Efficient Chitin Extraction from Shrimp Exoskeletons through Single-Step Fermentation by Pseudomonas aeruginosa QF50 and Serratia sp. QCS23
Abstract
:1. Introduction
2. Materials and Methods
2.1. Shrimp Exoskeleton Preparation
2.2. Preparation of Bacterial Inoculum
2.3. Fermentation of the Shrimp Exoskeleton
2.4. Extraction and Purification of Chitin
2.5. Characterization of Obtained Chitin
2.5.1. Measurement of Chitin Color
2.5.2. Fourier Transform Infrared Spectroscopy (FTIR)
2.5.3. X-ray Diffraction (XRD) Analysis
2.6. Statistic Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pighinelli, L. Methods of Chitin Production a Short Review. Am. J. Biomed. Sci. Res. 2019, 3, 307–314. [Google Scholar] [CrossRef]
- Kaya, M.; Mujtaba, M.; Ehrlich, H.; Salaberria, A.M.; Baran, T.; Amemiya, C.T.; Galli, R.; Akyuz, L.; Sargin, I.; Labidi, J. On chemistry of γ-chitin. Carbohydr. Polym. 2017, 176, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Santos, V.P.; Marques, N.S.S.; Maia, P.C.; De-Lima, M.A.B.; Franco, L.O.; De Campos-Takaki, G.M. Seafood waste as attractive source of chitin and chitosan production and their applications. Int. J. Mol. Sci. 2020, 21, 4290. [Google Scholar] [CrossRef] [PubMed]
- Osuna-Lizárraga, A.; Escobedo-Lozano, A.; Mendez, E.; Vásquez-Olivares, A.; Martinez-Sanchez, H. Extraction, partial characterization and evaluation of in vitro digestibility of the protein associated with the exoskeleton of white shrimp (Litopenaeus vannamei). Rev. Bio Cienc. 2014, 2, 293–301. [Google Scholar]
- Gadgey, K.K.; Bahekar, A. Studies on extraction methods of chitin from crab shell and investigation of its mechanical properties. Int. J. Mech. Eng. Technol. 2017, 8, 220–231. [Google Scholar]
- Anwar, M.; Anggraeni, A.S.; Amin, M.H. Comparison of green method for chitin deacetylation. AIP Conf. Proc. 2017, 1823, 020071. [Google Scholar]
- Rojas, J.; Madrigal, J.; Ortiz, J. Effect of acid hydrolysis on tableting properties of chitin obtained from shrimp heads. Trop. J. Pharm. Res. 2015, 14, 1137–1144. [Google Scholar] [CrossRef]
- Pachapur, V.L.; Guemiza, K.; Rouissi, T.; Sarma, S.J.; Brar, S.K. Novel biological and chemical methods of chitin extraction from crustacean waste using saline water. J. Chem. Technol. Biotechnol. 2016, 91, 2331–2339. [Google Scholar] [CrossRef]
- Chakravarty, J.; Yang, C.L.; Palmer, J.; Brigham, C.J. Chitin extraction from lobster shell waste using microbial culture-based methods. Appl. Food Biotechnol. 2018, 5, 141–154. [Google Scholar]
- Gamal, R.F.; El-Tayeb, T.S.; Raffat, E.I.; Ibrahim, H.M.; Bashandy, A.S. Optimization of chitin yield from shrimp shell waste by Bacillus subtilis and impact of gamma irradiation on production of low molecular weight chitosan. Int. J. Biol. Macromol. 2016, 91, 598–608. [Google Scholar] [CrossRef]
- Liu, Y.; Xing, R.; Yang, H.; Liu, S.; Qin, Y.; Li, K.; Yu, H.; Li, P. Chitin extraction from shrimp (Litopenaeus vannamei) shells by successive two-step fermentation with Lactobacillus rhamnoides and Bacillus amyloliquefaciens. Int. J. Biol. Macromol. 2020, 148, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Sedaghat, F.; Yousefzadi, M.; Toiserkani, H.; Najafipour, S. Bioconversion of shrimp waste Penaeus merguiensis using lactic acid fermentation: An alternative procedure for chemical extraction of chitin and chitosan. Int. J. Biol. Macromol. 2017, 104, 883–888. [Google Scholar] [CrossRef]
