-J. Fast and green extraction and separation of main bioactive flavonoids from Radix scutellariae. Ind. Crops Prod. 2015, 63, 175–181. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Yi, Y.; Miao, Q.; Liu, S.; Zhao, F.; Cong, W.; Wang, C.; Xia, C. Purification of quercetin-3-O-sophoroside and isoquercitrin from Poacynum hendersonii leaves using macroporous resins followed by Sephadex LH-20 column chromatography. J. Chromatogr. B 2017, 1048, 56–63. [Google Scholar] [CrossRef]
- Fu, B.; Liu, J.; Li, H.; Li, L.; Lee, F.S.; Wang, X. The application of macroporous resins in the separation of licorice flavonoids and glycyrrhizic acid. J. Chromatogr. A 2005, 1089, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Bakirtzi, C.; Triantafyllidou, K.; Makris, D.P. Novel lactic acid-based natural deep eutectic solvents: Efficiency in the ultrasound-assisted extraction of antioxidant polyphenols from common native Greek medicinal plants. J. Appl. Res. Med. Aromat. Plants 2016, 3, 120–127. [Google Scholar] [CrossRef]
Abbreviation | HBD | HBA | Mole Ratio |
---|---|---|---|
DES-1 | Citric acid | Choline chloride | 1:1 |
DES-2 | Lactic acid | Choline chloride | 1:1,1:2,1:3,1:4,1:5 |
DES-3 | Ethylene glycol | Choline chloride | 1:1 |
DES-4 | 1,4-butanediol | Choline chloride | 1:1 |
DES-5 | Glucose | Choline chloride | 1:1 |
Runs | Factors | Extraction Yield (mg/g DW) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
X1 a | X2 b | X3 c | Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Y7 | |
1 | 0(25) | 0(55) | 0(10) | 1.250 | 0.338 | 2.478 | 4.696 | 1.095 | 0.426 | 0.110 |
2 | 0(25) | 1(70) | −1(5) | 0.931 | 0.252 | 1.802 | 3.554 | 0.819 | 0.169 | 0.037 |
3 | −1(15) | −1(40) | 0(10) | 1.019 | 0.288 | 2.047 | 3.795 | 0.890 | 0.032 | 0.006 |
4 | −1(15) | 0(55) | −1(5) | 0.941 | 0.254 | 1.869 | 3.505 | 0.822 | 0.043 | 0.009 |
5 | 1(35) | 0(55) | 1(15) | 1.087 | 0.237 | 2.237 | 4.259 | 0.996 | 0.112 | 0.020 |
6 | −1(15) | 0(55) | 1(15) | 0.978 | 0.264 | 1.895 | 3.575 | 0.848 | 0.159 | 0.022 |
7 | 1(35) | 0(55) | −1(5) | 1.222 | 0.330 | 2.568 | 4.826 | 1.131 | 0.048 | 0.007 |
8 | 0(25) | 1(70) | 1(15) | 1.062 | 0.287 | 1.882 | 4.028 | 0.901 | 0.412 | 0.092 |
9 | 0(25) | 0(55) | 0(10) | 1.197 | 0.323 | 2.491 | 4.761 | 1.110 | 0.376 | 0.095 |
10 | 0(25) | 0(55) | 0(10) | 1.280 | 0.346 | 2.581 | 4.631 | 1.190 | 0.261 | 0.128 |
11 | 0(25) | 0(55) | 0(10) | 1.282 | 0.347 | 2.516 | 4.561 | 1.195 | 0.376 | 0.109 |
12 | 0(25) | 0(55) | 0(10) | 1.243 | 0.336 | 2.646 | 4.963 | 1.152 | 0.476 | 0.113 |
13 | 1(35) | 1(70) | 0(10) | 1.103 | 0.298 | 2.258 | 4.344 | 1.006 | 0.104 | 0.031 |
14 | −1(15) | 1(70) | 0(10) | 0.969 | 0.262 | 1.875 | 3.557 | 0.846 | 0.263 | 0.028 |
15 | 0(25) | −1(40) | −1(5) | 1.175 | 0.318 | 2.377 | 4.474 | 1.053 | 0.030 | 0.006 |
