Research Progress of Electrocatalysts for N2 Reduction to NH3 Under Ambient Conditions
Abstract
1. Introduction
2. Development of High-Efficiency NRR Catalysts
2.1. Metal Catalysts
2.1.1. Precious Metal Catalysts
2.1.2. Non-Precious Metal Catalysts
2.2. Non-Metallic Catalysts
3. In-Depth Discussion of the NRR
3.1. Reaction Mechanisms of the NRR
3.2. Methodologies for Reliable NH3 Detection
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
NRR | Electrocatalytic nitrogen reduction reaction |
HER | Hydrogen evolution reaction |
CO2RR | CO2 reduction reaction |
ORR | Oxygen reduction reaction |
NORR | Electrocatalytic NO reduction reaction |
HF | Hydrofluoric acid |
FE | Faradaic efficiency |
DFT | Density functional theory |
References
- Wang, L.; Chen, W.; Zhang, D.; Du, Y.; Amal, R.; Qiao, S.; Wu, J.; Yin, Z. Surface strategies for catalytic CO2 reduction: From two-dimensional materials to nanoclusters to single atoms. Chem. Soc. Rev. 2019, 48, 5310–5349. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, W.; Li, X.; Yu, J.; Zhou, W. Electrocatalytic reduction of nitrogenous pollutants to ammonia. Chem. Eng. J. 2023, 469, 143889. [Google Scholar] [CrossRef]
- Zhu, X.; Mou, S.; Peng, Q.; Liu, Q.; Luo, Y.; Chen, G.; Gao, S.; Sun, X. Aqueous electrocatalytic N2 reduction for ambient NH3 synthesis: Recent advances in catalyst development and performance improvement. J. Mater. Chem. A 2020, 8, 1545–1556. [Google Scholar] [CrossRef]
- Spatolisano, E.; Pellegrini, L.A.; de Angelis, A.R.; Cattaneo, S.; Roccaro, E. Ammonia as a Carbon-Free Energy Carrier: NH3 Cracking to H2. Ind. Eng. Chem. Res. 2023, 62, 10813–10827. [Google Scholar] [CrossRef]
- Schlögl, R. Catalytic synthesis of ammonia-a “never-ending story”? Angew. Chem. Int. Ed. 2003, 42, 2004–2008. [Google Scholar] [CrossRef]
- Kong, X.; Peng, H.-Q.; Bu, S.; Gao, Q.; Jiao, T.; Cheng, J.; Liu, B.; Hong, G.; Lee, C.-S.; Zhang, W. Defect engineering of nanostructured electrocatalysts for enhancing nitrogen reduction. J. Mater. Chem. A 2020, 8, 7457–7473. [Google Scholar] [CrossRef]
- Wang, Q.; Zheng, G.; Hao, S.; Liu, X.; Zheng, J.; Wang, Y.; Su, Z.; Xu, N.; He, Y.; Lei, L.; et al. Au1Co1 alloy supported on graphene oxide with enhanced performance for ambient electrolysis of nitrogen to ammonia. ACS Sustain. Chem. Eng. 2019, 8, 44–49. [Google Scholar] [CrossRef]
- Cao, R.; Xia, J.; Wu, Q. Tuning transition metal atoms embedded in N6 cavity structure toward efficient electrocatalytic ammonia synthesis. Int. J. Hydrogen Energy 2024, 54, 1047–1055. [Google Scholar] [CrossRef]
- Liu, L.; Yang, L.; Zhang, H.; Tuerdi, W.; Shang, Z.; Zhang, J.; Xiao, Y. Screening Strategies for Diatom Metal-Doped β-Borophene Nanosheet Catalysts for Electrochemical Synthesis of Ammonia Using Density Functional Theory. Energy Fuels 2023, 37, 9682–9691. [Google Scholar] [CrossRef]
- Lv, X.; Liu, J.; Kou, L.; Ng, K.W.; Wang, S.; Frauenheim, T.; Pan, H. Three-Dimensional Dual-Site Catalysts for Industrial Ammonia Synthesis at Dramatically Decreased Temperatures and Pressures. ACS Catal. 2023, 13, 13561–13568. [Google Scholar] [CrossRef]