- Castro-Morán, J.J.; Ordinola-Zapata, A. La estrategia de ayuno y realimentación, una alternativa viable para optimizar el consumo de alimento balanceado en el cultivo semi-intensivo de camarón blanco Litopenaeus vannamei. Rev. Investig. Vet. Perú 2021, 32, e19546. [Google Scholar] [CrossRef]
- Iber, B.T.; Kasan, N.A.; Torsabo, D.; Omuwa, J.W. A review of various sources of chitin and chitosan in nature. J. Renew. Mater. 2022, 10, 1097–1123. [Google Scholar] [CrossRef]
- Núñez-Gómez, D.; Rodrigues, C.; Lapolli, F.R.; Lobo-Recio, M.A. Physicochemical characterization of white shrimp (Litopenaeus vannamei) waste as a low-cost chitinous biomaterial. J. Polym. Environ. 2021, 29, 576–587. [Google Scholar] [CrossRef]
- Muthu, M.; Gopal, J.; Chun, S.; Devadoss, A.J.P.; Hasan, N.; Sivanesan, I. Crustacean waste-derived chitosan: Antioxidant properties and future perspective. Antioxidants 2021, 10, 228. [Google Scholar] [CrossRef] [PubMed]
- Cruz, J.; Quiñones, C.; Saavedra, J.B.; Urquizo, D.; Esparza, M. Biodegradation of phenol by Pseudomonas aeruginosa isolated from oil contaminated environments in Peru. Biosci. Res. 2021, 18, 1294–1300. [Google Scholar]
- Zhang, H.; Jin, Y.; Deng, Y.; Wang, D.; Zhao, Y. Production of chitin from shrimp shell powders using Serratia marcescens B742 and Lactobacillus plantarum ATCC 8014 successive two-step fermentation. Carbohydr Res. 2012, 362, 13–20. [Google Scholar] [CrossRef]
- Mohammed, M.H.; Williams, P.A.; Tverezovskaya, O. Extraction of chitin from prawn shells and conversion to low molecular mass chitosan. Food Hydrocoll. 2013, 31, 166–171. [Google Scholar] [CrossRef]
- Zhang, H.; Yun, S.; Song, L.; Zhang, Y.; Zhao, Y. The preparation and characterization of chitin and chitosan under large-scale submerged fermentation level using shrimp by-products as substrate. Int. J. Biol. Macromol. 2017, 96, 334–339. [Google Scholar] [CrossRef]
- Ombelet, S.; Natale, A.; Ronat, J.B.; Vandenberg, O.; Hardy, L.; Jacobs, J. Evaluation of microscan bacterial identification panels for low-resource settings. Diagnostics 2021, 11, 349. [Google Scholar] [CrossRef] [PubMed]
- Jo, G.H.; Jung, W.J.; Kuk, J.H.; Oh, K.T.; Kim, Y.J.; Park, R.D. Screening of protease-producing Serratia marcescens FS-3 and its application to deproteinization of crab shell waste for chitin extraction. Carbohydr. Polym. 2008, 74, 504–508. [Google Scholar] [CrossRef]
- Poerio, A.; Petit, C.; Jehl, J.P.; Arab-Tehrany, E.; Mano, J.F.; Cleymand, F. Extraction and Physicochemical Characterization of Chitin from Cicadaorni Sloughs of the South-Eastern French Mediterranean Basin. Molecules 2020, 25, 2543. [Google Scholar] [CrossRef] [PubMed]
- Janairo, G.; Sy, M.; Yap, L.; Llanos-Lazaro, N.; Robles, J. Determination of the Sensitivity Range of Biuret Test for Undergraduate Biochemistry Experiments. J. Sci. Technol. 2011, 6, 77–83. [Google Scholar]
- Terrones, N.; Quiñones-Cerna, C.E.; Robles, M.; Cruz-Monzon, J.A.; Butrón, F.; Rodríguez, J.C. Optimization of Total Carotenoid Production by Rhodotorula mucilaginosa from Artichoke Agroindustrial Waste Using Response Surface Methodology. Environ. Res. Eng. Manag. 2023, 79, 111–121. [Google Scholar] [CrossRef]
