Synthesis of CuO/ZnWO4 Heterojunction Structure for H2S Gas Sensor with Ultra-High Response Value at Room Temperature
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
2.2. Characterization
2.3. Fabrication and Measurement of the C-ZWO Gas Sensors
3. Results and Discussion
3.1. Structural and Morphological Analysis
3.1.1. Phase and Microstructure Analysis
3.1.2. Elemental and Valence Analysis
3.1.3. Specific Surface Areas and Porosity Analysis
3.2. H2S-Sensing Properties
3.2.1. Effects of Temperature and Composite Ratios on H2S-Sensing Response Properties
3.2.2. Effects of Temperature and Composite Ratios on Gas-Sensing Response and Recovery Performances
3.2.3. Effects of H2S Concentration on Gas-Sensing Properties at 100 °C
3.2.4. The Stability and Repeatability of the Sensors at 100 °C
3.2.5. The Selectivity of the Typical C-ZWO Sensors
3.3. H2S-Sensing Mechanism
3.3.1. H2S-Sensing Process of the C-ZWO Sensors
3.3.2. Oxygen Reduction Reaction Analysis
3.3.3. Bandgap Analysis and H2S-Sensing Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
RT | Room temperature |
C-ZWO | CuO/ZnWO4 |
MOSs | Metal oxide semiconductors |
Eg | Bandgap |
S | Sensor response value |
Ra | Resistance of the sensor in air |
Rg | Resistance of the sensor in the target gas |
XRD | X-ray diffraction |
SEM | Scanning electron microscopy |
EDS | Energy-dispersive X-ray spectroscopy |
TEM | Transmission electron microscopy |
XPS | X-ray photoelectron spectroscopy |
UPS | Ultraviolet photoelectron spectroscopy |
Uout | Output voltage |
Uh | Heating voltage |
ORR | Oxygen reduction reaction |
OL | Lattice oxygen |
OV | Oxygen vacancies |
OC | Chemisorbed oxygen species |
SBET | Specific surface areas |
On− | Oxygen anion ions (O2−, O2−, and O−) |
e− | Electron |
Ecut-off | Cut-off edge energies |
References
- Shukla, P.; Khodade, V.S.; SharathChandra, M.; Chauhan, P.; Mishra, S.; Siddaramappa, S.; Pradeep, B.E.; Singh, A.; Chakrapani, H. “On demand” redox buffering by H2S contributes to antibiotic resistance revealed by a bacteria-specific H2S donor. Chem. Sci. 2017, 8, 4967–4972. [Google Scholar] [CrossRef]
- Adeniyi, K.I.; Wan, H.H.; Deering, C.E.; Bernard, F.; Chisholm, M.A.; Marriott, R.A. High-pressure hydrogen sulfide experiments: How did our safety measures and hazard control work during a failure event? Safety 2020, 6, 15. [Google Scholar] [CrossRef]
- Haouzi, P.; Sonobe, T.; Judenherc-Haouzi, A. Developing effective countermeasures against acute hydrogen sulfide intoxication: Challenges and limitations. Ann. N. Y. Acad. Sci. 2016, 1374, 29–40. [Google Scholar] [CrossRef]
- Elwood, M. The scientific basis for occupational exposure limits for hydrogen sulphide-A critical commentary. Int. J. Environ. Res. Public Health 2021, 18, 2866. [Google Scholar] [CrossRef]