- Liang, W.P.; Zhang, X.M.; Bai, P.W.; Zhang, Z.; Chen, J.H.; Liu, W.; Sun, Z.H.; Feng, Y.; Yang, G.; Tong, H.M.; et al. Cascade N2 Reduction Process with DBD Plasma Oxidation and Electrocatalytic Reduction for Continuous Ammonia Synthesis. Environ. Sci. Technol. 2023, 57, 14558–14568. [Google Scholar] [CrossRef]
- Nawaz, M.A.; Blay-Roger, R.; Saif, M.; Meng, F.; González-Arias, J.; Miao, B.; Bobadilla, L.F.; Ramirez-Reina, T.; Odriozola, J.A. Enroute to the carbon-neutrality goals via the targeted development of ammonia as a potential nitrogen-based energy carrier. ACS Catal. 2023, 13, 14415–14453. [Google Scholar] [CrossRef]
- Yu, S.; Xiang, T.; Alharbi, N.S.; Al-Aidaroos, B.A.; Chen, C. Recent development of catalytic strategies for sustainable ammonia production. Chin. J. Chem. Eng. 2023, 62, 65–113. [Google Scholar] [CrossRef]
- Han, X.-Q.; Lang, Z.-L.; Zhang, F.-Y.; Xu, H.-L.; Su, Z.-M. Computational evaluation of FeMo heteroatom coeffect induced high electroreduction activity of N2-to-NH3. Appl. Surf. Sci. 2022, 579, 152214. [Google Scholar] [CrossRef]
- Cheng, Q. Perspectives in biological nitrogen fixation research. J. Integr. Plant Biol. 2008, 50, 786–798. [Google Scholar] [CrossRef] [PubMed]
- Janssen, R.A.; Nelson, J. Factors limiting device efficiency in organic photovoltaics. Adv. Mater. 2013, 25, 1847–1858. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Lyu, Y.; Qiao, M.; Wang, R.; Zhou, Y.; Li, H.; Chen, C.; Li, Y.; Zhou, H.; Jiang, S.P.; et al. Photoelectrochemical synthesis of ammonia on the aerophilic-hydrophilic heterostructure with 37.8% efficiency. Chem 2019, 5, 617–633. [Google Scholar] [CrossRef]
- Cao, N.; Zheng, G. Aqueous electrocatalytic N2 reduction under ambient conditions. Nano Res. 2018, 11, 2992–3008. [Google Scholar] [CrossRef]
- Cheng, H.; Cui, P.; Wang, F.; Ding, L.; Wang, H. High efficiency electrochemical nitrogen fixation achieved with a lower pressure reaction system by changing the chemical equilibrium. Angew. Chem. 2019, 131, 15687–15693. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Chen, Z.; Zhang, X.; Tsiakaras, P.; Shen, P.K. Electrocatalytic reduction of nitrogen on FeAg/Si for ammonia synthesis: A simple strategy for continuous regulation of faradaic efficiency by controlling H+ ions transfer rate. Appl. Catal. B Environ. 2021, 283, 119606. [Google Scholar] [CrossRef]
- Su, Z.; Fuxiang, Z. Recent progress on electrocatalytic synthesis of ammonia under ambient conditions. Acta Chim. Sin. 2021, 79, 146. [Google Scholar]
- Cai, W.; Han, Y.; Pan, Y.; Zhang, X.; Xu, J.; Zhang, Y.; Sun, Y.; Li, S.; Lai, J.; Wang, L. The twinned Pd nanocatalyst exhibits sustainable NRR electrocatalytic performance by promoting the desorption of NH3. J. Mater. Chem. A 2021, 9, 13483–13489. [Google Scholar] [CrossRef]
- Choi, J.; Liu, C.; Sung, Y.-E.; Park, H.S.; Yu, T. Au-Added CuS Hollow Spheres to Regulate the Strength and Active Area of N2 Adsorption Sites for Electrochemical NH3 Production. ACS Appl. Mater. Interfaces 2024, 17, 3116–3126. [Google Scholar] [CrossRef]
- Li, X.; Shen, P.; Luo, Y.; Li, Y.; Guo, Y.; Zhang, H.; Chu, K. PdFe single-atom alloy metallene for N2 electroreduction. Angew. Chem. 2022, 134, e202205923. [Google Scholar] [CrossRef]
