Investigating the Characteristics of Two-Phase Flow Using Electrical Capacitance Tomography (ECT) for Three Pipe Orientations
Abstract
:1. Introduction
2. Experimental Apparatus
Experimental Procedure
3. Correlation Development
4. Results and Discussions
4.1. Gas–Liquid Flow Pattern Characteristics Using ECT
4.2. Effect of Gas–Liquid Superficial Velocities on Liquid Holdup and Flow Pattern
4.3. Predicting the Liquid Holdup
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Symbols | |
internal pipe diameter (mm) | |
gas superficial velocity (m/s) | |
liquid superficial velocity (m/s) | |
E | permittivity (-) |
n | number of data points (-) |
Greek letter | |
gas density (m3/s) | |
liquid density (m3/s) | |
ε(L) | liquid holdup (-) |
μ(L) | liquid viscosity (Pa s) |
μ(G) | gas viscosity (Pa s) |
Abbreviations | |
HSCI | high speed camera images |
ECT | electrical capacitance tomography |
ERT | electrical resistance tomography |
EIT | electrical inductance tomography |
LBP | linear back projection |
PE | percentage error |
APE | average percentage error |
AAPE | absolute average percentage error |
SD | standard deviation |
TFCV | two fast closing valves |
Subscripts | |
L | liquid |
G | Gas |
Appendix A
No. Data Point | ECT | TFCV | No. Data Point | ECT | TFCV | No. Data Point | ECT | TFCV | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
m/s | m/s | ε(L) | ε(L) | m/s | m/s | ε(L) | ε(L) | m/s | m/s | ε(L) | ε(L) | |||
Horizontal | ||||||||||||||
1 | 0.295 | 0.136 | 0.972 | - | 26 | 0.344 | 0.274 | 0.980 | - | 50 | 0.278 | 0.507 | 0.979 | - |
2 | 0.303 | 0.136 | 0.953 | 0.941 | 27 | 0.360 | 0.274 | 0.936 | 0.911 | 51 | 0.303 | 0.507 | 0.951 | 0.931 |
3 | 0.368 | 0.136 | 0.769 | 0.788 | 28 | 0.377 | 0.274 | 0.906 | 0.893 | 52 | 0.319 | 0.507 | 0.935 | 0.930 |
4 | 0.401 | 0.136 | 0.717 | 0.732 | 29 | 0.401 | 0.267 | 0.853 | 0.862 | 53 | 0.344 | 0.507 | 0.908 | 0.906 |
5 | 0.434 | 0.135 | 0.695 | 0.677 | 30 | 0.467 | 0.274 | 0.764 | 0.786 | 54 | 0.377 | 0.507 | 0.881 | 0.896 |
6 | 0.491 | 0.136 | 0.658 | 0.656 | 31 | 0.557 | 0.269 | 0.705 | 0.745 | 55 | 0.410 | 0.511 | 0.855 | 0.890 |
7 | 0.573 | 0.136 | 0.578 | 0.580 | 32 | 0.754 | 0.269 | 0.603 | 0.647 | 56 | 0.475 | 0.507 | 0.817 | 0.870 |
8 | 0.770 | 0.136 | 0.521 | 0.542 | 33 | 1.048 | 0.265 | 0.516 | 0.568 | 57 | 0.557 | 0.511 | 0.773 | 0.845 |
9 | 0.983 | 0.136 | 0.479 | 0.532 | 34 | 1.244 | 0.274 | 0.496 | 0.537 | 58 | 0.729 | 0.512 | 0.713 | 0.803 |
10 | 1.244 | 0.136 | 0.461 | 0.503 | 35 | 1.491 | 0.267 | 0.473 | 0.522 | 59 | 1.040 | 0.511 | 0.618 | 0.704 |
11 | 1.491 | 0.136 | 0.438 | 0.428 | 36 | 1.686 | 0.274 | 0.457 | 0.530 | 60 | 1.228 | 0.507 | 0.573 | 0.669 |
12 | 1.686 | 0.136 | 0.411 | 0.391 | 37 | 2.030 | 0.274 | 0.449 | 0.480 | 61 | 1.491 | 0.509 | 0.546 | 0.673 |
13 | 2.030 | 0.136 | 0.401 | 0.371 | 38 | 2.210 | 0.274 | 0.429 | 0.423 | 62 | 1.736 | 0.507 | 0.517 | 0.609 |
14 | 2.210 | 0.136 | 0.382 | 0.366 | 39 | 2.474 | 0.267 | 0.423 | 0.425 | 63 | 1.965 | 0.507 | 0.500 | 0.605 |
15 | 2.605 | 0.137 | 0.370 | 0.397 | 40 | 2.702 | 0.274 | 0.411 | 0.391 | 64 | 2.227 | 0.507 | 0.481 | 0.562 |
