Biorefining Oat Husks into High-Quality Lignin and Enzymatically Digestible Cellulose with Acid-Catalyzed Ethanol Organosolv Pretreatment
Abstract
1. Introduction
2. Materials and Methods
2.1. Substrate
2.2. Organosolv Pretreatment
2.3. Enzymatic Hydrolysis
2.4. Analytical Methods
2.4.1. Moisture Content
2.4.2. Extractives, Lignin, Polysaccharides, Protein, and Ash
2.4.3. High-Performance Liquid Chromatography (HPLC)
2.5. Calculations
2.6. Statistical Analysis
3. Results
3.1. Effect of Temperature
3.2. Effect of Retention Time
3.3. Effect of Solid-To-Liquid Ratio
3.4. Digestibility of the Glucan-Rich Fraction
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Statista. Available online: http://www.statista.com/ (accessed on 1 March 2020).
- Taherzadeh, M.J. Bioengineering to tackle environmental challenges, climate changes and resource recovery. Bioengineered 2019, 10, 698–699. [Google Scholar] [CrossRef]
- Sekar, R.; Shin, H.D.; DiChristina, T.J. Direct conversion of cellulose and hemicellulose to fermentable sugars by a microbially-driven Fenton reaction. Bioresour. Technol. 2016, 218, 1133–1139. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Pathak, V.V.; Kothari, R.; Singh, R.P. Prospects for pretreatment methods of lignocellulosic waste biomass for biogas enhancement: Opportunities and challenges. Biofuels 2018, 9, 575–594. [Google Scholar] [CrossRef]
- Amin, F.R.; Khalid, H.; Zhang, H.; Rahman, S.u.; Zhang, R.; Liu, G.; Chen, C. Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express 2017, 7, 72. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liu, J.; Chang, X.; Chen, D.; Xue, Y.; Liu, P.; Lin, H.; Han, S. A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Sci. Technol. 2017, 160, 196–206. [Google Scholar] [CrossRef]
- Zhang, Z.; Harrison, M.D.; Rackemann, D.W.; Doherty, W.O.S.; O’Hara, I.M. Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification. Green Chem. 2016, 18, 360–381. [Google Scholar] [CrossRef]
- Ferreira, J.A.; Taherzadeh, M.J. Improving the economy of lignocellulose-based biorefineries with organosolv pretreatment. Bioresour. Technol. 2020, 299, 122695. [Google Scholar] [CrossRef]
- Tian, D.; Hu, J.; Bao, J.; Chandra, R.P.; Saddler, J.N.; Lu, C. Lignin valorization: Lignin nanoparticles as high-value bio-additive for multifunctional nanocomposites. Biotechnol. Biofuels 2017, 10, 192. [Google Scholar] [CrossRef]
- Wu, X.; Yao, W.; Zhu, J. Biogas and CH4 Productivity by Co-Digesting Swine Manure with Three Crop Residues as an External Carbon Source. In 2010 Pittsburgh, PA, 20 June-23 June, 2010; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2010; p. 1. [Google Scholar]
- Oliveira, L.A.; Porto, A.L.F.; Tambourgi, E.B. Production of xylanase and protease by Penicillium janthinellum CRC 87M-115 from different agricultural wastes. Bioresour. Technol. 2006, 97, 862–867. [Google Scholar] [CrossRef]
- Cortivo, P.R.D.; Hickert, L.R.; Hector, R.; Ayub, M.A.Z. Fermentation of oat and soybean hull hydrolysates into ethanol and xylitol by recombinant industrial strains of Saccharomyces cerevisiae under diverse oxygen environments. Ind. Crop Prod. 2018, 113, 10–18. [Google Scholar] [CrossRef]
