Segmenting Preventive Health Behavior: Gender Disparities and Psychosocial Predictors in a Culturally Diverse Italian Region
Abstract
1. Introduction
- Higher health literacy is consistently linked to improved preventive practices in chronic disease contexts, including cardiovascular care, COVID-19 adherence, and cancer screening (Gautam et al., 2021; Aaby et al., 2017; Lee et al., 2021). However, its predictive power varies by population and behavior type, with some studies finding no association after controlling for confounders (Mohan et al., 2017).
- Patient activation, which reflects confidence and motivation to manage health, showed weaker associations. While it may enhance health-seeking behavior in some contexts (Erişen, 2024), it is not a reliable predictor of self-care adherence, particularly in chronic disease populations (Meraz et al., 2023).
2. Methods
2.1. Study Design and Sampling
2.2. Sociodemographic and Health Measures
2.3. Preventive Health Behavior (GHP-16)
- “I exercise regularly”,
- “I follow a balanced diet”,
- “I get routine medical check-ups”,
- “I floss my teeth regularly”, and
- “I avoid smoking” (phrased as “I don’t smoke”).
2.4. Health Literacy (HLS-EU-Q16)
- “How easy is it for you to understand what your doctor says to you?”
- “How easy is it for you to judge which everyday behaviors are related to your health?”
- “How easy is it for you to find information about treatments of illnesses that concern you?”
2.5. Patient Activation (PAM-10)
- “I know how to prevent further problems with my health”
- “I can stick to positive health routines even during stress”
- “I am confident that I can tell my doctor concerns I have even when he or she does not ask.”
2.6. Mistrust of Professional Health Information
2.7. Statistical Analysis
2.7.1. Latent Profile Analysis
2.7.2. Descriptive and Comparative Statistics
2.7.3. Binary Logistic Regression Analysis
3. Results
3.1. Latent Profile Analysis of Preventive Health Behavior
- Profile 1—‘Medically Compliant, Lifestyle Passive’ (29.2%): The largest profile, characterized by high scores for vaccinations and medical check-ups but lower engagement in exercise, supplementation, and information-seeking.
- Profile 2—‘Broadly Moderate Preventers’ (22.9%): Showed moderate engagement across most domains, with strengths in oral hygiene and sleep.
- Profile 3—‘Comprehensive High Engagers’ (20.6%): Exhibited uniformly high scores across lifestyle and medical prevention, reflecting a broadly health-conscious profile.
- Profile 4—‘Peripherally Engaged’ (16.7%): Displayed modest engagement across domains, with particularly low use of preventive dental and screening services.
- Profile 5—‘Globally Low Engagers’ (10.7%): Demonstrated the lowest scores on nearly all behaviors, including diet, supplementation, and preventive visits.
3.2. Sociodemographic and Health Characteristics by Behavioral Profile
3.2.1. Post Hoc Comparisons
3.2.2. Health Literacy
3.3. Gender Differences in Individual Preventive Health Behaviors
3.4. Predictors of Low Preventive Engagement: Profile 2 (‘Broadly Moderate Preventers’) vs. Profile 1 (Globally Low Engagers)
4. Discussion
4.1. Interpretation Within a Health Behavior Framework
4.2. Socio-Behavioral Drivers of Low Engagement
4.3. Practical and Regional Implications
4.4. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASTAT | Provincial Institute of Statistics of South Tyrol |
AvePP | Average Posterior Probabilities |
BHC | Bolck-Croon-Hagenaars |
BIC | Bayesian Information Criterion |
BLRT | Bootstrap Likelihood Ratio Tests |
CI | Confidence Interval |
GHP-16 | Good Health Practice 16 Items |
HBC | Health Behavior Checklist |
HBM | Health Belief Model |
HLS-EU-Q16 | Health Literacy Survey EU Questionnaire 16 Items |
ISTAT | National Institute of Statistics of Italy |
LMR | Lo-Mendell-Rubin |
LPA | Latent Profile Analysis |
PAM-10 | Patient Activation Measure 10 Items |
SD | Standard Deviation |
TPB | Theory of Planned Behavior |
VIF | Variance Inflation Factors |
References
- Aaby, A., Friis, K., Christensen, B., Rowlands, G., & Maindal, H. T. (2017). Health literacy is associated with health behaviour and self-reported health: A large population-based study in individuals with cardiovascular disease. European Journal of Preventive Cardiology, 24(17), 1880–1888. [Google Scholar] [CrossRef] [PubMed]
- Airhihenbuwa, C. O., Tseng, T., Sutton, V. D., & Price, L. (2021). Global perspectives on improving chronic disease prevention and management in diverse settings. Preventing Chronic Disease, 18, E33. [Google Scholar] [CrossRef] [PubMed]
- Anderson, L. J., & Cirillo, L. (2020). The emergence and relevance of cultural difference in mediated health interactions. Health Communication, 36(9), 1101–1114. [Google Scholar] [CrossRef]