- Hosseini-Shokouh, S.H.; Zhou, J.; Berger, E.; Lv, Z.P.; Hong, X.; Virtanen, V.; Kordas, K.; Komsa, H.P. Highly selective H2S gas snsor based on Ti3C2Tx MXene-organic composites. ACS Appl. Mater. Interfaces 2023, 15, 7063–7073. [Google Scholar] [CrossRef]
- El Brahmi, A.; Abderafi, S. Hydrogen sulfide removal from wastewater using hydrogen peroxide in-situ treatment: Case study of moroccan urban sewers. Mater. Today. Proc. 2021, 45, 7424–7427. [Google Scholar] [CrossRef]
- Kim, K.R.; Oh, J.; Hong, J.I. Highly selective electrochemiluminescence chemosensor for sulfide enabled by hierarchical reactivity. Anal. Chem. 2022, 94, 5091–5098. [Google Scholar] [CrossRef]
- Wu, M.Y.; Wang, S.W.; Hai, W.X.; Lu, X.M.; Li, P.Y. Development of a H2S-responsive NIR fluorescent probe for H2S detection and H2S releasing monitoring from prodrug. J. Fluoresc. 2023, 33, 1853–1860. [Google Scholar] [CrossRef]
- Engel, L.; Benito-Altamirano, I.; Tarantik, K.R.; Pannek, C.; Dold, M.; Prades, J.D.; Wöllenstein, J. Printed sensor labels for colorimetric detection of ammonia, formaldehyde and hydrogen sulfide from the ambient air. Sensors Actuators B Chem. 2021, 330, 129281. [Google Scholar] [CrossRef]
- Li, S.H.; Xie, L.L.; He, M.; Hu, X.B.; Luo, G.F.; Chen, C.; Zhu, Z.G. Metal-organic frameworks-derived bamboo-like CuO/In2O3 heterostructure for high-performance H2S gas sensor with low operating temperature. Sensors Actuators B Chem. 2020, 310, 127828. [Google Scholar] [CrossRef]
- Du, L.Y.; Zhang, H.P.; Zhu, M.M.; Zhang, M.Z. Construction of flower-like ZnSnO3/Zn2SnO4 hybrids for enhanced phenylamine sensing performance. Inorg. Chem. Front. 2019, 6, 2311–2317. [Google Scholar] [CrossRef]
- Yin, Y.Y.; Shen, Y.B.; Zhou, P.F.; Lu, R.; Li, A.; Zhao, S.K.; Liu, W.G.; Wei, D.Z.; Wei, K.F. Fabrication, characterization and n-propanol sensing properties of perovskite-type ZnSnO3 nanospheres based gas sensor. Appl. Surf. Sci. 2020, 509, 145335. [Google Scholar] [CrossRef]
- Guo, J.Y.; Zhang, D.Z.; Li, T.T.; Zhang, J.H.; Yu, L.D. Green light-driven acetone gas sensor based on electrospinned CdS nanospheres/Co3O4 nanofibers hybrid for the detection of exhaled diabetes biomarker. J. Colloid. Interface Sci. 2020, 606, 261–271. [Google Scholar] [CrossRef]
- Ochoa-Munoz, Y.H.; Mejia de Gutierrez, R.; Rodriguez-Paez, J.E. Metal oxide gas sensors to study acetone detection considering their potential in the diagnosis of diabetes: A review. Molecules 2023, 28, 1150. [Google Scholar] [CrossRef]
- Uma, S.; Shobana, M.K. Metal oxide semiconductor gas sensors in clinical diagnosis and environmental monitoring. Sensors Actuators B-Phys. 2023, 349, 114044. [Google Scholar] [CrossRef]
- Lee, K.; Cho, I.; Kang, M.; Jeong, J.; Choi, M.; Woo, K.Y.; Yoon, K.J.; Cho, Y.H.; Park, I. Ultra-low-power E-nose system based on multi-micro-LED-integrated, nanostructured gas sensors and deep learning. ACS Nano 2023, 17, 539–551. [Google Scholar] [CrossRef]