- Hao, R.; Sun, W.; Liu, Q.; Liu, X.; Chen, J.; Lv, X.; Li, W.; Liu, Y.; Shen, Z. Efficient Electrochemical Nitrogen Fixation over Isolated Pt Sites. Small 2020, 16, e2000015. [Google Scholar] [CrossRef]
- Tao, H.; Choi, C.; Ding, L.-X.; Jiang, Z.; Han, Z.; Jia, M.; Fan, Q.; Gao, Y.; Wang, H.; Robertson, A.W.; et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 2019, 5, 204–214. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, K.; Liang, Z.; Zou, R.; Xu, Q. Electrochemical nitrogen fixation and utilization: Theories, advanced catalyst materials and system design. Chem. Soc. Rev. 2019, 48, 5658–5716. [Google Scholar] [CrossRef]
- Agour, A.M.; Elkersh, E.; Khedr, G.E.; El-Aqapa, H.G.; Allam, N.K. Fe-Single-Atom Catalysts on Nitrogen-Doped Carbon Nanosheets for Electrochemical Conversion of Nitrogen to Ammonia. ACS Appl. Nano Mater. 2023, 6, 15980–15989. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, L.; Fang, Y.; Zhu, X.; Dong, S. Achieving ultrahigh electrocatalytic NH3 yield rate on Fe-doped Bi2WO6 electrocatalyst. Nano Res. 2021, 14, 2711–2716. [Google Scholar] [CrossRef]
- Wang, S.; Qian, C.; Zhou, S. Theory-Guided Construction of the Unsaturated V-N2 Site with Carbon Defects for Highly Selective Electrocatalytic Nitrogen Reduction. ACS Appl. Mater. Interfaces 2023, 15, 29244–29251. [Google Scholar] [CrossRef]
- Ye, W.; Yang, Y.; Arif, M.; Yang, S.; Fang, X.; Mushtaq, M.A.; Chen, X.; Yan, D. Fe, Mo–N/C Hollow Porous Nitrogen-Doped Carbon Nanorods as an Effective Electrocatalyst for N2 Reduction Reaction. ACS Sustain. Chem. Eng. 2020, 8, 15946–15952. [Google Scholar] [CrossRef]
- Seong, Y.; Kweon, S.; Shim, J.H. Investigation of a Stable and Selective Nitrogen Reduction Reaction Using Encapsulated FeMoS2 Directly Grown on Carbon Cloth. Energy Fuels 2023, 37, 15967–15975. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, Y.; Cheng, X.; Zhang, H. Single Vanadium Atom Achored on Sulfur-Doped Graphene as an Efficient Electrocatalyst toward the Nitrogen Reduction Reaction: A Computational View. J. Phys. Chem. C 2023, 127, 24574–24582. [Google Scholar] [CrossRef]
- Lu, X.; Li, J.; Liu, F.; Wang, Y.; Tang, X.; Li, H.; Peng, Y.; Xu, C. Powerful Orbital Hybridization of Copper-Silver Bimetallic Nanosheets for Electrocatalytic Nitrogen Reduction to Ammonia. Inorg. Chem. 2023, 62, 12148–12156. [Google Scholar] [CrossRef]
- Xiao, Y.H.; Ma, Z.W.; Wu, T.R.; Wu, X.W.; Chen, L.K.; Lin, J.D.; Wu, D.Y. Theoretical revealing the nitrogen reduction reaction on FeMo dual-atom catalysts and the role of sulfur modification. Mol. Catal. 2025, 585, 115323. [Google Scholar] [CrossRef]
- Xiong, Z.Y.; Hong, W.Q.; Zeng, W.; Ao, Z.M.; Xu, Y. Diatomic nitrogen-fixation electrocatalysts supported on graphitic carbon nitride achieve significantly low over potentials. Vacuum 2025, 232, 113888. [Google Scholar] [CrossRef]
- Pu, Z.; Liu, T.; Amiinu, I.S.; Cheng, R.; Wang, P.; Zhang, C.; Ji, P.; Hu, W.; Liu, J.; Mu, S. Transition-metal phosphides: Activity origin, energy-related electrocatalysis applications, and synthetic strategies. Adv. Funct. Mater. 2020, 30, 2004009. [Google Scholar] [CrossRef]
