Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,227)

Search Parameters:
Keywords = exoskeleton

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2451 KB  
Article
Physical Support of Soldiers During CBRN Scenarios with Exoskeletons
by Tim Schubert and Robert Weidner
Appl. Sci. 2025, 15(19), 10763; https://doi.org/10.3390/app151910763 - 6 Oct 2025
Abstract
The physical demands of overhead tasks can lead to musculoskeletal strain, particularly in scenarios requiring prolonged arm elevation such as in Chemical, Biological, Radiological, and Nuclear (CBRN) operations. To address this, an active shoulder exoskeleton was developed that is compatible with CBRN protective [...] Read more.
The physical demands of overhead tasks can lead to musculoskeletal strain, particularly in scenarios requiring prolonged arm elevation such as in Chemical, Biological, Radiological, and Nuclear (CBRN) operations. To address this, an active shoulder exoskeleton was developed that is compatible with CBRN protective gear. The aim of this laboratory study was to assess the biomechanical and physiological effects of the system during upper limb tasks representative of real-world applications, without the use of protective suits. Twenty-two male participants performed two tasks with and without the exoskeleton: (1) 5 kg lifting task and (2) repetitive spraying tasks with a spray lance. Muscle activity of the m. anterior deltoid was measured using surface electromyography, while energy expenditure was assessed via spiroergometry. The exoskeleton significantly reduced muscular demands in the anterior deltoid, with a decrease of up to 40% during the spraying task and 29% percent during lifting task. Additionally, oxygen consumption per kilogram of body mass decreased by 6.5 to 8.2% across tasks. Participants reported lower fatigue and greater task manageability when using the exoskeleton, particularly for sustained and semi-static overhead postures. The results demonstrate that the exoskeleton effectively reduces workload during upper limb tasks. These findings support its application not only for soldiers in contaminated environments but also in industrial settings involving overhead work. Future research will need to validate these effects under realistic CBRN conditions to confirm operational compatibility. Full article
32 pages, 5868 KB  
Review
A Review of Robotic Interfaces for Post-Stroke Upper-Limb Rehabilitation: Assistance Types, Actuation Methods, and Control Mechanisms
by André Gonçalves, Manuel F. Silva, Hélio Mendonça and Cláudia D. Rocha
Robotics 2025, 14(10), 141; https://doi.org/10.3390/robotics14100141 - 6 Oct 2025
Abstract
Stroke is a leading cause of long-term disability worldwide, with survivors often facing significant challenges in regaining upper-limb functionality. In response, robotic rehabilitation systems have emerged as promising tools to enhance post-stroke recovery by delivering precise, adaptable, and patient-specific therapy. This paper presents [...] Read more.
Stroke is a leading cause of long-term disability worldwide, with survivors often facing significant challenges in regaining upper-limb functionality. In response, robotic rehabilitation systems have emerged as promising tools to enhance post-stroke recovery by delivering precise, adaptable, and patient-specific therapy. This paper presents a review of robotic interfaces developed specifically for upper-limb rehabilitation. It analyses existing exoskeleton- and end-effector-based systems, with respect to three core design pillars: assistance types, control philosophies, and actuation methods. The review highlights that most solutions favor electrically actuated exoskeletons, which use impedance- or electromyography-driven control, with active assistance being the predominant rehabilitation mode. Resistance-providing systems remain underutilized. Furthermore, no hybrid approaches featuring the combination of robotic manipulators with actuated interfaces were found. This paper also identifies a recent trend towards lightweight, modular, and portable solutions and discusses the challenges in bridging research prototypes with clinical adoption. By focusing exclusively on upper-limb applications, this work provides a targeted reference for researchers and engineers developing next-generation rehabilitation technologies. Full article
Show Figures

Figure 1

23 pages, 3187 KB  
Article
An Experimental and FE Modeling Investigation of the Pull-Out Behavior of Anchoring Solutions in Concrete: A Comparative Study
by Alexandru-Nicolae Bizu, Dorina Nicolina Isopescu, Gabriela Draghici and Igor Blanari
Materials 2025, 18(19), 4596; https://doi.org/10.3390/ma18194596 - 3 Oct 2025
Abstract
This article presents an original experimental and numerical approach to examining the pull-out behavior of fastening systems made of steel bars simultaneously embedded in both ends of concrete samples. This double-embedded configuration simulates a connection between the existing concrete structure and a new [...] Read more.
This article presents an original experimental and numerical approach to examining the pull-out behavior of fastening systems made of steel bars simultaneously embedded in both ends of concrete samples. This double-embedded configuration simulates a connection between the existing concrete structure and a new external exoskeleton, promoting seismic strengthening. Pull-out tests were performed across six specimen configurations combining different concrete strength classes in order to compare the adhesive solution against traditional monolithic cast-in rebar embedments. The adhesive-anchored bars achieved a peak pull-out force of ~28.6 kN, which is about 18% higher than with mixed anchorage (one end adhesive, one end cast-in). All specimens failed in concrete cracking and pull-out cone formation, with no steel bar yielding, indicating that failure was governed by concrete strength. Finite element simulations in ANSYS Explicit Dynamics were validated against these experiments, confirming the observed behavior and enabling the extension of our analysis to broader concrete strength ranges. Overall, the results demonstrate that double-ended adhesive anchorage significantly increases the connection’s load-bearing capacity and ductility compared to mixed configurations. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