- Baibakova, O.V.; Skiba, E.A.; Budaeva, V.V.; Sakovich, G.V. Preparing bioethanol from oat hulls pretreated with a dilute nitric acid: Scaling of the production process on a pilot plant. Catal. Ind. 2017, 9, 257–263. [Google Scholar] [CrossRef]
- Kashcheyeva, E.I.; Gismatulina, Y.A.; Budaeva, V.V. Pretreatments of non-woody cellulosic feedstocks for bacterial cellulose synthesis. Polymers 2019, 11, 1645. [Google Scholar] [CrossRef]
- Kashcheyeva, E.I.; Gladysheva, E.K.; Skiba, E.A.; Budaeva, V.V. A study of properties and enzymatic hydrolysis of bacterial cellulose. Cellulose 2019, 26, 2255–2265. [Google Scholar] [CrossRef]
- Skiba, E.A.; Budaeva, V.V.; Ovchinnikova, E.V.; Gladysheva, E.K.; Kashcheyeva, E.I.; Pavlov, I.N.; Sakovich, G.V. A technology for pilot production of bacterial cellulose from oat hulls. Chem. Eng. J. 2020, 383, 123128. [Google Scholar] [CrossRef]
- Oliveira, J.P.d.; Bruni, G.P.; Lima, K.O.; Halal, S.L.M.E.; Rosa, G.S.d.; Dias, A.R.G.; Zavareze, E.d.R. Cellulose fibers extracted from rice and oat husks and their application in hydrogel. Food Chem. 2017, 221, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Merijs-Meri, R.; Zicans, J.; Ivanova, T.; Bochkov, I.; Varkale, M.; Franciszczak, P.; Bledzki, A.K.; Danilovas, P.P.; Gravitis, J.; Rubenis, K.; et al. Development and characterization of grain husks derived lignocellulose filler containing polypropylene composites. Polym. Eng. Sci. 2019, 59, 2467–2473. [Google Scholar] [CrossRef]
- Demirel, F.; Germec, M.; Coban, H.B.; Turhan, I. Optimization of dilute acid pretreatment of barley husk and oat husk and determination of their chemical composition. Cellulose 2018, 25, 6377–6393. [Google Scholar] [CrossRef]
- Budaeva, V.V.; Skiba, E.A.; Baibakova, O.V.; Makarova, E.I.; Orlov, S.E.; Kukhlenko, A.A.; Udoratina, E.V.; Shcherbakova, T.P.; Kuchin, A.V.; Sakovich, G.V. Kinetics of the enzymatic hydrolysis of lignocellulosic materials at different concentrations of the substrate. Catal. Ind. 2016, 8, 81–87. [Google Scholar] [CrossRef]
- Makarova, E.I.; Budaeva, V.V.; Kukhlenko, A.A.; Orlov, S.E. Enzyme kinetics of cellulose hydrolysis of Miscanthus and oat hulls. 3 Biotech 2017, 7, 317. [Google Scholar] [CrossRef]
- Skiba, E.A.; Budaeva, V.V.; Baibakova, O.V.; Zolotukhin, V.N.; Sakovich, G.V. Dilute nitric-acid pretreatment of oat hulls for ethanol production. Biochem. Eng. J. 2017, 126, 118–125. [Google Scholar] [CrossRef]
- Skiba, E.A.; Mironova, G.F.; Kukhlenko, A.A.; Orlov, S.E. Enhancing the yield of bioethanol from the lignocellulose of oat hulls by optimizing the composition of the nutrient medium. Catal. Ind. 2018, 10, 257–262. [Google Scholar] [CrossRef]
- Skiba, E.A.; Baibakova, O.V.; Budaeva, V.V.; Pavlov, I.N.; Vasilishin, M.S.; Makarova, E.I.; Sakovich, G.V.; Ovchinnikova, E.V.; Banzaraktsaeva, S.P.; Vernikovskaya, N.V.; et al. Pilot technology of ethanol production from oat hulls for subsequent conversion to ethylene. Chem. Eng. J. 2017, 329, 178–186. [Google Scholar] [CrossRef]
- Karki, B.; Rijal, B.; Pryor, S.W. Simultaneous saccharification and fermentation of aqueous ammonia pretreated oat straw for ethanol production. Biol. Eng. Trans. 2011, 4, 157–166. [Google Scholar]