- Xu, T.; Ma, B.; Liang, J.; Yue, L.; Liu, Q.; Li, T.; Zhao, H.; Luo, Y.; Lu, S.; Sun, X. Recent progress in metal-free electrocatalysts toward ambient N2 reduction reaction. Acta Phys. Chim. Sin. 2021, 37, 2009043. [Google Scholar] [CrossRef]
- Wan, Y.; Xu, J.; Lv, R. Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Mater. Today 2019, 27, 69–90. [Google Scholar] [CrossRef]
- Sun, Y.; Lin, W.; Guo, T.; Wang, J.; Li, B.; Fu, J. Highly Defective Boron Carbon Nitride Nanosheets: A Robust Electro-Catalyst for Efficient Nitrogen Fixation. Ind. Eng. Chem. Res. 2023, 62, 10391–10398. [Google Scholar] [CrossRef]
- Yu, X.; Han, P.; Wei, Z.; Huang, L.; Gu, Z.; Peng, S.; Ma, J.; Zheng, G. Boron-Doped Graphene for Electrocatalytic N2 Reduction. Joule 2018, 2, 1610–1622. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Alli, S.J.; Barman, N.; Thapa, R.; Dey, R.S. Ternary Heteroatom-Doped Carbon As a High-Performance Metal-Free Catalyst for Electrochemical Ammonia Synthesis. ACS Appl. Mater. Interfaces 2025, 17, 26661–26670. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Yang, W.; Gu, Y.; Liao, T.; Sun, Z. Metal-nitrogen-doped carbon materials as highly efficient catalysts: Progress and rational design. Adv. Sci. 2020, 7, 2001069. [Google Scholar] [CrossRef]
- Cui, X.; Tang, C.; Zhang, Q. A Review of Electrocatalytic Reduction of Dinitrogen to Ammonia under Ambient Conditions. Adv. Energy Mater. 2018, 8, 1800369. [Google Scholar] [CrossRef]
Catalyst | Electrolyte | Reference Electrode | Potential (V vs. RHE) | Ammonia Yield | Faradaic Efficiency (%) | Ref. |
---|---|---|---|---|---|---|
Pt SAs/WO3 | 0.1 M K2SO4 | - | −0.2 | 342.4 μg h−1 mg−1 | 31.1 | [25] |
Ru@ZrO2/NC | 0.1 M HCl | Ag/AgCl | −0.21 | 3665 μg·h−1·mg−1 | 21 | [26] |
FeMoS2/CC | 1.0 M KOH | Hg/HgO | −0.3 | 2.74 μg h−1 mg−1 | 0.15 | [32] |
Cu3Ag NSs | 0.1 M Na2SO4 | Ag/AgCl | −0.2 | 31.3 μg h−1 mg−1 | 31.3 | [34] |
BCN 1.0B | 0.1 M KOH | - | −0.49 | 5.21 μg h−1 mg−1 | 27.9 (−0.29 V vs. RHE) | [40] |
BG-1 | 0.05 M H2SO4 | Ag/AgCl | −0.5 | 55.1 μg h−1 mg−1 | 10.8 | [41] |
FBDG | 0.1 M Na2SO4 | - | −0.5 | 12.3 μg h−1 mg−1 | 38.1 | [42] |
B/O-CNNTs | 0.05 M H2SO4 +0.1 M Na2SO4 | - | −1.1 | 16.7 μg h−1 mg−1 | 35 | [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, H.; Nie, S.; Wang, X.; Wu, S.; Liu, X.; Feng, J.; Zhang, Y.; Zhang, X. Research Progress of Electrocatalysts for N2 Reduction to NH3 Under Ambient Conditions. Processes 2025, 13, 3354. https://doi.org/10.3390/pr13103354
Yao H, Nie S, Wang X, Wu S, Liu X, Feng J, Zhang Y, Zhang X. Research Progress of Electrocatalysts for N2 Reduction to NH3 Under Ambient Conditions. Processes. 2025; 13(10):3354. https://doi.org/10.3390/pr13103354
Chicago/Turabian StyleYao, Huichao, Suofu Nie, Xiulin Wang, Sida Wu, Xinming Liu, Junli Feng, Yuqing Zhang, and Xiuxia Zhang. 2025. "Research Progress of Electrocatalysts for N2 Reduction to NH3 Under Ambient Conditions" Processes 13, no. 10: 3354. https://doi.org/10.3390/pr13103354
APA StyleYao, H., Nie, S., Wang, X., Wu, S., Liu, X., Feng, J., Zhang, Y., & Zhang, X. (2025). Research Progress of Electrocatalysts for N2 Reduction to NH3 Under Ambient Conditions. Processes, 13(10), 3354. https://doi.org/10.3390/pr13103354