24 pages, 8088 KB  
Article
The Design and Development of a Wearable Cable-Driven Shoulder Exosuit (CDSE) for Multi-DOF Upper Limb Assistance
by Hamed Vatan, Theodoros Theodoridis, Guowu Wei, Zahra Saffari and William Holderbaum
Appl. Sci. 2025, 15(19), 10673; https://doi.org/10.3390/app151910673 - 2 Oct 2025
Abstract
This study presents the design, development, and experimental validation of a novel cable-driven shoulder exosuit (CDSE) for upper limb rehabilitation and assistance. Unlike existing exoskeletons, which are often bulky, limited in degrees of freedom (DOFs), or impractical for home use, the proposed DSE [...] Read more.
This study presents the design, development, and experimental validation of a novel cable-driven shoulder exosuit (CDSE) for upper limb rehabilitation and assistance. Unlike existing exoskeletons, which are often bulky, limited in degrees of freedom (DOFs), or impractical for home use, the proposed DSE offers a lightweight (≈2 kg), portable, and wearable solution capable of supporting three shoulder movements: abduction, flexion, and horizontal adduction. The system employs a bioinspired tendon-driven mechanism using Bowden cables, transferring actuation forces from a backpack to the arm, thereby reducing user load and improving comfort. Mathematical models and inverse kinematics were derived to determine cable length variations for targeted motions, while control strategies were implemented using a PID-based approach in MATLAB Simscape-Multibody simulations. The prototype was fabricated in three iterations using PLA, aluminum, and carbon fiber—culminating in a durable and ergonomic final version. Experimental evaluations on a healthy subject demonstrated high accuracy in position tracking (<5% error) and torque profiles consistent with simulation outcomes, validating system robustness. The CDSE successfully supported loads up to 4 kg during rehabilitation tasks, highlighting its potential for clinical and at-home applications. This research contributes to advancing wearable robotics by addressing portability, biomechanical alignment, and multi-DOF functionality in upper limb exosuits. Full article
(This article belongs to the Special Issue Advances in Cable Driven Robotic Systems)
Show Figures

Figure 1

17 pages, 4058 KB  
Article
Medical Imaging-Based Kinematic Modeling for Biomimetic Finger Joints and Hand Exoskeleton Validation
by Xiaochan Wang, Cheolhee Cho, Peng Zhang, Shuyuan Ge and Jiadi Chen
Biomimetics 2025, 10(10), 652; https://doi.org/10.3390/biomimetics10100652 - 1 Oct 2025
Abstract
Hand rehabilitation exoskeletons play a critical role in restoring motor function in patients with stroke or hand injuries. However, most existing designs rely on fixed-axis assumptions, neglecting the rolling–sliding coupling of finger joints that causes instantaneous center of rotation (ICOR) drift, leading to [...] Read more.
Hand rehabilitation exoskeletons play a critical role in restoring motor function in patients with stroke or hand injuries. However, most existing designs rely on fixed-axis assumptions, neglecting the rolling–sliding coupling of finger joints that causes instantaneous center of rotation (ICOR) drift, leading to kinematic misalignment and localized pressure concentrations. This study proposes the Instant Radius Method (IRM) based on medical imaging to continuously model ICOR trajectories of the MCP, PIP, and DIP joints, followed by the construction of an equivalent ICOR through curve fitting. Crossing-type biomimetic kinematic pairs were designed according to the equivalent ICOR and integrated into a three-loop ten-linkage exoskeleton capable of dual DOFs per finger (flexion–extension and abduction–adduction, 10 DOFs in total). Kinematic validation was performed using IMU sensors (Delsys) to capture joint angles, and interface pressure distribution at MCP and PIP was measured using thin-film pressure sensors. Experimental results demonstrated that with biomimetic kinematic pairs, the exoskeleton’s fingertip trajectories matched physiological trajectories more closely, with significantly reduced RMSE. Pressure measurements showed a reduction of approximately 15–25% in mean pressure and 20–30% in peak pressure at MCP and PIP, with more uniform distributions. The integrated framework of IRM-based modeling–equivalent ICOR–biomimetic kinematic pairs–multi-DOF exoskeleton design effectively enhanced kinematic alignment and human–machine compatibility. This work highlights the importance and feasibility of ICOR alignment in rehabilitation robotics and provides a promising pathway toward personalized rehabilitation and clinical translation. Full article
(This article belongs to the Special Issue Bionic Wearable Robotics and Intelligent Assistive Technologies)
Show Figures