- Denisova, M.N.; Budaeva, V.V.; Pavlov, I.N. Pulps isolated from Miscanthus, oat hulls, and intermediate flax straw with sodium benzoate. Korean J. Chem. Eng. 2015, 32, 202–205. [Google Scholar] [CrossRef]
- Germec, M.; Demirel, F.; Tas, N.; Ozcan, A.; Yilmazer, C.; Onuk, Z.; Turhan, I. Microwave-assisted dilute acid pretreatment of different agricultural bioresources for fermentable sugar production. Cellulose 2017, 24, 4337–4353. [Google Scholar] [CrossRef]
- Debiagi, F.; Madeira, T.B.; Nixdorf, S.L.; Mali, S. Pretreatment efficiency using autoclave high-pressure steam and ultrasonication in sugar production from liquid hydrolysates and access to the residual solid fractions of wheat bran and oat hulls. Appl. Biochem. Biotechnol. 2020, 190, 166–181. [Google Scholar] [CrossRef]
- Soleimani, M.; Tabil, L.G.; Niu, C. Delignification of intact biomass and cellulosic coproduct of acid-catalyzed hydrolysis. AIChE J. 2015, 61, 1783–1791. [Google Scholar] [CrossRef]
- Mariotti, F.; Tomé, D.; Mirand, P.P. Converting nitrogen into protein—Beyond 6.25 and Jones′ factors. Crit. Rev. Food Sci. Nutr. 2008, 48, 177–184. [Google Scholar] [CrossRef]
- Sluiter, A.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Extractives in Biomass; NREL: Golden, CO, USA, 2008. [Google Scholar]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass; NREL: Golden, CO, USA, 2011. [Google Scholar]
- Ferreira, J.A.; Lennartsson, P.R.; Taherzadeh, M.J. Production of ethanol and biomass from thin stillage by Neurospora intermedia: A pilot study for process diversification. Eng. Life Sci. 2015, 15, 751–759. [Google Scholar] [CrossRef]
- Ferreira, J.A.; Lennartsson, P.R.; Taherzadeh, M.J. Production of ethanol and biomass from thin stillage using food-grade Zygomycetes and Ascomycetes filamentous fungi. Energies 2014, 7, 3872–3885. [Google Scholar] [CrossRef]
- Resch, M.G.; Baker, J.O.; Decker, S.R. Enzymatic Saccharification of Lignocellulosic Biomass; NREL: Golden, CO, USA, 2015. [Google Scholar]
- Matsakas, L.; Nitsos, C.; Raghavendran, V.; Yakimenko, O.; Persson, G.; Olsson, E.; Rova, U.; Olsson, L.; Christakopoulos, P. A novel hybrid organosolv: Steam explosion method for the efficient fractionation and pretreatment of birch biomass. Biotechnol. Biofuels 2018, 11, 160. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Matsakas, L.; Rova, U.; Christakopoulos, P. Heterotrophic cultivation of Auxenochlorella protothecoides using forest biomass as a feedstock for sustainable biodiesel production. Biotechnol. Biofuels 2018, 11, 169. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Gong, Z.; Wang, G.; Zhou, W.; Liu, Y.; Wang, X.; Zhao, M. Alkaline organosolv pretreatment of corn stover for enhancing the enzymatic digestibility. Bioresour. Technol. 2018, 265, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.H.; Zhou, Q.; Li, M.F.; Bian, J.; Peng, F. Tetrahydro-2-furanmethanol pretreatment of eucalyptus to enhance cellulose enzymatic hydrolysis and to produce high-quality lignin. Bioresour. Technol. 2019, 280, 489–492. [Google Scholar] [CrossRef]
- Romaní, A.; Larramendi, A.; Yáñez, R.; Cancela, Á.; Sánchez, Á.; Teixeira, J.A.; Domingues, L. Valorization of Eucalyptus nitens bark by organosolv pretreatment for the production of advanced biofuels. Ind. Crop Prod. 2019, 132, 327–335. [Google Scholar] [CrossRef]