- Yuan, C.Y.; Ma, J.H.; Zou, Y.D.; Li, G.S.; Xu, H.L.; Sysoev, V.V.; Cheng, X.W.; Deng, Y.H. Modeling interfacial interaction between gas molecules and semiconductor metal oxides: A new view angle on gas sensing. Adv. Sci. 2002, 9, 2203594. [Google Scholar] [CrossRef]
- Zhang, D.Z.; Yang, Z.M.; Yu, S.J.; Mi, Q.; Pan, Q.N. Diversiform metal oxide-based hybrid nanostructures for gas sensing with versatile prospects. Coord. Chem. Rev. 2000, 413, 213272. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, W.J.; Wang, X.Y.; Wang, Q.; Huang, B.Y.; Li, Y.; Hua, X.H.; Liu, G.; Li, B.S.; Zhou, J.Y.; et al. Binder-free CuO nanoneedle arrays based tube-type sensor for H2S gas sensing. Sensors Actuators B Chem. 2021, 326, 128993. [Google Scholar] [CrossRef]
- Li, D.J.; Tang, Y.L.; Ao, D.Y.; Xiang, X.; Wang, S.Y.; Zu, X.T. Ultra-highly sensitive and selective H2S gas sensor based on CuO with sub-ppb detection limit. Int. J. Hydrog. Energy 2019, 44, 3985–3992. [Google Scholar] [CrossRef]
- Jung, D.; Hwang, S.; Kim, H.J.; Han, J.H.; Lee, H.N. Characterization of porous CuO films for H2S gas sensors. Materials 2022, 15, 7270. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, S.; Wang, M.Y.; Liu, S.W.; Liu, G.W.; Meng, X.F.; Xu, Z.W.; Wang, M.S.; Qiao, G.J. Electrospun Cu-doped In2O3 hollow nanofibers with enhanced H2S gas sensing performance. J. Adv. Ceram. 2022, 11, 427–442. [Google Scholar] [CrossRef]
- Lv, L.X.; Zhang, X.L.; Wang, J.R.; Yuan, L.H.; Fan, J.J. Construction of Li0.5La0.5TiO3 (LLTO)-In2O3 n-n step scheme heterostructure nanorods for drastically heightening the sensing behavior in H2S gas. Mater. Chem. Phys. 2023, 295, 127085. [Google Scholar] [CrossRef]
- Yin, Y.Y.; Li, F.; Zhang, N.; Ruan, S.P.; Zhang, H.F.; Chen, Y. Improved gas sensing properties of silver-functionalized ZnSnO3 hollow nanocubes. Inorg. Chem. Front. 2018, 5, 2123–2131. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, S.Y.; Xiao, D.K.; Wang, S.J.; Zhang, T.; Yang, X.; Heng, S.Q.; Sun, M.J. CuO/WO3 hollow microsphere P-N heterojunction sensor for continuous cycle detection of H2S gas. Sensors Actuators B Chem. 2023, 374, 132823. [Google Scholar] [CrossRef]
- Feng, W.C.; Li, J.; Lei, Z.M.; Liu, Y.; Shen, Y.Q.; Chen, Z.X. The improved photocatalytic activity of CaWO4 nanorods by loading Bi on the surface. J. Mater. Sci. Mater. Electron. 2019, 30, 16049–16055. [Google Scholar] [CrossRef]
- Tasyurek, L.B.; Kilinc, N. Hydrogen detection and electrical properties of titanium silicate Schottky diode fabricated by RF-magnetron sputtering method. Int. J. Hydrogen Energy 2025, 144, 738–745. [Google Scholar] [CrossRef]
- He, G.P.; Mi, Y.M.; Wang, D.; Zhang, B.; Zheng, D.H.; Bai, Y.X.; Shi, Z.M. Synthesis methods and applications of semiconductor material ZnWO4 with multifunctions and multiconstructions. Energy Technol. 2021, 9, 2100733. [Google Scholar] [CrossRef]