16 | 2.702 | 0.136 | 0.364 | 0.373 | 41 | 3.062 | 0.274 | 0.381 | 0.401 | 65 | 2.539 | 0.507 | 0.468 | 0.585 |
17 | 3.062 | 0.136 | 0.350 | 0.358 | 42 | 3.258 | 0.274 | 0.376 | 0.411 | 66 | 2.767 | 0.507 | 0.443 | 0.570 |
18 | 3.258 | 0.136 | 0.344 | 0.313 | 43 | 3.488 | 0.274 | 0.359 | 0.358 | 67 | 3.078 | 0.507 | 0.430 | 0.502 |
19 | 3.488 | 0.136 | 0.342 | 0.314 | 44 | 3.733 | 0.274 | 0.354 | 0.326 | 68 | 3.275 | 0.507 | 0.414 | 0.530 |
20 | 3.733 | 0.136 | 0.332 | 0.363 | 45 | 3.965 | 0.267 | 0.344 | 0.352 | 69 | 3.537 | 0.507 | 0.412 | 0.423 |
21 | 3.981 | 0.137 | 0.321 | 0.298 | 46 | 4.241 | 0.274 | 0.333 | 0.318 | 70 | 3.684 | 0.507 | 0.393 | 0.495 |
22 | 4.241 | 0.136 | 0.318 | 0.311 | 47 | 4.423 | 0.268 | 0.326 | 0.315 | 71 | 4.030 | 0.507 | 0.384 | 0.423 |
23 | 4.472 | 0.137 | 0.311 | 0.315 | 48 | 4.781 | 0.274 | 0.322 | 0.321 | 72 | 4.224 | 0.507 | 0.377 | 0.396 |
24 | 4.781 | 0.136 | 0.299 | 0.279 | 49 | 5.027 | 0.274 | 0.326 | 0.311 | 73 | 4.472 | 0.511 | 0.368 | 0.412 |
25 | 5.027 | 0.136 | 0.298 | 0.304 | 74 | 4.716 | 0.507 | 0.364 | 0.376 | |||||
75 | 4.994 | 0.507 | 0.354 | 0.378 | ||||||||||
Upward 9° | ||||||||||||||
76 | 0.410 | 0.135 | 0.857 | 0.843 | 97 | 0.429 | 0.268 | 0.858 | 0.877 | 117 | 0.311 | 0.507 | 0.986 | 0.983 |
77 | 0.557 | 0.136 | 0.678 | 0.690 | 98 | 0.524 | 0.274 | 0.766 | 0.787 | 118 | 0.377 | 0.507 | 0.930 | 0.933 |
78 | 0.655 | 0.136 | 0.595 | 0.605 | 99 | 0.639 | 0.274 | 0.682 | 0.694 | 119 | 0.426 | 0.506 | 0.882 | 0.907 |
79 | 0.770 | 0.131 | 0.568 | 0.570 | 100 | 0.770 | 0.277 | 0.630 | 0.638 | 120 | 0.475 | 0.507 | 0.847 | 0.890 |
80 | 0.884 | 0.136 | 0.539 | 0.530 | 101 | 0.884 | 0.274 | 0.618 | 0.623 | 121 | 0.524 | 0.507 | 0.810 | 0.840 |
81 | 1.065 | 0.133 | 0.475 | 0.492 | 102 | 1.016 | 0.277 | 0.557 | 0.600 | 122 | 0.573 | 0.506 | 0.785 | 0.785 |
82 | 1.228 | 0.136 | 0.452 | 0.453 | 103 | 1.195 | 0.274 | 0.527 | 0.550 | 123 | 0.622 | 0.507 | 0.767 | 0.810 |
83 | 1.424 | 0.136 | 0.424 | 0.445 | 104 | 1.474 | 0.276 | 0.478 | 0.505 | 124 | 0.655 | 0.507 | 0.750 | 0.771 |
84 | 1.573 | 0.138 | 0.431 | 0.442 | 105 | 1.638 | 0.276 | 0.458 | 0.495 | 125 | 0.737 | 0.507 | 0.706 | 0.733 |
85 | 1.768 | 0.136 | 0.401 | 0.407 | 106 | 1.965 | 0.274 | 0.426 | 0.452 | 126 | 0.835 | 0.507 | 0.690 | 0.704 |
86 | 1.965 | 0.136 | 0.405 | 0.430 | 107 | 2.556 | 0.276 | 0.400 | 0.435 | 127 | 1.016 | 0.509 | 0.662 | 0.665 |
87 | 2.129 | 0.136 | 0.384 | 0.383 | 108 | 2.996 | 0.274 | 0.382 | 0.406 | 128 | 1.228 | 0.507 | 0.610 | 0.627 |
88 | 2.292 | 0.136 | 0.372 | 0.370 | 109 | 3.226 | 0.274 | 0.357 | 0.413 | 129 | 1.491 | 0.509 | 0.565 | 0.570 |
89 | 2.490 | 0.134 | 0.374 | 0.362 | 110 | 3.438 | 0.274 | 0.366 | 0.335 | 130 | 1.736 | 0.507 | 0.535 | 0.550 |
90 | 2.669 | 0.136 | 0.364 | 0.383 | 111 | 3.815 | 0.274 | 0.386 | 0.365 | 131 | 1.965 | 0.507 | 0.510 | 0.531 |
91 | 2.865 | 0.136 | 0.357 | 0.349 | 112 | 3.997 | 0.273 | 0.354 | 0.342 | 132 | 2.047 | 0.507 | 0.512 | 0.525 |
92 | 3.193 | 0.136 | 0.343 | 0.328 | 113 | 4.423 | 0.279 | 0.335 | 0.335 | 133 | 2.490 | 0.506 | 0.470 | 0.530 |
93 | 3.684 | 0.136 | 0.324 | 0.316 | 114 | 4.257 | 0.274 | 0.355 | 0.367 | 134 | 2.571 | 0.507 | 0.473 | 0.471 |