16 | 1(35) | −1(40) | 0(10) | 1.121 | 0.303 | 2.326 | 4.401 | 1.034 | 0.026 | 0.007 |
17 | 0(25) | −1(40) | 1(15) | 1.105 | 0.299 | 2.263 | 4.182 | 0.989 | 0.028 | 0.009 |
Analyte | Linearity Range (μg/mL) | Calibration Equation a | LOD b (μg/mL) | LOQ c (μg/mL) | R2 |
---|---|---|---|---|---|
Rutin | 7.813–500 | Y = 16364.907X + 114.548 | 0.20 | 0.66 | 0.9952 |
Hyperoside | 7.813–500 | Y = 31748.616X + 18.190 | 0.42 | 1.42 | 0.9957 |
Isoquercetin | 7.813–500 | Y = 26116.801X + 36.001 | 0.41 | 1.37 | 0.9994 |
Trifolin | 7.813–500 | Y = 25721.581X − 11.432 | 0.19 | 0.64 | 0.9996 |
Astragalin | 7.813–500 | Y = 30879.312X − 95.355 | 0.18 | 0.61 | 0.9979 |
Quercetin | 7.813–500 | Y = 69090.791X − 153.246 | 0.31 | 1.03 | 0.9978 |
Kaempferol | 7.813–500 | Y = 82794.569X + 54.854 | 0.14 | 0.46 | 0.9993 |
Analyte | Intra-Day Variations | Inter-Day Variations | Amount Added (μg) | Recovery (%) | R.S.D. (%) | ||
---|---|---|---|---|---|---|---|
RSD for RT (%) | RSD for PA (%) | RSD for RT (%) | RSD for PA (%) | ||||
Rutin | 0.37 | 2.83 | 0.36 | 2.94 | 25 | 98.97 | 2.33 |
50 | 97.99 | 3.23 | |||||
Hyperoside | 0.40 | 2.55 | 0.37 | 2.66 | 25 | 98.89 | 3.18 |
50 | 98.35 | 3.66 | |||||
Isoquercetin | 0.43 | 2.53 | 0.40 | 2.61 | 25 | 99.21 | 3.56 |
50 | 98.58 | 2.29 | |||||
Trifolin | 0.67 | 3.41 | 0.62 | 3.13 | 25 | 99.16 | 3.10 |
50 | 99.02 | 3.90 | |||||
Astragalin | 0.47 | 2.84 | 0.44 | 2.78 | 25 | 98.75 | 4.47 |
50 | 98.24 | 3.21 | |||||
Quercetin | 0.08 | 1.81 | 0.07 | 2.76 | 25 | 99.11 | 3.78 |
50 | 98.56 | 3.54 | |||||
Kaempferol | 0.06 | 1.87 | 0.06 | 2.45 | 25 | 98.87 | 3.16 |
50 | 98.53 | 3.68 |
Sources | Rutin | ||
---|---|---|---|
F-Value | p-Value | ||
Model | 9.69 | 0.0034 | significant |
X1 a | 20.18 | 0.0028 | |
X2 b | 6.46 | 0.0385 | |
X3 c | 0.067 | 0.8034 | |
X1 X2 | 0.11 | 0.7522 | |
X1 X3 | 3.06 | 0.1240 | |
X2 X3 | 4.18 | 0.0801 | |
X12 | 18.90 | 0.0034 | |
X22 | 14.98 | 0.0061 | |
X32 | 13.73 | 0.0076 | |
Lack of fit | 3.35 | 0.1365 | not significant |
R2 | 0.9257 | ||
Sources | Hyperoside | ||
F-value | p-value | ||
Model | 7.64 | 0.0069 | significant |
X1 a | 4.69 | 0.0671 | |
X2 b | 5.56 | 0.0505 | |
X3 c | 2.06 | 0.1946 | |
X1 X2 | 0.44 | 0.5262 | |
X1 X3 | 9.97 | 0.0160 | |
X2 X3 | 2.79 | 0.1387 | |
X12 | 17.93 | 0.0039 | |
X22 | 4.28 | 0.0772 | |
X32 | 16.96 | 0.0045 | |
Lack of fit | 5.69 | 0.0631 | not significant |
R2 | 0.9077 | ||
Sources | Isoquercetin | ||
F-value | p-value | ||
Model | 8.74 | 0.0046 | significant |
X1 a | 22.84 | 0.0020 | |
X2 b | 11.27 | 0.0121 | |
X3 c | 0.91 | 0.3723 | |
X1 X2 | 0.17 | 0.6948 | |
X1 X3 | 2.00 | 0.2003 | |
X2 X3 | 0.60 | 0.4648 | |
X12 | 8.33 | 0.0234 | |
X22 | 15.12 | 0.0060 | |
X32 | 13.17 | 0.0084 | |