- Demir, D.; Öfkeli, F.; Ceylan, S.; Bölgen, N. Extraction and characterization of chitin and chitosan from blue crab and synthesis of chitosan cryogel scaffolds. J. Turkish Chem. Soc. Sect. A Chem. 2016, 3, 131–144. [Google Scholar] [CrossRef]
- Huang, W.C.; Zhao, D.; Guo, N.; Xue, C.; Mao, X. Green and facile production of chitin from crustacean shells using a natural deep eutectic solvent. J. Agric. Food Chem. 2018, 66, 11897–11901. [Google Scholar] [CrossRef] [PubMed]
- Heywood, A.; Lamont, I.L. Cell envelope proteases and peptidases of Pseudomonas aeruginosa: Multiple roles, multiple mechanisms. FEMS Microbiol. Rev. 2020, 44, 857–873. [Google Scholar] [CrossRef] [PubMed]
- Yehia, A.; Ahmed, A.; Amira, S. Optimization of prodigiosin production by a new isolate of Serratia species. Int. J. Res. Med. Basic. Sci. 2016, 2, 30–49. [Google Scholar]
- Zhang, Y.; Shang, R.; Zhang, J.; Li, J.; Zhu, G.; Yao, M.; Sun, J.; Shen, Z. Isolation and identification of two Serratia marcescens strains from silkworm, Bombyx mori. Antonie Leeuwenhoek 2020, 113, 1313–1321. [Google Scholar] [CrossRef]
- Suryawanshi, N.; Jujjavarapu, S.E.; Ayothiraman, S. Marine shell industrial wastes–an abundant source of chitin and its derivatives: Constituents, pretreatment, fermentation, and pleiotropic applications-a revisit. Int. J. Environ. Sci. Technol. 2019, 16, 3877–3898. [Google Scholar] [CrossRef]
- Tan, J.S.; Abbasiliasi, S.; Lee, C.K.; Phapugrangkul, P. Chitin extraction from shrimp wastes by single step fermentation with Lactobacillus acidophilus FTDC3871 using response surface methodology. J. Food Process Preserv. 2020, 44, e14895. [Google Scholar] [CrossRef]
- Li, J.; Song, R.; Zou, X.; Wei, R.; Wang, J. Simultaneous preparation of chitin and flavor protein hydrolysates from the by-products of shrimp processing by one-step fermentation with Lactobacillus fermuntum. Molecules 2023, 28, 3761. [Google Scholar] [CrossRef] [PubMed]
- Solihin, J.; Waturangi, D.E.; Purwadaria, T. Induction of amylase and protease as antibiofilm agents by starch, casein, and yeast extract in Arthrobacter sp. CW01. BMC Microbiol. 2021, 21, 232. [Google Scholar] [CrossRef] [PubMed]
- Ghssein, G.; Ezzeddine, Z. A Review of Pseudomonas aeruginosa Metallophores: Pyoverdine, Pyochelin and Pseudopaline. Biology 2022, 11, 1711. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yang, H.; Xing, R.; Liu, S.; Li, K.; Li, R.; Yu, H.; Li, P. Chitin extraction from crab shells by two-step fermentation with Lacticanttacllus pantarum and Pseudomonas aeruginosa. Res. Sq. 2024, 1, 1–37. [Google Scholar]
- Ta, T.M.; Bui, H.H.; Trinh, T.T.; Nguyen, T.M.; Nguyen, H.N. Investigation of chitin recovery from shrimp waste by yeast fermentation. IOP Conf. Ser. Earth Environ. Sci. 2023, 1155, 012012. [Google Scholar] [CrossRef]
- Gharibzadeh, M.; Osfouri, S.; Jamekhorshid, A.; Jafari, S.A. Microbial chitin extraction and characterization from green tiger shrimp waste: A comparative study of culture mediums along with bioprocess optimization. Int. J. Biol. Macromol. 2023, 242, 125213. [Google Scholar] [CrossRef] [PubMed]