94 | 4.030 | 0.138 | 0.313 | 0.307 | 115 | 4.748 | 0.274 | 0.333 | 0.365 | 135 | 2.769 | 0.512 | 0.463 | 0.470 |
95 | 4.472 | 0.134 | 0.310 | 0.272 | 116 | 5.076 | 0.274 | 0.337 | 0.335 | 136 | 2.947 | 0.507 | 0.450 | 0.508 |
96 | 4.994 | 0.136 | 0.310 | 0.299 | 137 | 3.242 | 0.507 | 0.432 | 0.462 | |||||
138 | 3.406 | 0.507 | 0.426 | 0.435 | ||||||||||
139 | 3.749 | 0.507 | 0.407 | 0.440 | ||||||||||
140 | 3.899 | 0.509 | 0.393 | 0.427 | ||||||||||
141 | 4.175 | 0.507 | 0.388 | 0.440 | ||||||||||
142 | 4.407 | 0.504 | 0.377 | 0.415 | ||||||||||
143 | 4.716 | 0.507 | 0.376 | 0.396 | ||||||||||
144 | 5.207 | 0.507 | 0.360 | 0.398 | ||||||||||
Downward 9° | ||||||||||||||
145 | 0.344 | 0.136 | 0.259 | 0.298 | 158 | 0.393 | 0.264 | 0.343 | 0.413 | 175 | 0.393 | 0.509 | 0.443 | 0.545 |
146 | 0.410 | 0.133 | 0.255 | 0.297 | 159 | 0.541 | 0.264 | 0.337 | 0.423 | 176 | 0.491 | 0.511 | 0.443 | 0.572 |
147 | 0.573 | 0.134 | 0.254 | 0.302 | 160 | 0.672 | 0.264 | 0.340 | 0.430 | 177 | 0.672 | 0.513 | 0.443 | 0.570 |
148 | 0.704 | 0.134 | 0.252 | 0.302 | 161 | 0.819 | 0.274 | 0.336 | 0.421 | 178 | 1.048 | 0.507 | 0.438 | 0.580 |
149 | 0.983 | 0.134 | 0.253 | 0.302 | 162 | 1.065 | 0.264 | 0.334 | 0.423 | 179 | 1.359 | 0.507 | 0.437 | 0.574 |
150 | 1.458 | 0.134 | 0.251 | 0.302 | 163 | 1.343 | 0.274 | 0.333 | 0.421 | 180 | 1.605 | 0.507 | 0.467 | 0.599 |
151 | 2.030 | 0.136 | 0.251 | 0.299 | 164 | 1.622 | 0.265 | 0.332 | 0.428 | 181 | 1.932 | 0.507 | 0.461 | 0.576 |
152 | 2.506 | 0.134 | 0.249 | 0.305 | 165 | 1.948 | 0.274 | 0.331 | 0.421 | 182 | 2.359 | 0.509 | 0.456 | 0.583 |
153 | 2.965 | 0.134 | 0.250 | 0.295 | 166 | 2.292 | 0.274 | 0.329 | 0.426 | 183 | 2.670 | 0.506 | 0.450 | 0.588 |
154 | 3.569 | 0.136 | 0.247 | 0.286 | 167 | 2.638 | 0.265 | 0.328 | 0.423 | 184 | 2.949 | 0.507 | 0.445 | 0.563 |
155 | 4.145 | 0.134 | 0.246 | 0.288 | 168 | 3.013 | 0.274 | 0.327 | 0.421 | 185 | 3.258 | 0.507 | 0.448 | 0.567 |
156 | 4.505 | 0.133 | 0.243 | 0.285 | 169 | 3.324 | 0.274 | 0.326 | 0.416 | 186 | 3.635 | 0.507 | 0.441 | 0.556 |
157 | 4.912 | 0.136 | 0.246 | 0.283 | 170 | 3.635 | 0.274 | 0.323 | 0.411 | 187 | 3.668 | 0.507 | 0.434 | 0.522 |
171 | 3.965 | 0.267 | 0.322 | 0.413 | 188 | 3.897 | 0.507 | 0.435 | 0.514 | |||||
172 | 4.325 | 0.263 | 0.319 | 0.400 | 189 | 4.011 | 0.507 | 0.424 | 0.504 | |||||
173 | 4.685 | 0.267 | 0.320 | 0.405 | 190 | 4.325 | 0.511 | 0.429 | 0.500 | |||||
174 | 4.994 | 0.274 | 0.318 | 0.400 | 191 | 4.538 | 0.512 | 0.435 | 0.527 | |||||
192 | 4.554 | 0.507 | 0.429 | 0.483 |
References
- Wallis, G.B. One-Dimensional Two-Phase Flow; McGraw-Hill Book Company: New York, NY, USA, 1969. [Google Scholar]
- Abdulkadir, M.; Hernandez-Perez, V.; Lowndes, I.; Azzopardi, B.J.; Dzomeku, S. Experimental study of the hydrodynamic behaviour of slug flow in a vertical riser. Chem. Eng. Sci. 2014, 106, 60–75. [Google Scholar] [CrossRef]
- Soo, S. Multiphase Fluid Dynamics; Science Press: Beijing, China, 1990. [Google Scholar]
- Abduvayt, P.; Manabe, R.; Arihara, N. Effects of pressure and pipe diameter on gas-liquid tow-phase flow behavior in pipelines. In Proceedings of the In SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 5–8 October 2003; pp. 1567–1581. [Google Scholar]