- Ausserhofer, D., Piccoliori, G., Engl, A., Marino, P., Barbieri, V., Lombardo, S., Gärtner, T., & Wiedermann, C. J. (2025). Sleep problems and sleep quality in the general adult population living in South Tyrol (Italy): A cross-sectional survey study. Clocks & Sleep, 7(2), 23. [Google Scholar] [CrossRef]
- Ausserhofer, D., Wiedermann, W., Becker, U., Vögele, A., Piccoliori, G., Wiedermann, C. J., & Engl, A. (2022). Health information-seeking behavior associated with linguistic group membership: Latent class analysis of a population-based cross-sectional survey in Italy, August to September 2014. Archives of Public Health, 80(1), 87. [Google Scholar] [CrossRef]
- Bermeo, R. N. Z., Gonzalez, C. E., & Guerra, E. d. P. H. (2023). Influence of personal factors on health-promoting behavior in college students: A structural equation modeling approach. Journal of Multidisciplinary Healthcare, 16, 1259–1270. [Google Scholar] [CrossRef] [PubMed]
- Bonvicini, L., Venturelli, F., Bononi, F., Balestra, G. L., Iorio, G., Ghirotto, L., Petrelli, A., Pierconti, S., Laurendi, G., Perticone, M., Pellegrino, A., Boddi, M., Modesti, P. A., Rossi, P. G., DIABETHIC Working Group & Dadras, O. (2025). A randomized trial to evaluate a complex, co-created, culture-sensitive intervention to promote healthy lifestyles and compliance to therapy in immigrants with type 2 diabetes: A protocol of a multicenter Italian study. PLoS ONE, 20(2), e0317994. [Google Scholar] [CrossRef]
- Brenk-Franz, K., Hibbard, J. H., Herrmann, W. J., Freund, T., Szecsenyi, J., Djalali, S., Steurer-Stey, C., Sönnichsen, A., Tiesler, F., Storch, M., Schneider, N., Gensichen, J., & Janda, M. (2013). Validation of the German version of the patient activation measure 13 (PAM13-D) in an international multicentre study of primary care patients. PLoS ONE, 8(9), e74786. [Google Scholar] [CrossRef]
- Brinsley, J., Schmidt, M., Curtis, R., Simpson, C. E., Edwards, J., Eglitis, E. E., Gosse, G., Broad, M., Jardine, B., Taddeo, E., Banati, P., & Maher, C. (2025). Effectiveness of peer-led health behaviour interventions on adolescent’s mental health and wellbeing: A systematic review and meta-analysis. Scientific Reports, 15(1), 16480. [Google Scholar] [CrossRef]
- Burgermaster, M., & Rodriguez, V. A. (2022). Psychosocial-behavioral phenotyping: A novel precision health approach to modeling behavioral, psychological, and social determinants of health using machine learning. Annals of Behavioral Medicine, 56(12), 1258–1271. [Google Scholar] [CrossRef]
- Carpenter, C. J. (2010). A meta-analysis of the effectiveness of health belief model variables in predicting behavior. Health Communication, 25(8), 661–669. [Google Scholar] [CrossRef]
- Collins, S., Hoare, E., Allender, S., Olive, L., Leech, R. M., Winpenny, E. M., Jacka, F., & Lotfalian, M. (2023). A longitudinal study of lifestyle behaviours in emerging adulthood and risk for symptoms of depression, anxiety, and stress. Journal of Affective Disorders, 327, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Conn, S., & Curtain, S. (2019). Health coaching as a lifestyle medicine process in primary care. Australian Journal of General Practice, 48(10), 677–680. [Google Scholar] [CrossRef]
- Corrêa, R., Froner, M. B., & Tabak, B. M. (2024). Assessing the impact of behavioral sciences interventions on chronic disease prevention and management: A systematic review of randomized controlled trials. International Journal of Environmental Research and Public Health, 21(7), 837. [Google Scholar] [CrossRef] [PubMed]
- Couture, É. M., Chouinard, M., Fortin, M., & Hudon, C. (2018). The relationship between health literacy and patient activation among frequent users of healthcare services: A cross-sectional study. BMC Family Practice, 19(1), 38. [Google Scholar] [CrossRef]
- Da Silva, A. C. R., Da Silva, K. G. S., Costa, T. T., Dutra, M. d. O., De Oliveira, A. B. S., Silva, R. M. d. S., Tunes, R. A. M., De Barros, S. C., Da Costa, M. G., & Araújo, W. M. R. (2024). The importance of preventive medicine in reducing chronic diseases. Revista de Gestão Social e Ambiental, 18(2), e04380. [Google Scholar] [CrossRef]
- DiClemente, C. C., Marinilli, A. S., Singh, M., & Bellino, L. E. (2001). The role of feedback in the process of health behavior change. American Journal of Health Behavior, 25(3), 217–227. [Google Scholar] [CrossRef]
- Drageset, J. (2021). Social Support. In G. Haugan, & M. Eriksson (Eds.), Health promotion in health care—Vital theories and research. Springer. Available online: https://library.oapen.org/bitstream/handle/20.500.12657/47291/1/9783030631352.pdf (accessed on 21 July 2025).