- Chotirotsukon, C.; Raita, M.; Champreda, V.; Laosiripojana, N. Fractionation of sugarcane trash by oxalic-acid catalyzed glycerol-based organosolv followed by mild solvent delignification. Ind. Crop Prod. 2019, 141, 111753. [Google Scholar] [CrossRef]
- Kalogiannis, K.G.; Matsakas, L.; Lappas, A.A.; Rova, U.; Christakopoulos, P. Aromatics from beechwood organosolv lignin through thermal and catalytic pyrolysis. Energies 2019, 12, 1606. [Google Scholar] [CrossRef]
- Matsakas, L.; Karnaouri, A.; Cwirzen, A.; Rova, U.; Christakopoulos, P. Formation of lignin nanoparticles by combining organosolv pretreatment of birch biomass and homogenization processes. Molecules 2018, 23, 1822. [Google Scholar] [CrossRef]
- Ferreira, J.A.; Brancoli, P.; Agnihotri, S.; Bolton, K.; Taherzadeh, M.J. A review of integration strategies of lignocelluloses and other wastes in 1st generation bioethanol processes. Process Biochem. 2018, 75, 173–186. [Google Scholar] [CrossRef]
- Mitra, D.; Rasmussen, M.L.; Chand, P.; Chintareddy, V.R.; Yao, L.; Grewell, D.; Verkade, J.G.; Wang, T.; van Leeuwen, J. Value-added oil and animal feed production from corn-ethanol stillage using the oleaginous fungus Mucor circinelloides. Bioresour. Technol. 2012, 107, 368–375. [Google Scholar] [CrossRef]
- Lennartsson, P.R.; Erlandsson, P.; Taherzadeh, M.J. Integration of the first and second generation bioethanol processes and the importance of by-products. Bioresour. Technol. 2014, 165, 3–8. [Google Scholar] [CrossRef] [PubMed]
Parameter (% g/g) 2 | Oat Husks | Glucan-Rich Fraction 1 | Lignin-Rich Fraction 1 |
---|---|---|---|
Moisture | 9.80 ± 0.00 | NA | NA |
Starch | 7.72 ± 0.73 | NA | NA |
Crude protein 3 | 3.32 ± 0.12 | NA | NA |
Water-soluble extractives | 5.8 | NA | NA |
Ethanol-soluble extractives | - | NA | NA |
Ash | 5.70 ± 0.50 | 6.90 ± 0.10 | 4.10 ± 1.10 |
Lignin | 21.59 ± 0.35 | 27.50 ± 2.70 | 74.90 ± 7.60 |
Glucan | 24.78 ± 0.88 | 74.50 ± 11.40 | 12.40 ± 1.70 |
Xylan | 19.47 ± 0.79 | NA | NA |
Arabinan | 1.94 ± 0.01 | NA | NA |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chopda, R.; Ferreira, J.A.; Taherzadeh, M.J. Biorefining Oat Husks into High-Quality Lignin and Enzymatically Digestible Cellulose with Acid-Catalyzed Ethanol Organosolv Pretreatment. Processes 2020, 8, 435. https://doi.org/10.3390/pr8040435
Chopda R, Ferreira JA, Taherzadeh MJ. Biorefining Oat Husks into High-Quality Lignin and Enzymatically Digestible Cellulose with Acid-Catalyzed Ethanol Organosolv Pretreatment. Processes. 2020; 8(4):435. https://doi.org/10.3390/pr8040435
Chicago/Turabian StyleChopda, Rushab, Jorge A. Ferreira, and Mohammad J. Taherzadeh. 2020. "Biorefining Oat Husks into High-Quality Lignin and Enzymatically Digestible Cellulose with Acid-Catalyzed Ethanol Organosolv Pretreatment" Processes 8, no. 4: 435. https://doi.org/10.3390/pr8040435
APA StyleChopda, R., Ferreira, J. A., & Taherzadeh, M. J. (2020). Biorefining Oat Husks into High-Quality Lignin and Enzymatically Digestible Cellulose with Acid-Catalyzed Ethanol Organosolv Pretreatment. Processes, 8(4), 435. https://doi.org/10.3390/pr8040435