You are currently viewing a new version of our website. To view the old version click .
Processes
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

24 December 2025

CFD Investigation of Gas–Liquid Two-Phase Flow Dynamics and Pressure Loss at Fracture Junctions for Coalbed Methane Extraction Optimization

,
,
and
1
School of Civil Engineering, Guizhou University of Engineering Science, Bijie 551700, China
2
State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083, China
3
School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083, China
*
Author to whom correspondence should be addressed.
This article belongs to the Topic Green Mining, 3rd Edition

Abstract

The dynamics of gas–liquid two-phase flow at fracture junctions are crucial for optimizing fluid transport in the complex fracture networks of coal seams, particularly for coalbed methane (CBM) extraction and gas hazard management. This study presents a comprehensive numerical investigation of transient air–water flow in a two-dimensional, symmetric, cross-shaped fracture junction. Using the Volume of Fluid (VOF) model coupled with the SST k-ω turbulence model, the simulations accurately capture phase interface evolution, accounting for surface tension and a 50° contact angle. The effects of inlet velocity (0.2 to 5.0 m/s) on flow patterns, pressure distribution, and energy dissipation are systematically analyzed. Three distinct phenomenological flow regimes are identified based on interface morphology and force balance: an inertia-dominated high-speed impinging flow (Re > 4000), a moderate-speed transitional flow characterized by a dynamic balance between inertial and viscous forces (∼1000 < Re < ∼4000), and a viscous-gravity dominated low-speed creeping filling flow (Re < ∼1000). Flow partitioning at the junction—defined as the quantitative split of the total inflow between the main (straight-through) flow path and the deflected (lateral) paths—exhibits a strong dependence on the Reynolds number. The main flow ratio increases dramatically from approximately 30% at Re ∼ 500 to over 95% at Re ∼ 12,000, while the deflected flow ratio correspondingly decreases. Furthermore, the pressure loss (head loss, ΔH) across the junction increases non-linearly, following a quadratic scaling relationship with the inlet velocity (ΔH ∝ V0¹.⁹⁵), indicating that energy dissipation is predominantly governed by inertial effects. These findings provide fundamental, quantitative insights into two-phase flow behavior at fracture intersections and offer data-driven guidance for optimizing injection strategies in CBM engineering.

Article Metrics

Citations

Article Access Statistics

Article metric data becomes available approximately 24 hours after publication online.