- Dreyer, K., Steventon, A., Fisher, R., & Deeny, S. R. (2018). The association between living alone and health care utilisation in older adults: A retrospective cohort study of electronic health records from a London general practice. BMC Geriatrics, 18(1), 269. [Google Scholar] [CrossRef]
- Erişen, M. A. (2024). Effect of health literacy and patient activation on health-seeking behaviour: A cross-sectional study in turkey. Health Expectations, 27(5), e70052. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, R., Fornari, E., Ghezzi, M., Buzzi, E., Toschi, M., Longhi, S., Maimone, R., Forti, S., Carneri, S., Pirous, F. M., Agostini, B., Iori, T., Gibin, M., Porchia, S., Soffiati, M., & Maffeis, C. (2021). Educational intervention of healthy life promotion for children with a migrant background or at socioeconomic disadvantage in the North of Italy: Efficacy of telematic tools in improving nutritional and physical activity knowledge. Nutrients, 13(10), 3634. [Google Scholar] [CrossRef]
- Gautam, V., S, D., Rustagi, N., Mittal, A., Patel, M., Shafi, S., Thirunavukkarasu, P., & Raghav, P. (2021). Health literacy, preventive COVID 19 behaviour and adherence to chronic disease treatment during lockdown among patients registered at primary health facility in urban Jodhpur, Rajasthan. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 15(1), 205–211. [Google Scholar] [CrossRef]
- Gerend, M. A., & Shepherd, J. E. (2012). Predicting human papillomavirus vaccine uptake in young adult women: Comparing the health belief model and theory of planned behavior. Annals of Behavioral Medicine, 44(2), 171–180. [Google Scholar] [CrossRef]
- Gokhale, S. S. (2020, December 7–10). Comparing the impact of unhealthy behaviors and preventive services on chronic health outcomes. 2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (pp. 798–802), The Hague, The Netherlands. [Google Scholar] [CrossRef]
- Graffigna, G., Barello, S., & Bonanomi, A. (2017). The role of patient health engagement model (PHE-model) in affecting patient activation and medication adherence: A structural equation model. PLoS ONE, 12(6), e0179865. [Google Scholar] [CrossRef] [PubMed]
- Hagger, M. S. (2025). Psychological determinants of health behavior. Annual Review of Psychology, 76(1), 821–850. [Google Scholar] [CrossRef]
- Halpin, H. A., Morales-Suárez-Varela, M. M., & Martin-Moreno, J. M. (2010). Chronic disease prevention and the new public health. Public Health Reviews, 32(1), 120–154. [Google Scholar] [CrossRef]
- Hampson, S. E., Edmonds, G. W., & Goldberg, L. R. (2019). The health behavior checklist: Factor structure in community samples and validity of a revised good health practices scale. Journal of Health Psychology, 24(8), 1103–1109. [Google Scholar] [CrossRef]
- Hanna, K. L., & Collins, P. F. (2015). Relationship between living alone and food and nutrient intake. Nutrition Reviews, 73(9), 594–611. [Google Scholar] [CrossRef] [PubMed]
- Hibbard, J. (2017). Patient activation and health literacy: What’s the difference? how do each contribute to health outcomes. In Health literacy (pp. 251–262). IOS Press. [Google Scholar] [CrossRef]
- Higgins, S. T. (2015). Editorial: 2nd special issue on behavior change, health, and health disparities. Preventive Medicine, 80, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Hill, M. S., Barnes, T., Wu, L., Tkatch, R., Kraemer, S., Schaeffer, J., & Yeh, C. (2022). Profiles of personal determinants of health and associated health outcomes in older adults: A latent class analysis. Innovation in Aging, 6(Suppl. 1), 651. [Google Scholar] [CrossRef]