- Pongsiri, S.; Somchai, W. Tow-phase flow pattern maps for vertical upward gas-liquid flow in mini-gap channels. Int. J. Multiph. Flow 2004, 30, 225–236. [Google Scholar]
- Van Hout, R.; Shemer, L.; Barnea, D. Evolution of hydrodynamic and statistical parameters of gas-liquid slug flow along inclined pipes. Chem. Eng. Sci. 2003, 58, 115–133. [Google Scholar] [CrossRef] [Green Version]
- Ekberg, N.P.; Ghiaasiaan, S.M.; Abdel-Khalik, S.I.; Yoda, M.; Jeter, S.M. Gas-liquid two-phase flow in narrow horizontal annuli. Nucl. Eng. Des. 1999, 192, 59–80. [Google Scholar] [CrossRef]
- Furukawa, T.; Fukano, T. Effects of liquid viscosity on flow pattern in vertical upward gas-liquid two phase flow. Int. J. Multiph. Flow 2001, 27, 1109–1126. [Google Scholar] [CrossRef]
- Hewitt, G.F.; Robertson, D.N. Studies of Two-Phase Flow Patterns by Simultaneous X-ray and Flash Photography; Report AERE-M2159; UKAEA; Atomic Energy Research Establishment: Harwell, UK, 1969.
- Adewumi, M.A.; Bukacek, R.F. Two-phase pressure drop in horizontal pipelines. J. Pipelines 1985, 5, 1–14. [Google Scholar]
- Barnea, D.; Brauner, N. Hold-up of liquid in two phase intermittent flow. Int. J. Multiph. Flow 1985, 11, 43–49. [Google Scholar] [CrossRef]
- Taitel, Y.; Barnea, D.; Dukler, A.E. Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes. AIChE J. 1980, 26, 345–954. [Google Scholar] [CrossRef]
- Taitel, Y.; Dukler, A.E. A model for predicting flow regime transition in horizontal and near horizontal gas liquid flow. AIChE J. 1976, 22, 47–55. [Google Scholar] [CrossRef]
- Ismail, I.; Gamio, J.C.; Bukhari, S.F.A.; Yang, W.Q. Tomography for multi-phase flow measurement in the oil industry. Flow Meas. Instrum. 2005, 16, 145–155. [Google Scholar] [CrossRef]
- Williams, R.A.; Beck, M.S. Process Tomography Principle, Techniques and Applications; Butterworth-Heinemann Ltd: Oxford, UK, 1995. [Google Scholar]
- Bieberle, M.; Hampel, U. Evaluation of a limited angle scanned electron beam x-ray ct approach for two-phase pipe flows. Meas. Sci. Technol. 2006, 17, 2057–2065. [Google Scholar] [CrossRef]
- Tollefesn, J.; Hammer, E. Capacitance sensor design for reducing errors in phase concentration measurements. Flow Meas. Instrum. 1998, 9, 25–32. [Google Scholar] [CrossRef]
- Yang, W.Q.; Chondronasios, A.; Nattrass, S.; Nguyen, V.T.; Betting, M.; Ismail, I.; McCann, H. Adaptive calibration of capacitance tomography system for imaging water droplet distribution. Flow Meas. Instrum. 2004, 15, 249–258. [Google Scholar] [CrossRef]
- Wang, G.; Ching, C.Y. Measurement of multiple gas-bubble velocities in gas-liquid flows using hot film anemometry. Exp. Fluids 2001, 31, 428–439. [Google Scholar] [CrossRef]
- Wu, H.; Tan, C.; Dong, X.; Dong, F. Design of a conductance and capacitance combination sensor for water holdup measurement in oil–water two-phase flow. Flow Meas. Instrum. 2015, 46, 218–229. [Google Scholar] [CrossRef]
- Sardeshpande, M.V.; Harinarayan, S.; Ranade, V.V. Void fraction measurement using electrical capacitance tomography and high speed photography. Chem. Eng. Res. Des. 2015, 94, 1–11. [Google Scholar] [CrossRef]
