Abstract
Current scheduling strategies for energy storage batteries in agricultural parks generally overlook the issue of battery lifespan degradation, which significantly undermines the system’s economic efficiency and long-term reliability. To address this problem, this paper proposes an optimal scheduling method for integrated energy systems in agricultural parks that takes into account the operational reliability of energy storage batteries. First, a battery capacity degradation model integrating both cycle aging and calendar aging is established, and the reliability of multiple components within the energy storage system is evaluated using Monte Carlo simulation. On this basis, an optimization scheduling model aimed at minimizing the total system operating cost is developed, dynamically balancing economic performance and battery service life. Finally, the proposed method is validated through a practical case study of a facility-based agricultural industrial park. The results demonstrate that, while ensuring stable system operation, the approach effectively extends the service life of energy storage equipment by 8–9 years, reduces the average daily operating cost by 61.94 yuan, and increases the power supply reliability rate to 99.921%.