- Huang, X., Dai, S., & Xu, H. (2020). Predicting tourists’ health risk preventative behaviour and travelling satisfaction in Tibet: Combining the theory of planned behaviour and health belief model. Tourism Management Perspectives, 33(January), 100589. [Google Scholar] [CrossRef]
- Jaiswal, J., & Halkitis, P. N. (2019). Towards a more inclusive and dynamic understanding of medical mistrust informed by science. Behavioral Medicine, 45(2), 79–85. [Google Scholar] [CrossRef]
- Krukowski, R., Kim, H., Stansbury, M., Li, Q., Sen, S., Farage, G., & West, D. (2020). Importance of multiple reinforcing comments and areas for change in optimizing dietary and exercise self-monitoring feedback in behavioral weight loss programs: Factorial design. Journal of Medical Internet Research, 22(11), e18104. [Google Scholar] [CrossRef]
- Laska, M. N., Pasch, K. E., Lust, K., Story, M., & Ehlinger, E. (2009). Latent class analysis of lifestyle characteristics and health risk behaviors among college youth. Prevention Science, 10(4), 376–386. [Google Scholar] [CrossRef] [PubMed]
- Lee, P. C., Mao, A., Dong, P., Wang, K., & Qiu, W. (2021). 951Can cancer-related health literacy predict cancer preventive behaviours? International Journal of Epidemiology, 50(Suppl. 1). [Google Scholar] [CrossRef]
- Lin, C.-Y., Chung, M. L., Schuman, D. L., Biddle, M. J., Mudd-Martin, G., Miller, J. L., Hammash, M., Schooler, M. P., Rayens, M. K., Feltner, F. J., & Moser, D. K. (2023). Psychometric properties of the patient activation measure in family caregivers of patients with chronic illnesses. Nursing Research, 72(4), 292–300. [Google Scholar] [CrossRef] [PubMed]
- Lorini, C., Lastrucci, V., Mantwill, S., Vettori, V., Bonaccorsi, G., & Florence Health Literacy Research Group. (2019). Measuring health literacy in Italy: A validation study of the HLS-EU-Q16 and of the HLS-EU-Q6 in Italian language, conducted in florence and its surroundings. Annali Dell’Istituto Superiore Di Sanita, 55(1), 10–18. [Google Scholar] [CrossRef]
- Martin Obianyo, C., Ezeamii, V. C., Idoko, B., Adeyinka, T., Ejembi, E. V., Idoko, J. E., Obioma, L. O., & Ugwu, O. J. (2024). The role of preventive medicine in reducing chronic disease Burden in the USA: A systematic review. Magna Scientia Advanced Biology and Pharmacy, 13(1), 095–126. [Google Scholar] [CrossRef]
- Meraz, R., Caldwell, E. P., & McGee, J. S. (2023). The relationships among health literacy, patient activation, and self-care behaviors in adults with heart failure: A cross sectional study. Sage Open, 13(1), 21582440231163779. [Google Scholar] [CrossRef]
- Mohan, Y., Sidell, M., Tillman, L., & Young, D. (2017). Abstract P241: Health literacy and patient activation are not predictors of positive health behaviors among young adult women. Circulation, 135(Suppl. 1), AP241. [Google Scholar] [CrossRef]
- Montanaro, E. A., & Bryan, A. D. (2014). Comparing theory-based condom interventions: Health belief model versus theory of planned behavior. Health Psychology, 33(10), 1251–1260. [Google Scholar] [CrossRef]
- Oksuzyan, A., Dańko, M. J., Caputo, J., Jasilionis, D., & Shkolnikov, V. M. (2019). Is the story about sensitive women and stoical men true? Gender differences in health after adjustment for reporting behavior. Social Science & Medicine, 228, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, R. (2021). Leveraging organizational health literacy to enhance health promotion and risk prevention: A narrative and interpretive literature review. The Yale Journal of Biology and Medicine, 94(1), 115–128. [Google Scholar]