- Clarke, N.N.; Rezkallah, K.S. A study of drift velocity in bubbly two-phase flow under microgravity conditions. Int. J. Multiph. Flow 2001, 27, 1533–1554. [Google Scholar] [CrossRef]
- Xia, G.; Zhou, F.; Hu-ming, S. Two-phase slug flow in vertical and inclined tubes. Nucl. Sci. Tech. 1996, 7, 232–237. [Google Scholar]
- Bolton, G.T.; Korchinsky, W.J.; Waterfall, R.C. Imaging Immiscible Liquid-Liquid Systems by Capacitance Tomography. Chem. Eng. Res. Des. 1999, 77, 699–708. [Google Scholar] [CrossRef]
- Baba, Y.D.; Aliyu, A.M.; Archibong, A.-E.; Almabrok, A.A.; Igbafe, A.I. Study of high viscous multiphase phase flow in a horizontal pipe. Heat Mass Transf. 2018, 54, 651–669. [Google Scholar] [CrossRef]
- Ramli, M.F.; Avila, H.E.L.; Sousa, F.R.d.; Tian, W.; Yang, W. Multiphase Flow Measurement by Electrical Capacitance Tomography and Microwave Cavity Resonant Sensor. In Proceedings of the 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Auckland, New Zealand, 20–23 May 2019; pp. 1–6. [Google Scholar]
- Gamio, J.C.; Castro, J.; Rivera, L.; Alamilla, J.; Garcia-Nocetti, F.; Aguilar, L. Visualisation of gas-oil two-phase flows in pressurised pipes using electrical capacitance tomography. Flow Meas. Instrum. 2005, 16, 129–134. [Google Scholar] [CrossRef]
- Liu, S.; Chen, Q.; Wang, H.G.; Jiang, F.; Ismail, I.; Yang, W.Q. Electrical capacitance tomography for gas-solids flow measurement for circulating fluidized beds. Flow Meas. Instrum. 2005, 16, 135–144. [Google Scholar] [CrossRef]
- Tapp, H.S.; Peyton, A.J.; Kemsley, E.K.; Wilson, R.H. Chemical engineering applications of electrical process tomography. Sens. Actuators B Chem. 2003, 92, 17–24. [Google Scholar] [CrossRef]
- Bangliang, S.; Zhang, Y.; Peng, L.; Yao, D.; Zhang, B. The use of simultaneous iterative reconstruction technique for electronic capacitance tomography. Chem. Eng. J. 2000, 77, 37–41. [Google Scholar] [CrossRef]
- Reinecke, N.; Mewes, D. Multielectrode capacitance sensors for the visualisation of transient two-phase flows. Exp. Therm. Fluid Sci. 1997, 15, 253–266. [Google Scholar] [CrossRef]
- Spedding, P.L.; Chen, J.J.J. Holdup in two phase flow. Int. J. Multiph. Flow 1984, 10, 307–339. [Google Scholar] [CrossRef]
- Hart, J.; Hamersma, P.J.; Fortuin, J.M.H. Correlations predicting frictional pressure drop and liquid holdup during horizontal gas-liquid pipe flow with a small liquid holdup. Int. J. Multiph. Flow 1989, 15, 947–964. [Google Scholar] [CrossRef]
- Hamersma, P.J.; Hart, J. A pressure drop correlation for gas/liquid pipe flow with a small liquid holdup. Chem. Eng. Sci. 1987, 42, 1187–1196. [Google Scholar] [CrossRef]
- Abdul-Majeed, G.H. Liquid slug holdup in horizontal and slightly inclined two-phase slug flow. J. Pet. Sci. Eng. 2000, 27, 27–32. [Google Scholar] [CrossRef]
- Gomez, L.E.; Shoham, O.; Taitel, Y. Prediction of slug liquid holdup: Horizontal to upward vertical flow. Int. J. Multiph. Flow 2000, 26, 517–521. [Google Scholar] [CrossRef]
- Ishii, M. One-Dimensional Drift-Flux Model and Constitutive Equations for Relative Motion between Phases in Various Two-Phase Flow Regimes; Argonne National Lab., Ill: Lemont, IL, USA, 1 October 1977.