- Wang, Q.Z.; Shi, Y.B.; Niu, T.J.; He, J.J.; She, H.D.; Su, B.T. Preparing ZnWO4–CdS composite with excellent visible light photocatalytic activity under mild conditions. J. Sol. Gel Sci. Technol. 2017, 83, 555–566. [Google Scholar] [CrossRef]
- Yin, M.L.; Wang, Y.T.; Liu, S.Z. Synthesis of Fe2O3-ZnWO4 nanocomposites and their enhanced acetone sensing performance. J. Alloys Compd. 2020, 831, 154713. [Google Scholar] [CrossRef]
- Tian, L.Y.; Rui, Y.L.; Sun, K.L.; Cui, W.Q.; An, W.J. Surface decoration of ZnWO4 nanorods with Cu2O nanoparticles to build heterostructure with enhanced photocatalysis. Nanomaterials 2018, 8, 33. [Google Scholar] [CrossRef]
- Fu, S.R.; Hu, H.Y.; Feng, C.C.; Zhang, Y.J.; Bi, Y.P. Epitaxial growth of ZnWO4 hole-storage nanolayers on ZnO photoanodes for efficient solar water splitting. J. Mater. Chem. A 2019, 7, 2513–2517. [Google Scholar] [CrossRef]
- Yesuraj, J.; Suthanthiraraj, S.A. Bio-molecule templated hydrothermal synthesis of ZnWO4 nanomaterial for high-performance supercapacitor electrode application. J. Mol. Struct. 2019, 1181, 131–141. [Google Scholar] [CrossRef]
- Brijesh, K.; Nagaraja, H.S. ZnWO4/r-GO nanocomposite as high capacity anode for lithium-ion battery. Ionics 2020, 26, 2813–2823. [Google Scholar] [CrossRef]
- Sun, D.; Wang, Q.L.; Wang, W.; Chen, Y.; Ruan, S.P. Hollow ZnWO4/In2O3 Nanotubes for ultrasensitive and rapid trace detection of triethylamine. ACS Appl. Nano Mater. 2023, 6, 10581–10589. [Google Scholar] [CrossRef]
- Cai, L.X.; Chen, L.; Sun, X.Q.; Geng, J.; Liu, C.C.; Wang, Y.; Guo, Z. Ultra-sensitive triethylamine gas sensors based on polyoxometalate-assisted synthesis of ZnWO4/ZnO hetero-structured nanofibers. Sensors Actuators B Chem. 2022, 370, 132422. [Google Scholar] [CrossRef]
- Zang, D.M.; Wei, X.Y.; Liu, Q.Y.; Li, Y.; You, R. In-situ growth of ZnO@ZnWO4 heterojunction with flower-like structure by chemical vapor deposition for H2S gas sensor. Appl. Surf. Sci. 2025, 679, 161149. [Google Scholar] [CrossRef]
- Hu, P.F.; Chen, J.T.; Ma, Q.R.; Yin, J.Q.; Zhou, D.; Kou, C.H.; Xu, J.; Xu, J.Q. One-step thermal compensation decomposition synthesis of ZnWO4/WO3 composite with synergy of multiple structural effects for efficient trace H2S detection. Sensors Actuators B Chem. 2023, 381, 133388. [Google Scholar] [CrossRef]
- Zheng, N.C.; Li, X.F.; Yan, S.; Wang, Q.; Qiao, R.; Hu, J.H.; Fan, J.J.; Cao, G.Q.; Shao, G.S. Nano-porous hollow Li0.5La0.5TiO3 spheres and electronic structure modulation for ultra-fast H2S detection. J. Mater. Chem. A 2020, 8, 2376. [Google Scholar] [CrossRef]
- de Araújo, L.N.M.; Sousa, B.S.; de Araújo, A.G.F.; Monção, R.M.; Feitor, M.C.; Sczancoski, J.C.; Almeida, M.A.P.; Santos, F.E.P.; de Sousa, R.R.M.; Cavalcante, L.S. ZnWO4 nanocrystals prepared by thermal plasma processing. J. Mater. Sci. 2023, 58, 6944–6971. [Google Scholar] [CrossRef]