- Pelikan, J. M., Ganahl, K., Van den Broucke, S., & Sørensen, K. (2019). Measuring health literacy in Europe: Introducing the european health literacy survey questionnaire (HLS-EU-Q). In International handbook of health literacy (pp. 115–138). Policy Press. [Google Scholar]
- Pelikan, J. M., Röthlin, F., Ganahl, K., & The HLSEU Consortium. (2014). Comparative report on health literacy in eight EU member states (second extended and revised version). Maastricht University. [Google Scholar]
- Schwartz, C. E., & Sendor, R. M. (1999). Helping others helps oneself: Response shift effects in peer support. Social Science & Medicine, 48(11), 1563–1575. [Google Scholar] [CrossRef]
- Short, S. E., & Mollborn, S. (2015). Social determinants and health behaviors: Conceptual frames and empirical advances. Current Opinion in Psychology, 5, 78–84. [Google Scholar] [CrossRef]
- Smith, S. G., Curtis, L. M., Wardle, J., von Wagner, C., & Wolf, M. S. (2013). Skill set or mind set? associations between health literacy, patient activation and health. PLoS ONE, 8(9), e74373. [Google Scholar] [CrossRef]
- Solis, J. M., Marks, G., Garcia, M., & Shelton, D. (1990). Acculturation, access to care, and use of preventive services by Hispanics: Findings from HHANES 1982–84. American Journal of Public Health, 80(Suppl), 11–19. [Google Scholar] [CrossRef]
- Sørensen, K., Pelikan, J. M., Röthlin, F., Ganahl, K., Slonska, Z., Doyle, G., Fullam, J., Kondilis, B., Agrafiotis, D., Uiters, E., Falcon, M., Mensing, M., Tchamov, K., Broucke, S. v. D., & Brand, H. (2015). Health literacy in Europe: Comparative results of the European health literacy survey (HLS-EU). European Journal of Public Health, 25(6), 1053–1058. [Google Scholar] [CrossRef]
- Sulat, J. S., Prabandari, Y. S., Sanusi, R., Hapsari, E. D., & Santoso, B. (2018). The validity of health belief model variables in predicting behavioral change. Health Education, 118(6), 499–512. [Google Scholar] [CrossRef]
- Tabacchi, G., Faigenbaum, A., Jemni, M., Thomas, E., Capranica, L., Palma, A., Breda, J., & Bianco, A. (2018). Profiles of physical fitness risk behaviours in school adolescents from the ASSO project: A latent class analysis. International Journal of Environmental Research and Public Health, 15(9), 1933. [Google Scholar] [CrossRef] [PubMed]
- Tong, H. L., Quiroz, J. C., Kocaballi, A. B., Fat, S. C. M., Dao, K. P., Gehringer, H., Chow, C. K., & Laranjo, L. (2021). Personalized mobile technologies for lifestyle behavior change: A systematic review, meta-analysis, and meta-regression. Preventive Medicine, 148, 106532. [Google Scholar] [CrossRef]
- Tong, L. K., Li, Y. Y., Liu, Y. B., Zheng, M. R., Fu, G. L., & Au, M. L. (2024). Social determinants of health and their relation to suboptimal health status in the context of 3PM: A latent profile analysis. EPMA Journal, 15(2), 221–232. [Google Scholar] [CrossRef]
- Unger, J. B. (2011). Cultural Identity and Public Health. In S. J. Schwartz, K. Luyckx, & V. L. Vignoles (Eds.), Handbook of identity theory and research (pp. 811–825). Springer. [Google Scholar] [CrossRef]
- Van Lissa, C. J., Garnier-Villarreal, M., & Anadria, D. (2023). Recommended practices in latent class analysis using the open-source R-package tidySEM. Structural Equation Modeling: A Multidisciplinary Journal, 31(3), 526–534. [Google Scholar] [CrossRef]
- Vickers, R. R., Conway, T. L., & Hervig, L. K. (1990). Demonstration of replicable dimensions of health behaviors. Preventive Medicine, 19(4), 377–401. [Google Scholar] [CrossRef]
- Ward, P. R. (2017). Improving access to, use of, and outcomes from public health programs: The importance of building and maintaining trust with patients/clients. Frontiers in Public Health, 5, 22. [Google Scholar] [CrossRef]