- Choi, J.; Pereyra, E.; Sarica, C.; Park, C.; Kang, J.M. An Efficient Drift-Flux Closure Relationship to Estimate Liquid Holdups of Gas-Liquid Two-Phase Flow in Pipes. Energies 2012, 5, 5294–5306. [Google Scholar] [CrossRef] [Green Version]
- Bestion, D. The physical closure laws in the CATHARE code. Nucl. Eng. Des. 1990, 124, 229–245. [Google Scholar] [CrossRef]
- Kora, C.; Sarica, C.; Zhang, H.-q.; Al-Sarkhi, A.; Al-Safran, E. Effects of High Oil Viscosity on Slug Liquid Holdup in Horizontal Pipes. In Proceedings of the Canadian Unconventional Resources Conference, Calgary, AB, Canada, 1 January 2011; p. 15. [Google Scholar]
- Al-Safran, E.; Kora, C.; Sarica, C. Prediction of slug liquid holdup in high viscosity liquid and gas two-phase flow in horizontal pipes. J. Pet. Sci. Eng. 2015, 133, 566–575. [Google Scholar] [CrossRef]
- Abdul-Majeed, G.H.; Al-Mashat, A.M. A unified correlation for predicting slug liquid holdup in viscous two-phase flow for pipe inclination from horizontal to vertical. SN Appl. Sci. 2018, 1, 71. [Google Scholar] [CrossRef] [Green Version]
- Farokhpoor, R.; Liu, L.; Langsholt, M.; Hald, K.; Amundsen, J.; Lawrence, C. Dimensional analysis and scaling in two-phase gas–liquid stratified pipe flow–Methodology evaluation. Int. J. Multiph. Flow 2020, 122, 103139. [Google Scholar] [CrossRef]
- Alghamdi, Y.; Peng, Z.; Shah, K.; Moghtaderi, B.; Doroodchi, E. Predicting the solid circulation rate in chemical looping combustion systems using pressure drop measurements. Powder Technol. 2015, 286, 572–581. [Google Scholar] [CrossRef]
- Wu, X.; Lu, H.; Wu, S. Stress analysis of parallel oil and gas steel pipelines in inclined tunnels. Springerplus 2015, 4, 659. [Google Scholar] [CrossRef] [Green Version]
- Wen, Y.; Wu, Z.H.; Wang, J.L.; Wu, J.; Yin, Q.G.; Luo, W. Experimental study of liquid holdup of liquid-gas two-phase flow in horizontal and inclined pipes. Int. J. Heat Technol. 2017, 35, 713–720. [Google Scholar] [CrossRef] [Green Version]
- Hanafizadeh, P.; Eshraghi, J.; Nazari, Y.; Yousefpour, K.; Akhavan Behabadi, M.A. Light Oil–Gas Two-Phase Flow Pattern Identification in Different Pipe Orientations: An Experimental Approach. Sci. Iran 2017, 24, 2445–2456. [Google Scholar] [CrossRef] [Green Version]
- Goldszal, A.; Monsen, J.I.; Danielson, T.J.; Bansal, K.M.; Yang, Z.L.; Johansen, S.T.; Depay, G. Ledaflow 1D: Simulation Results With Multiphase Gas/Condensate and Oil/Gas Field Data. In Proceedings of the 13th International Conference on Multiphase Production Technology, Edinburgh, UK, 13 June 2007; p. 15. [Google Scholar]
- Kang, C.; Jepson, W.P.; Wang, H. Flow Regime Transitions in Large Diameter Inclined Multiphase Pipelines. In Proceedings of the CORROSION 2002, Denver, CO, USA, 1 January 2002; p. 11. [Google Scholar]
- Alghamdi, Y.; Peng, Z.; Shah, K.; Moghtaderi, B.; Doroodchi, E. A correlation for predicting solids holdup in the dilute pneumatic conveying flow regime of circulating and interconnected fluidised beds. Powder Technol. 2016, 297, 357–366. [Google Scholar] [CrossRef]
- Abdul-Majeed, G.H. Liquid holdup in horizontal two-phase gas—Liquid flow. J. Pet. Sci. Eng. 1996, 15, 271–280. [Google Scholar] [CrossRef]
- Gokcal, B.; Wang, Q.; Zhang, H.-Q.; Sarica, C. Effects of High Oil Viscosity on Oil/Gas Flow Behavior in Horizontal Pipes. SPE Proj. Facil. Constr. 2008, 3, 1–11. [Google Scholar] [CrossRef]
- Minami, K.; Brill, J.P. Liquid Holdup in Wet-Gas Pipelines. SPE Prod. Eng. 1987, 2, 36–44. [Google Scholar] [CrossRef]
