Skip Content
You are currently on the new version of our website. Access the old version .
ProcessesProcesses
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

2 February 2026

Rock-Physics-Constrained Intelligent Porosity Prediction for Fracture–Vuggy Carbonate Reservoirs: A Case Study from the XX Well Block, Tarim Oilfield

,
,
,
,
and
1
PetroChina Tarim Oilfield Company, Korla 841000, China
2
R&D Center for Ultra Deep Complex Oil and Gas Reservoir Exploration and Development Technology, CNPC, Korla 841000, China
3
Engineering Research Center for Ultra-Deep Complex Reservoir Exploration and Development, Xinjiang Uygur Autonomous Region, Korla 841000, China
4
Xinjiang Key Laboratory of Ultra-Deep Oil and Gas, Korla 841000, China
This article belongs to the Section Petroleum and Low-Carbon Energy Process Engineering

Abstract

Fracture–vuggy carbonate reservoirs exhibit strong heterogeneity, spatial discontinuity, and highly variable porosity, which limit the effectiveness of traditional seismic attributes and conventional inversion. Focusing on the XX well block in the Tarim Basin, this study develops a rock-physics-constrained Physics-Constrained TransUNet method for intelligent porosity prediction. A carbonate-specific rock-physics model is first established, considering mineral composition, pore type, and water saturation, ensuring physical consistency between porosity, elastic parameters, and seismic responses. On this basis, a deep-learning framework integrating U-Net multi-scale feature extraction and Transformer global modeling is constructed. By embedding rock-physics priors, regularization constraints, and log-derived porosity labels, the method forms a unified physics- and data-driven inversion scheme. Applications to multiple deep wells and 3D post-stack seismic data from the FI7 fault zone demonstrate stable training, rapid convergence, and strong capability in capturing nonlinear porosity–seismic relationships. Compared with conventional inversion, the proposed approach significantly improves prediction accuracy in cavern-dominated intervals, fractured zones, and areas with abrupt porosity changes, while maintaining robust lateral continuity. Inter-well sections and target-layer slices further verify its effectiveness in identifying fracture–dissolution–vug composite reservoirs. The method provides a practical and reliable workflow for porosity prediction in ultra-deep carbonate reservoirs, supporting fine reservoir characterization and sweet-spot evaluation.

Article Metrics

Citations

Article Access Statistics

Article metric data becomes available approximately 24 hours after publication online.