- White, R. O., Chakkalakal, R. J., Presley, C. A., Bian, A., Schildcrout, J. S., Wallston, K. A., Barto, S., Kripalani, S., & Rothman, R. (2016). Perceptions of provider communication among vulnerable patients with diabetes: Influences of medical mistrust and health literacy. Journal of Health Communication, 21(sup2), 127–134. [Google Scholar] [CrossRef]
- Wiedermann, C. J., Barbieri, V., Lombardo, S., Gärtner, T., Rina, P., Eisendle, K., Piccoliori, G., Engl, A., & Ausserhofer, D. (2025). Health information use and trust: The role of health literacy and patient activation in a multilingual european region. International Journal of Environmental Research and Public Health, 22(4), 570. [Google Scholar] [CrossRef]
- Wilkins, C. H. (2018). Effective engagement requires trust and being trustworthy. Medical Care, 56(Suppl. 1), S6–S8. [Google Scholar] [CrossRef] [PubMed]
- Yap, S., Lim, W. M., Gaur, S. S., & Lim, P. Y. (2023). A framework for preventive health marketing. Journal of Strategic Marketing, 31(4), 894–917. [Google Scholar] [CrossRef]
- Young-Silva, Y., Berenguera, A., Juvinyà-Canal, D., Martí-Lluch, R., Arroyo-Uriarte, P., Tamayo-Morales, O., Marcilla-Toribio, I., Elizondo-Alzola, U., Méndez-López, F., Chela-Àlvarez, X., & Motrico, E. (2024). Exploring personal aptitudes and personality traits that, together with social determinants, shape health behaviors and conduct: A thematic analysis based on the Capability, Opportunity, Motivation and Behavior (COM-B) change system. Frontiers in Public Health, 12, 1387528. [Google Scholar] [CrossRef]
- Zanchetta, M. S., & Poureslami, I. M. (2006). Health literacy within the realiTABLEty of immigrants’ culture and language. Canadian Journal of Public Health = Revue Canadienne De Sante Publique, 97(Suppl. 2), S26–S30. [Google Scholar] [PubMed]
- Zhao, R., Zhao, N., Wang, S., Zhang, X., Ding, B., Li, Y., Miao, W., Pan, L., & Fan, H. (2023). Assessment of type 2 diabetes mellitus patients’ behavioral characteristics associated with integrated treatment and prevention services in community health centers in China. Frontiers in Public Health, 10, 1084946. [Google Scholar] [CrossRef] [PubMed]
Health Behavior (GHP-16 Item) | GHP-16 Scores, Mean (SD) | ||||
---|---|---|---|---|---|
Medically Compliant, Lifestyle Passive | Broadly Moderate Preventers | Comprehensive High Engagers | Peripherally Engaged | Globally Low Engagers | |
n | 610 | 478 | 431 | 348 | 223 |
1—Exercise regularly | 2.82 (1.16) | 2.93 (1.18) | 3.67 (1.11) | 2.57 (1.05) | 3.64 (1.05) |
2—Follow a balanced diet | 3.35 (1.14) | 3.35 (1.06) | 4.16 (0.86) | 3.04 (1.02) | 4.12 (0.78) |
3—Take vitamins or dietary supplements | 2.26 (1.17) | 2.00 (1.06) | 3.89 (0.94) | 2.09 (1.05) | 2.14 (1.00) |
4—Visit the dentist regularly | 3.35 (1.36) | 3.05 (1.29) | 4.13 (1.12) | 2.78 (1.16) | 4.20 (1.02) |
5—Watch weight or try to lose weight | 2.92 (1.18) | 2.58 (1.07) | 3.73 (1.10) | 2.70 (1.03) | 3.56 (1.06) |
6—Limit intake of high-fat or high-sugar foods | 2.84 (1.06) | 2.86 (0.97) | 3.76 (0.91) | 2.79 (1.00) | 3.61 (0.86) |
7—Gather health information before making decisions | 2.92 (1.14) | 2.45 (0.97) | 3.91 (0.91) | 2.66 (1.01) | 3.39 (1.00) |
8—Pay attention to physical symptoms or health changes | 3.45 (1.12) | 3.07 (1.05) | 4.26 (0.87) | 3.31 (0.97) | 4.27 (0.82) |
9—Take supplements to prevent illness | 1.92 (1.17) | 1.55 (0.85) | 3.86 (0.89) | 1.81 (0.97) | 1.62 (0.72) |
10—Get routine medical check-ups | 2.78 (1.11) | 2.45 (0.93) | 3.60 (1.17) | 2.72 (1.03) | 3.50 (1.10) |