- Al-Dahhan, M.H.; Khadilkar, M.R.; Wu, Y.; Duduković, M.P. Prediction of Pressure Drop and Liquid Holdup in High-Pressure Trickle-Bed Reactors. Ind. Eng. Chem. Res. 1998, 37, 793–798. [Google Scholar] [CrossRef]
- Al-Safran, E. Prediction of Slug Liquid Holdup in Horizontal Pipes. J. Energy Resour. Technol. 2009, 131. [Google Scholar] [CrossRef]
- Mukherjee, H.; Brill, J.P. Liquid Holdup Correlations for Inclined Two-Phase Flow. J. Pet. Technol. 1983, 35, 1003–1008. [Google Scholar] [CrossRef]
- Jain, A.; Paul, A.R.; Aggarwal, S.K.; Mohanty, B.; Mani, B.P. A new correlation for holdup in gas-solids cyclone. In Proceedings of the 2011 international conference on Applied & Computational Mathematics, Canary Islands, Spain, 27–29 May 2011; pp. 117–126. [Google Scholar]
- Perera, K.; Pradeep, C.; Mylvaganam, S.W. Time, R. Imaging of oil-water flow patterns by electrical capacitance tomography. Flow Meas. Instrum. 2017, 56, 23–34. [Google Scholar] [CrossRef]
- Chen, X.; Han, Y.F.; Ren, Y.Y.; Zhang, H.X.; Zhang, H.; Jin, N.D. Water holdup measurement of oil-water two-phase flow with low velocity using a coaxial capacitance sensor. Exp. Therm. Fluid Sci. 2017, 81, 244–255. [Google Scholar] [CrossRef]
- Salehi, S.M.; Karimi, H.; Moosavi, R.; Dastranj, A.A. Different configurations of capacitance sensor for gas/oil two phase flow measurement: An experimental and numerical study. Exp. Therm. Fluid Sci. 2017, 82, 349–358. [Google Scholar] [CrossRef]
- Barnea, D.; Shoham, O.; Taitel, Y. Flow pattern transition for vertical downward two phase flow: Horizontal to vertical. Chem. Eng. Sci. 1982, 37, 735–740. [Google Scholar] [CrossRef]
- Barnea, D.; Shoham, O.; Taitel, Y. Flow pattern transition for vertical downward two phase flow. Chem. Eng. Sci. 1982, 37, 741–744. [Google Scholar] [CrossRef]
- Szalinski, L.; Abdulkareem, L.A.; Silva, M.J.D.; Thiele, S.; Beyer, M.; Lucas, D.; Perez, V.H.; Hampel, U.; Azzopardi, B.J. Comparative study of gas–oil and gas–water two-phase flow in a vertical pipe. Chem. Eng. Sci. 2010, 65, 3836–3848. [Google Scholar] [CrossRef]
- Zhao, Y.; Yeung, H.; Zorgani, E.E.; Archibong, A.E.; Lao, L. High viscosity effects on characteristics of oil and gas two-phase flow in horizontal pipes. Chem. Eng. Sci. 2013, 95, 343–352. [Google Scholar] [CrossRef]
- Milan, M.; Borhani, N.; Thome, J.R. Adiabatic vertical downward air–water flow pattern map: Influence of inlet device, flow development length and hysteresis effects. Int. J. Multiph. Flow 2013, 56, 126–137. [Google Scholar] [CrossRef]
- Xu, J. Investigation on average void fraction for air/non-Newtonian power-law fluids two-phase flow in downward inclined pipes. Exp. Therm. Fluid Sci. 2010, 34, 1484–1487. [Google Scholar] [CrossRef]
- Ibarra, R.; Nossen, J.; Tutkun, M. Holdup and frequency characteristics of slug flow in concentric and fully eccentric annuli pipes. J. Pet. Sci. Eng. 2019, 182, 106256. [Google Scholar] [CrossRef]
- Zhao, Y.; Lao, L.; Yeung, H. Investigation and prediction of slug flow characteristics in highly viscous liquid and gas flows in horizontal pipes. Chem. Eng. Res. Des. 2015, 102, 124–137. [Google Scholar] [CrossRef] [Green Version]
Authors | Apparatus/Inclination | Liquid/Gas Phases | Size | No. of Data |
---|---|---|---|---|
This work | Horizontal and 9° Upward | Mineral oil (850 kg/m3)/Air | = 3.60 cm | 282 |
Minami and Brill (1987) [53] | Horizontal | Kerosene (790–805 kg/m3)/Air Water (999.65 kg/m3)/Air | = 7.793 cm | 114 |
Abdul–Majeed (1996) [51] | Horizontal | Kerosene (790–805 kg/m3)/Air | = 5.08 cm | 55 |