Lack of fit | 6.18 | 0.0555 | not significant |
R2 | 0.9183 | ||
Sources | Trifolin | ||
F-value | p-value | ||
Model | 10.15 | 0.0029 | significant |
X1 a | 36.80 | 0.0005 | |
X2 b | 5.96 | 0.0446 | |
X3 c | 0.32 | 0.5916 | |
X1 X2 | 0.21 | 0.6620 | |
X1 X3 | 2.58 | 0.1521 | |
X2 X3 | 3.74 | 0.0944 | |
X12 | 13.77 | 0.0075 | |
X22 | 12.40 | 0.0097 | |
X32 | 11.18 | 0.0124 | |
Lack of fit | 2.54 | 0.1951 | not significant |
R2 | 0.9288 | ||
Sources | Astragalin | ||
F-value | p-value | ||
Model | 9.33 | 0.0038 | significant |
X1 a | 24.14 | 0.0017 | |
X2 b | 6.49 | 0.0383 | |
X3 c | 0.36 | 0.5697 | |
X1 X2 | 0.020 | 0.8911 | |
X1 X3 | 2.14 | 0.1868 | |
X2 X3 | 1.80 | 0.2215 | |
X12 | 13.45 | 0.0080 | |
X22 | 15.92 | 0.0053 | |
X32 | 14.46 | 0.0067 | |
Lack of fit | 2.06 | 0.2483 | not significant |
R2 | 0.9230 | ||
Sources | Quercetin | ||
F-value | p-value | ||
Model | 9.13 | 0.0041 | significant |
X1 a | 1.11 | 0.3269 | |
X2 b | 18.05 | 0.0038 | |
X3 c | 4.63 | 0.0685 | |
X1 X2 | 1.23 | 0.3048 | |
X1 X3 | 0.14 | 0.7161 | |
X2 X3 | 3.14 | 0.1198 | |
X12 | 26.43 | 0.0013 | |
X22 | 9.50 | 0.0178 | |
X32 | 12.59 | 0.0094 | |
Lack of fit | 0.42 | 0.7481 | not significant |
R2 | 0.9215 | ||
Sources | Kaempferol | ||
F-value | p-value | ||
Model | 20.21 | 0.0003 | significant |
X1 a | 1.1× 10-6 | 0.9992 | |
X2 b | 17.74 | 0.0040 | |
X3 c | 4.92 | 0.0621 | |
X1 X2 | 3.992 × 10−3 | 0.9514 | |
X1 X3 | 3.453 × 10−4 | 0.9857 | |
X2 X3 | 3.82 | 0.0914 | |
X12 | 75.23 | <0.0001 | |
X22 | 29.33 | 0.0010 | |
X32 | 35.42 | 0.0006 | |
Lack of fit | 1.68 | 0.3074 | not significant |
R2 | 0.9629 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Xiao, S.-Q.; Li, L.-Y.; Gai, Q.-Y. Deep Eutectic Solvent-Based Microwave-Assisted Extraction for the Extraction of Seven Main Flavonoids from Ribes mandshuricum (Maxim.) Kom. Leaves. Separations 2023, 10, 191. https://doi.org/10.3390/separations10030191
Wang W, Xiao S-Q, Li L-Y, Gai Q-Y. Deep Eutectic Solvent-Based Microwave-Assisted Extraction for the Extraction of Seven Main Flavonoids from Ribes mandshuricum (Maxim.) Kom. Leaves. Separations. 2023; 10(3):191. https://doi.org/10.3390/separations10030191
Chicago/Turabian StyleWang, Wei, Si-Qiu Xiao, Ling-Yu Li, and Qing-Yan Gai. 2023. "Deep Eutectic Solvent-Based Microwave-Assisted Extraction for the Extraction of Seven Main Flavonoids from Ribes mandshuricum (Maxim.) Kom. Leaves" Separations 10, no. 3: 191. https://doi.org/10.3390/separations10030191
APA StyleWang, W., Xiao, S. -Q., Li, L. -Y., & Gai, Q. -Y. (2023). Deep Eutectic Solvent-Based Microwave-Assisted Extraction for the Extraction of Seven Main Flavonoids from Ribes mandshuricum (Maxim.) Kom. Leaves. Separations, 10(3), 191. https://doi.org/10.3390/separations10030191