- Zare, H.; Jafari, Z.; Darzi, H.H. Production of chitin and chitosan from shrimp shell wastes using co-Fermentation of Lactiplantibacillus plantarum PTCC 1745 and Bacillus subtilis PTCC 1720. Appl Food Biotechnol. 2022, 9, 311–320. [Google Scholar]
- Hahn, T.; Tafi, E.; von Seggern, N.; Falabella, P.; Salvia, R.; Thomä, J.; Febel, E.; Fijalkowska, M.; Schmitt, E.; Stegbauer, L.; et al. Purification of chitin from pupal exuviae of the black soldier fly. Waste Biomass Valorization 2022, 13, 1993–2008. [Google Scholar] [CrossRef]
- Ploydee, E.; Chaiyanan, S. Production of high viscosity chitosan from biologically purified chitin isolated by microbial fermentation and deproteinization. Int. J. Polym. Sci. 2014, 2014, 162173. [Google Scholar] [CrossRef]
- Azofeifa, D.E.; Arguedas, H.J.; Vargas, W.E. Optical properties of chitin and chitosan biopolymers with application to structural color analysis. Opt. Mater. 2012, 35, 175–183. [Google Scholar] [CrossRef]
- Al Shaqsi, N.H.K.; Al Hoqani, H.A.S.; Hossain, M.A.; Al Sibani, M.A. Isolation, characterization and standardization of demineralization process for chitin polymer and minerals from the crabs waste of Portunidae segnis. Adv. Biomark. Sci. Technol. 2020, 2, 45–58. [Google Scholar] [CrossRef]
- Taokaew, S.; Zhang, X.; Chuenkaek, T.; Kobayashi, T. Chitin from fermentative extraction of crab shells using okara as a nutrient source and comparative analysis of structural differences from chemically extracted chitin. Biochem. Eng. J. 2020, 159, 107588. [Google Scholar] [CrossRef]
- Brigode, C.; Hobbi, P.; Jafari, H.; Verwilghen, F.; Baeten, E.; Shavandi, A. Isolation and physicochemical properties of chitin polymer from insect farm side stream as a new source of renewable biopolymer. J. Clean. Prod. 2020, 275, 122924. [Google Scholar] [CrossRef]
- Kamal, M.; Adly, E.; Alharbi, S.A.; Khaled, A.S.; Rady, M.H.; Ibrahim, N.A. Exploring Simplified Methods for insect chitin extraction and application as a potential alternative bioethanol resource. Insects 2020, 11, 788. [Google Scholar] [CrossRef] [PubMed]
- Mohan, K.; Muralisankar, T.; Jayakumar, R.; Rajeevgandhi, C. A study on structural comparisons of α-chitin extracted from marine crustacean shell waste. Carbohydr. Polym. Technol. Appl. 2021, 2, 100037. [Google Scholar] [CrossRef]
- Son, Y.; Hwang, I.; Nho, C.; Kim, S.; Kim, S. Determination of carbohydrate composition in mealworm (Tenebrio molitor L.) Larvae and characterization of mealworm chitin and chitosan. Foods 2021, 10, 640. [Google Scholar] [CrossRef] [PubMed]
- Ozel, N.; Elibol, M. Chitin and chitosan from mushroom (Agaricus bisporus) using deep eutectic solvents. Int. J. Biol. Macromol. 2024, 262, 130110. [Google Scholar] [CrossRef]
- Chen, X.; Chew, S.L.; Kerton, F.M.; Yan, N. Direct conversion of chitin into a N-containing furan derivative. Green. Chem. 2014, 16, 2204–2212. [Google Scholar] [CrossRef]
- Hisham, F.; Maziati-Akmal, M.H.; Ahmad, F.B.; Ahmad, K. Facile extraction of chitin and chitosan from shrimp shell. Mater. Today Proc. 2021, 42, 2369–2373. [Google Scholar] [CrossRef]