Abdul–Majeed (2000) [35] | Horizontal | Heavy oil (1000 kg/m3)/Air | = 5.10 cm | 17 |
Baba et al., (2018) [25] | Horizontal | Mineral oil-CYL-680 (918 kg/m3)/Air | = 7.62 cm | 55 |
Gokcal et al., (2008) [52] | Horizontal | Oil (889 kg/m3)/Air | = 5.08 cm | 28 |
Total No. Of Data Point | 551 |
Empirical Correlation | APE | AAPE | SD | Criteria | System | Gas/Liquid | Flow Type Covered | Inclination |
---|---|---|---|---|---|---|---|---|
Spedding & Chen (1984) [32,33] | −8.99 (44.09) | 29.50 (49.25) | 35.70 (40.04) | ε(L) ≤ 0.20 | Low liquid holdup | Air/water | Annular, stratified and stratified wavy | Horizontal and vertical |
Hamersma & Hart (1987)-1 [33,34] | −9.24 (40.25) | 28.15 (45.63) | 34 (38.57) | ε(L) ≤ 0.04 | Low liquid holdup | Air/water | Stratified wavy and annular | Horizontal |
Hamersma & Hart (1987)-1 [33,34] | 4.15 (67.33) | 27.55 (70.46) | 40.45 (45.50) | ε(L) ≤ 0.04 | Low liquid holdup | Air/water | Stratified wavy and annular | Horizontal |
Hart et al. (1989) [33] | 72.7 (104.67) | 73.15 (105) | 49.51 (72.37) | ε(L) ≤ 0.06 | Low liquid holdup | Air/water | Stratified wavy and annular | Horizontal |
Abdul–Majeed (2000) [35] | L.E. a | L.E. a | L.E. a | 0.2 < ε(L) ≤ 1 | High liquid holdup | Air/Heavy oil | Slug | Horizontal and Upward |
Gomez et al., (2000) [36,42] | L.E. | L.E. | L.E. | 0.4 < ε(L) ≤ 1 | High liquid holdup | Air/kerosene Air/water Air/oil Nitrogen/diesel | Slug | Horizontal and Upward (50° and 90°) |
Ishii (1977) [37,38] | −2.78 | 18.72 | 32.72 | 0.4 < ε(L) ≤ 1 | High liquid holdup | N/A | Slug-churn | N/A |
Bestion (1990) [38,39] | 46.34 | 49.05 | 78.93 | N/A | Used by research to predict high liquid holdup [38] | N/A | N/A | N/A |
Al–Safran et al., (2015) [41,42] | L.E. | L.E. | L.E. | 0.6 < ε(L) ≤ 1 | High liquid holdup | Air/mineral oil | Slug | Horizontal |
Kora et al., (2011) [40,42] | 106.5 | 106.5 | 101 | 0.8 < ε(L) ≤ 1 | High liquid holdup | Air/High viscosity oil | Slug | Horizontal |
Our work Equation (11) | −1.40 | 9.50 | 11.46 | 0.1 < ε(L) ≤ 0.986 | High liquid holdup | Air/Water Air/Kerosene Air/Heavy oil Air/Mineral oil Air/oil | Bubble, Elongated Bubble, slug and slug-churn | Horizontal and Upward (9°) |
Our work Equation (12) | 8.9 | 25.90 | 31.20 | 0.0082 < ε(L) ≤ 0.275 | Low liquid holdup | Air/Water Air/Kerosene Air/Heavy oil Air/Mineral oil Air/oil | Annular, stratified and stratified wavy | Horizontal and Upward (9°) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almutairi, Z.; Al-Alweet, F.M.; Alghamdi, Y.A.; Almisned, O.A.; Alothman, O.Y. Investigating the Characteristics of Two-Phase Flow Using Electrical Capacitance Tomography (ECT) for Three Pipe Orientations. Processes 2020, 8, 51. https://doi.org/10.3390/pr8010051
Almutairi Z, Al-Alweet FM, Alghamdi YA, Almisned OA, Alothman OY. Investigating the Characteristics of Two-Phase Flow Using Electrical Capacitance Tomography (ECT) for Three Pipe Orientations. Processes. 2020; 8(1):51. https://doi.org/10.3390/pr8010051
Chicago/Turabian StyleAlmutairi, Zeyad, Fayez M. Al-Alweet, Yusif A. Alghamdi, Omar A. Almisned, and Othman Y. Alothman. 2020. "Investigating the Characteristics of Two-Phase Flow Using Electrical Capacitance Tomography (ECT) for Three Pipe Orientations" Processes 8, no. 1: 51. https://doi.org/10.3390/pr8010051
APA StyleAlmutairi, Z., Al-Alweet, F. M., Alghamdi, Y. A., Almisned, O. A., & Alothman, O. Y. (2020). Investigating the Characteristics of Two-Phase Flow Using Electrical Capacitance Tomography (ECT) for Three Pipe Orientations. Processes, 8(1), 51. https://doi.org/10.3390/pr8010051