- Pereira, P.F.S.; Gouveia, A.F.; Assis, M.; de Oliveira, R.C.; Pinatti, I.M.; Penha, M.; Gonçalves, R.F.; Gracia, L.; Andrés, J.; Longo, E. ZnWO4 nanocrystals: Synthesis, morphology, photoluminescence and photocatalytic properties. Phys. Chem. Chem. Phys. 2018, 20, 1923–1937. [Google Scholar] [CrossRef]
- Li, Z.J.; Yan, S.N.; Zhang, S.C.; Wang, J.Q.; Shen, W.Z.; Wang, Z.G.; Fu, Y.Q. Ultra-sensitive UV and H2S dual functional sensors based on porous In2O3 nanoparticles operated at room temperature. J. Alloys Compd. 2019, 770, 721–731. [Google Scholar] [CrossRef]
- Chaloeipote, G.; Prathumwan, R.; Subannajui, K.; Wisitsoraat, A.; Wongchoosuk, C. 3D printed CuO semiconducting gas sensor for ammonia detection at room temperature. Mater. Sci. Semicon. Proc. 2021, 123, 105546. [Google Scholar] [CrossRef]
- Zhang, C.; Huan, Y.C.; Sun, D.J.; Lu, Y.L. Synthesis and NO2 sensing performances of CuO nanoparticles loaded In2O3 hollow spheres. J. Alloys Compd. 2020, 842, 155857. [Google Scholar] [CrossRef]
- Hu, J.; Sun, Y.J.; Xue, Y.; Zhang, M.; Li, P.W.; Lian, K.; Zhuiykov, S.; Zhang, W.D.; Chen, Y. Highly sensitive and ultra-fast gas sensor based on CeO2-loaded In2O3 hollow spheres for ppb-level hydrogen detection. Sensors Actuators B Chem. 2018, 257, 124–135. [Google Scholar] [CrossRef]
- Somdee, A.; Wannapop, S. Enhanced photocatalytic behavior of ZnO nanorods decorated with a Au, ZnWO4, and Au/ZnWO4 composite: Synthesis and characterization. Colloid Interface Sci. Commun. 2022, 47, 100591. [Google Scholar] [CrossRef]
- Bosigo, R.; Lepodise, L.M.; Kuvarega, A.; Muiva, C. Hydrothermal synthesis of CuO and CeO2/CuO nanostructures: Spectroscopic and temperature dependent electrical properties. J. Mater. Sci. Mater. El. 2021, 32, 7136–7152. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.H.; Xie, L.L.; Li, X.; Lin, D.H.; Zhu, Z.G. Low-temperature and highly sensitivity H2S gas sensor based on ZnO/CuO composite derived from bimetal metal-organic frameworks. Ceram. Int. 2020, 46, 15858–15866. [Google Scholar] [CrossRef]
- Jin, X.H.; Li, Y.W.; Zhang, B.; Xu, X.T.; Sun, G.; Wang, Y. Temperature-dependent dual selectivity of hierarchical porous In2O3 nanospheres for sensing ethanol and TEA. Sensors Actuators B Chem. 2021, 330, 129271. [Google Scholar] [CrossRef]
- Wang, W.X.; Zhen, Y.H.; Zhang, J.Y.; Li, Y.D.; Zhong, H.; Jia, Z.L.; Xiong, Y.; Xue, Q.Z.; Yan, Y.G.; Alharbi, N.S.; et al. SnO2 nanoparticles-modified 3D-multilayer MoS2 nanosheets for ammonia gas sensing at room temperature. Sensors Actuators B Chem. 2020, 321, 128471. [Google Scholar] [CrossRef]
- Dao, D.V.; Nguyen, T.T.D.; Kim, D.S.; Yoon, J.W.; Yu, Y.T.; Lee, I.H. Core and dopant effects toward hydrogen gas sensing activity using Pd@N-CeO2 core–shell nanoflatforms. J. Ind. Eng. Chem. 2021, 95, 325–332. [Google Scholar] [CrossRef]