11—Floss teeth regularly | 2.59 (1.43) | 2.07 (1.21) | 3.32 (1.44) | 1.86 (0.98) | 3.13 (1.45) |
12—Talk with others about health | 2.93 (1.06) | 2.57 (0.93) | 3.56 (0.92) | 2.75 (1.03) | 3.27 (0.93) |
13—Don’t smoke | 1.54 (0.66) | 4.86 (0.41) | 4.91 (0.33) | 4.87 (0.39) | 4.91 (0.33) |
14—Brush teeth twice a day | 4.64 (0.80) | 5.00 (0.00) | 4.91 (0.33) | 3.36 (0.67) | 4.93 (0.30) |
15—Get vaccinated | 3.40 (1.31) | 3.19 (1.29) | 3.62 (1.29) | 3.29 (1.18) | 3.83 (1.23) |
16—Get enough sleep | 3.58 (1.01) | 3.64 (0.93) | 3.88 (0.92) | 3.58 (0.94) | 3.95 (0.89) |
Variable | Medically Compliant, Lifestyle Passive 1 | Broadly Moderate Preventers 1 | Compre-hensive High Engagers 1 | Peripherally Engaged 1 | Globally Low Engagers 1 | p-Value 2 | Cramer’s V 3 |
---|---|---|---|---|---|---|---|
Gender | <0.001 | 0.241 | |||||
Male | 256 (44.4) | 292 (58.6) | 121 (29.2) | 209 (55.2) | 149 (66.5) | ||
Female | 320 (55.6) | 206 (41.4) | 294 (70.8) | 169 (44.8) | 75 (33.5) | ||
Age Group | <0.001 | 0.144 | |||||
18–34 | 93 (16.1) | 135 (27.1) | 92 (22.3) | 128 (33.9) | 47 (21.2) | ||
35–54 | 159 (27.6) | 182 (36.5) | 128 (30.9) | 136 (36.0) | 78 (34.8) | ||
55–99 | 324 (56.3) | 181 (36.4) | 194 (46.8) | 114 (30.1) | 98 (44.0) | ||
Education | <0.001 | 0.085 | |||||
Middle school | 129 (22.5) | 116 (23.3) | 62 (14.9) | 79 (20.8) | 55 (24.4) | ||
Vocational school | 156 (27.1) | 175 (35.0) | 118 (28.5) | 130 (34.4) | 88 (39.3) | ||
High school | 149 (25.9) | 124 (24.9) | 125 (30.2) | 101 (26.6) | 46 (20.8) | ||
University | 141 (24.5) | 84 (16.8) | 110 (26.4) | 69 (18.2) | 35 (15.5) | ||
Language | <0.001 | 0.114 | |||||
German | 394 (68.5) | 341 (68.5) | 223 (53.8) | 226 (59.8) | 145 (64.9) | ||
Italian | 131 (22.7) | 82 (16.5) | 136 (32.8) | 85 (22.4) | 46 (20.8) | ||
Other | 50 (8.7) | 75 (15.0) | 55 (13.3) | 67 (17.8) | 32 (14.3) | ||
HLS-EU-Q16 category | <0.001 | 0.122 | |||||
Inadequate | 67 (14.0) | 63 (17.5) | 38 (10.7) | 57 (19.8) | 40 (24.0) | ||
Problematic | 157 (32.8) | 148 (40.9) | 108 (30.5) | 88 (30.9) | 58 (34.4) | ||
Sufficient | 254 (53.1) | 150 (41.6) | 208 (58.8) | 141 (49.2) | 70 (41.6) | ||
HLS-EU-Q16 score 4 | 12.2 (3.24) | 11.4 (3.47) | 12.6 (3.06) | 11.7 (3.52) | 11.0 (3.80) | <0.001 | 0.018 |
PAM-10 | <0.001 | 0.127 | |||||
Disengaged and overwhelmed | 79 (13.8) | 99 (19.9) | 39 (9.5) | 67 (17.7) | 51 (22.6) | ||
Becoming aware but still struggling | 235 (40.8) | 219 (44.0) | 168 (40.6) | 158 (41.8) | 107 (48.1) | ||
Taking action | 139 (24.1) | 122 (24.5) | 80 (19.2) | 99 (26.1) | 50 (22.5) | ||
Maintaining behaviors and pushing further | 123 (21.3) | 58 (11.6) | 127 (30.7) | 54 (14.4) | 15 (6.8) | ||
Chronic disease | 0.008 | 0.085 | |||||
No | 350 (60.7) | 351 (70.5) | 270 (65.2) | 254 (67.0) | 132 (59.2) | ||
Yes | 226 (39.3) | 147 (29.5) | 144 (34.8) | 125 (33.0) | 91 (40.8) |
Item | PHG-16 Score | p-Value 2 | Cliff’s Delta 3 | ||
---|---|---|---|---|---|
Female Mean (SD) 1 | Male Mean (SD) 1 | Mean Difference | |||
1—Exercise regularly | 3.23 (1.25) | 3.24 (1.15) | 0.01 | 0.482 | −0.02 |
2—Follow a balanced diet | 3.46 (1.11) | 3.84 (1.02) | 0.38 | <0.001 | −0.21 |
3—Take vitamins or dietary supplements | 2.19 (1.19) | 2.72 (1.28) | 0.53 | <0.001 | −0.25 |
4—Visit the dentist regularly | 3.34 (1.30) | 3.77 (1.28) | 0.43 | <0.001 | −0.21 |
5—Watch weight or try to lose weight | 3.10 (1.19) | 3.20 (1.18) | 0.10 | 0.004 | −0.07 |
6—Limit intake of high-fat or high-sugar foods | 3.03 (1.06) | 3.40 (1.01) | 0.37 | <0.001 | −0.20 |
7—Gather health information before making decisions | 2.85 (1.13) | 3.37 (1.09) | 0.52 | <0.001 | −0.24 |