- Hu, X.; Tian, Z.; Li, X.; Wang, S.; Pei, H.; Sun, H.; Zhang, Z. Green, Simple, and Effective Process for the Comprehensive Utilization of shrimp shell waste. ACS Omega 2020, 5, 19227–19235. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Xie, W.; Yu, J.; Xin, R.; Shi, Z.; Song, L.; Yang, X. Extraction of chitin from shrimp shell by successive two-step fermentation of Exiguobacterium profundum and Lactobacillus acidophilus. Front. Microbiol. 2021, 12, 677126. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Halfar, J.; Adey, W.H.; Nash, M.; Paulo, C.; Dittrich, M. The role of chitin-rich skeletal organic matrix on the crystallization of calcium carbonate in the crustose coralline alga Leptophytum foecundum. Sci. Rep. 2019, 9, 11869. [Google Scholar] [CrossRef]
- Xin, R.; Xie, W.; Xu, Z.; Che, H.; Zheng, Z.; Yang, X. Efficient extraction of chitin from shrimp waste by mutagenized strain fermentation using atmospheric and room-temperature plasma. Int. J. Biol. Macromol. 2020, 155, 1561–1568. [Google Scholar] [CrossRef]
Chitin Obtained by Fermentation | % Glucose | % Deproteinization | % Demineralization |
---|---|---|---|
Pseudomonas aeruginosa QF50 | 1 | 86.96 ± 1.76 * | 5.30 ± 1.41 |
5 | 83.51 ± 0.54 | 13.07 ± 1.84 | |
10 | 86.31 ± 0.06 *** | 24.02 ± 0.35 *** | |
Serratia sp. QCS23 | 1 | 83.73 ± 0.67 * | 1.77 ± 5.23 |
5 | 82.54 ± 1.94 | 11.66 ± 1.77 | |
10 | 80.28 ± 0.79 | 21.20 ± 0.78 *** |
Chitin Obtained by Fermentation | % Glucose | L* | a* | b* | Whiteness Index (WI) |
---|---|---|---|---|---|
Serratia marcescens QCS23 | 1 | 86.52 ± 0.38 | 1.52 ± 1.94 | 14.65 ± 1.99 | 79.95 ± 1.11 |
5 | 85.79 ± 0.73 | 1.93 ± 0.86 | 16.74 ± 3.09 | 77.88 ± 3.23 * | |
10 | 81.46 ± 3.50 * | 3.30 ± 1.35 ** | 17.40 ± 2.81 *** | 74.36 ± 21.26 ** | |
Pseudomonas aeruginosa QF50 | 1 | 85.54 ± 1.81 | 1.91 ± 0.95 | 15.97 ± 3.24 | 78.35 ± 12.40 |
5 | 86.51 ± 2.21 | 0.82 ± 1.16 | 15.14 ± 2.39 | 79.70 ± 10.95 * | |
10 | 86.33 ± 0.64 | 0.15 ± 0.21 **** | 13.34 ± 1.63 **** | 80.90 ± 2.53 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quiñones-Cerna, C.; Rodríguez-Soto, J.C.; Hurtado-Butrón, F.; Centeno-Calderón, L.; Mejia-Ruedell, R.; López-Quiroz, E.; Gálvez-Rivera, J.; Ugarte-López, W. Efficient Chitin Extraction from Shrimp Exoskeletons through Single-Step Fermentation by Pseudomonas aeruginosa QF50 and Serratia sp. QCS23. Processes 2024, 12, 1184. https://doi.org/10.3390/pr12061184
Quiñones-Cerna C, Rodríguez-Soto JC, Hurtado-Butrón F, Centeno-Calderón L, Mejia-Ruedell R, López-Quiroz E, Gálvez-Rivera J, Ugarte-López W. Efficient Chitin Extraction from Shrimp Exoskeletons through Single-Step Fermentation by Pseudomonas aeruginosa QF50 and Serratia sp. QCS23. Processes. 2024; 12(6):1184. https://doi.org/10.3390/pr12061184
Chicago/Turabian StyleQuiñones-Cerna, Claudio, Juan Carlos Rodríguez-Soto, Fernando Hurtado-Butrón, Luis Centeno-Calderón, Rosa Mejia-Ruedell, Eulalio López-Quiroz, Julieta Gálvez-Rivera, and Wilmer Ugarte-López. 2024. "Efficient Chitin Extraction from Shrimp Exoskeletons through Single-Step Fermentation by Pseudomonas aeruginosa QF50 and Serratia sp. QCS23" Processes 12, no. 6: 1184. https://doi.org/10.3390/pr12061184
APA StyleQuiñones-Cerna, C., Rodríguez-Soto, J. C., Hurtado-Butrón, F., Centeno-Calderón, L., Mejia-Ruedell, R., López-Quiroz, E., Gálvez-Rivera, J., & Ugarte-López, W. (2024). Efficient Chitin Extraction from Shrimp Exoskeletons through Single-Step Fermentation by Pseudomonas aeruginosa QF50 and Serratia sp. QCS23. Processes, 12(6), 1184. https://doi.org/10.3390/pr12061184