- Hussain, S.; Amu-Darko, J.N.O.; Wang, M.S.; Alothman, A.A.; Ouladsmane, M.; Aldossari, S.A.; Khan, M.S.; Qiao, G.J.; Liu, G.W. CuO-decorated MOF derived ZnO polyhedral nanostructures for exceptional H2S gas detection. Chemosphere 2023, 317, 137827. [Google Scholar] [CrossRef]
- Zhao, C.H.; Zhang, G.Z.; Han, W.H.; Fu, J.C.; He, Y.M.; Zhang, Z.X.; Xie, E.Q. Electrospun In2O3/α-Fe2O3 heterostructure nanotubes for highly sensitive gas sensor applications. CrystEngComm 2013, 15, 6491. [Google Scholar] [CrossRef]
- Yin, X.T.; Zhou, W.D.; Li, J.; Wang, Q.; Wu, F.Y.; Dastan, D.; Wang, D.; Garmestani, H.; Wang, X.M.; Ţălu, Ş. A highly sensitivity and selectivity Pt-SnO2 nanoparticles for sensing applications at extremely low level hydrogen gas detection. J. Alloys Compd. 2019, 805, 229–236. [Google Scholar] [CrossRef]
- Li, Z.J.; Wang, N.N.; Lin, Z.J.; Wang, J.Q.; Liu, W.; Sun, K.; Fu, Y.Q.; Wang, Z.G. Room-temperature high-performance H2S sensor based on porous CuO nanosheets prepared by hydrothermal method. ACS Appl. Mater. Interfaces 2016, 8, 20962–20968. [Google Scholar] [CrossRef]
- Kumar, A.; Shringi, A.K.; Kumar, M. RF sputtered CuO anchored SnO2 for H2S gas sensor. Sensors Actuators B Chem. 2022, 370, 132417. [Google Scholar] [CrossRef]
- Yin, X.T.; Li, J.; Dastan, D.; Zhou, W.D.; Garmestani, H.; Alamgir, F.M. Ultra-high selectivity of H2 over CO with a p-n nanojunction based gas sensors and its mechanism. Sensors Actuators B Chem. 2020, 319, 28330. [Google Scholar] [CrossRef]
- Zhang, J.L.; Ma, S.Y.; Wang, B.J.; Pei, S.T. Hydrothermal synthesis of SnO2-CuO composite nanoparticles as a fast-response ethanol gas sensor. J. Alloys Compd. 2021, 886, 161299. [Google Scholar] [CrossRef]
- Végh, J. The Shirley background revised. J. Electron Spectrosc. 2006, 151, 159–164. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, Y.; Lv, L.; Fan, J. Synthesis of CuO/ZnWO4 Heterojunction Structure for H2S Gas Sensor with Ultra-High Response Value at Room Temperature. Processes 2025, 13, 2727. https://doi.org/10.3390/pr13092727
Zhai Y, Lv L, Fan J. Synthesis of CuO/ZnWO4 Heterojunction Structure for H2S Gas Sensor with Ultra-High Response Value at Room Temperature. Processes. 2025; 13(9):2727. https://doi.org/10.3390/pr13092727
Chicago/Turabian StyleZhai, Yuhang, Lianxu Lv, and Jiajie Fan. 2025. "Synthesis of CuO/ZnWO4 Heterojunction Structure for H2S Gas Sensor with Ultra-High Response Value at Room Temperature" Processes 13, no. 9: 2727. https://doi.org/10.3390/pr13092727
APA StyleZhai, Y., Lv, L., & Fan, J. (2025). Synthesis of CuO/ZnWO4 Heterojunction Structure for H2S Gas Sensor with Ultra-High Response Value at Room Temperature. Processes, 13(9), 2727. https://doi.org/10.3390/pr13092727