8—Pay attention to physical symptoms or health changes | 3.55 (1.12) | 3.86 (1.07) | 0.32 | <0.001 | −0.16 |
9—Take supplements to prevent illness | 1.86 (1.14) | 2.39 (1.31) | 0.53 | <0.001 | −0.23 |
10—Get routine medical check-ups | 2.82 (1.14) | 3.20 (1.17) | 0.38 | <0.001 | −0.19 |
11—Floss teeth regularly | 2.46 (1.38) | 2.92 (1.46) | 0.45 | <0.001 | −0.18 |
12—Talk with others about health | 2.79 (1.02) | 3.29 (0.99) | 0.49 | <0.001 | −0.26 |
13—Don’t smoke | 4.20 (1.40) | 4.36 (1.31) | 0.17 | 0.002 | −0.06 |
14—Brush teeth twice a day | 4.61 (0.79) | 4.83 (0.51) | 0.21 | <0.001 | −0.12 |
15—Get vaccinated | 3.40 (1.29) | 3.54 (1.30) | 0.14 | 0.012 | −0.06 |
16—Get enough sleep | 3.71 (0.94) | 3.77 (0.95) | 0.06 | 0.021 | −0.05 |
Predictor | B | SE | Wald χ2 | p | OR (Exp(B)) | 95% CI for OR |
---|---|---|---|---|---|---|
Intercept | 0.508 | 0.684 | 0.550 | 0.458 | 1.662 | [0.438, 6.300] |
Gender (1 = Male) | 0.416 | 0.251 | 2.748 | 0.097 | 1.516 | [0.930, 2.469] |
Age (continuous) | –0.017 | 0.006 | 8.303 | 0.004 ** | 0.983 | [0.972, 0.994] |
Education (ref = Middle school or lower) | ||||||
Vocational school | 0.063 | 0.312 | 0.040 | 0.841 | 1.065 | [0.577, 1.965] |
High school | –0.296 | 0.337 | 0.774 | 0.379 | 0.744 | [0.384, 1.443] |
University | –0.016 | 0.406 | 0.002 | 0.968 | 0.984 | [0.444, 2.181] |
Language (ref = German) | ||||||
Italian | –0.453 | 0.325 | 1.942 | 0.163 | 0.636 | [0.336, 1.202] |
Other | –0.032 | 0.419 | 0.006 | 0.939 | 0.969 | [0.426, 2.207] |
Lives Alone (1 = Yes) | 0.588 | 0.231 | 6.475 | 0.011 * | 1.801 | [1.144, 2.832] |
Chronic Disease (1 = Yes) | 0.582 | 0.201 | 8.391 | 0.004 ** | 1.789 | [1.209, 2.647] |
Health Literacy Score | –0.017 | 0.032 | 0.288 | 0.592 | 0.983 | [0.923, 1.047] |
Patient Activation Score | –0.010 | 0.008 | 1.522 | 0.217 | 0.990 | [0.974, 1.006] |
Mistrust Index | 0.039 | 0.056 | 0.481 | 0.488 | 1.040 | [0.932, 1.160] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the University Association of Education and Psychology. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ausserhofer, D.; Barbieri, V.; Lombardo, S.; Gärtner, T.; Eisendle, K.; Piccoliori, G.; Engl, A.; Wiedermann, C.J. Segmenting Preventive Health Behavior: Gender Disparities and Psychosocial Predictors in a Culturally Diverse Italian Region. Eur. J. Investig. Health Psychol. Educ. 2025, 15, 148. https://doi.org/10.3390/ejihpe15080148
Ausserhofer D, Barbieri V, Lombardo S, Gärtner T, Eisendle K, Piccoliori G, Engl A, Wiedermann CJ. Segmenting Preventive Health Behavior: Gender Disparities and Psychosocial Predictors in a Culturally Diverse Italian Region. European Journal of Investigation in Health, Psychology and Education. 2025; 15(8):148. https://doi.org/10.3390/ejihpe15080148
Chicago/Turabian StyleAusserhofer, Dietmar, Verena Barbieri, Stefano Lombardo, Timon Gärtner, Klaus Eisendle, Giuliano Piccoliori, Adolf Engl, and Christian J. Wiedermann. 2025. "Segmenting Preventive Health Behavior: Gender Disparities and Psychosocial Predictors in a Culturally Diverse Italian Region" European Journal of Investigation in Health, Psychology and Education 15, no. 8: 148. https://doi.org/10.3390/ejihpe15080148
APA StyleAusserhofer, D., Barbieri, V., Lombardo, S., Gärtner, T., Eisendle, K., Piccoliori, G., Engl, A., & Wiedermann, C. J. (2025). Segmenting Preventive Health Behavior: Gender Disparities and Psychosocial Predictors in a Culturally Diverse Italian Region. European Journal of Investigation in Health, Psychology and Education, 15(8), 148. https://doi.org/10.3390/ejihpe15080148