Graphical abstract

20 pages, 1951 KB  
Article
Virtual Prototyping of the Human–Robot Ecosystem for Multiphysics Simulation of Upper Limb Motion Assistance
by Rocco Adduci, Francesca Alvaro, Michele Perrelli and Domenico Mundo
Machines 2025, 13(10), 895; https://doi.org/10.3390/machines13100895 - 1 Oct 2025
Abstract
As stroke is becoming more frequent nowadays, cutting edge rehabilitation approaches are required to recover upper limb functionalities and to support patients during daily activities. Recently, focus has moved to robotic rehabilitation; however, therapeutic devices are still highly expensive, making rehabilitation not easily [...] Read more.
As stroke is becoming more frequent nowadays, cutting edge rehabilitation approaches are required to recover upper limb functionalities and to support patients during daily activities. Recently, focus has moved to robotic rehabilitation; however, therapeutic devices are still highly expensive, making rehabilitation not easily affordable. Moreover, devices are not easily accepted by patients, who can refuse to use them due to not feeling comfortable. The presented work proposes the exploitation of a virtual prototype of the human–robot ecosystem for the study and analysis of patient–robot interactions, enabling their simulation-based investigation in multiple scenarios. For the accomplishment of this task, the Dynamics of Multi-physical Systems platform, previously presented by the authors, is further developed to enable the integration of biomechanical models of the human body with mechatronics models of robotic devices for motion assistance, as well as with PID-based control strategies. The work begins with (1) a description of the background; hence, the current state of the art and purpose of the study; (2) the platform is then presented and the system is formalized, first from a general side and then (3) in the application-specific scenario. (4) The use case is described, presenting a controlled gym weightlifting exercise supported by an exoskeleton and the results are analyzed in a final paragraph (5). Full article
Show Figures

Figure 1

17 pages, 4692 KB  
Article
Design and Evaluation of a Hip-Only Actuated Lower Limb Exoskeleton for Lightweight Gait Assistance
by Ming Li, Hui Li, Yujie Su, Disheng Xie, Raymond Kai Yu Tong and Hongliu Yu
Electronics 2025, 14(19), 3853; https://doi.org/10.3390/electronics14193853 - 29 Sep 2025
Abstract
This paper presents the design and evaluation of a lightweight, minimally actuated lower limb exoskeleton that emphasizes hip–knee coordination for natural and efficient gait assistance. The system adopts a hip-only motorized actuation strategy in combination with an electromagnetically controlled knee locking mechanism, ensuring [...] Read more.
This paper presents the design and evaluation of a lightweight, minimally actuated lower limb exoskeleton that emphasizes hip–knee coordination for natural and efficient gait assistance. The system adopts a hip-only motorized actuation strategy in combination with an electromagnetically controlled knee locking mechanism, ensuring rigid stability during stance while providing compliant assistance during swing. To support sit-to-stand transitions, a gas spring–ratchet mechanism is integrated, which remains disengaged in the seated position, delivers assistive torque during rising, and provides cushioning during the descent to enhance safety and comfort. The control framework fuses foot pressure and thigh-mounted IMU signals for finite state machine (FSM)-based gait phase detection and employs a fuzzy PID controller to achieve adaptive hip torque regulation with coordinated hip–knee control. Preliminary human-subject experiments demonstrate that the proposed design enhances lower-limb coordination, reduces muscle activation, and improves gait smoothness. By integrating a minimal-actuation architecture, a practical sit-to-stand assist module, and an intelligent control strategy, this exoskeleton strikes an effective balance between mechanical simplicity, functional support, and gait naturalness, offering a promising solution for everyday mobility assistance in elderly or mobility-impaired users. Full article
Show Figures

Figure 1

27 pages, 2810 KB  
Article
Meat Nutritional Value and Exoskeleton Valorisation of Callinectes sapidus from Three Sites of Biological and Ecological Interest in Morocco: Scientific Insights Toward a Management Strategy in the Mediterranean Sea
by Kamal Gourari, Youness Mabrouki, Abdelkhaleq Fouzi Taybi, Abdessadek Essadek, Valentina Tanduo, Fabio Crocetta, Ilyesse Rahhou, Chaouki Belbachir, Lucia Rizzo and Bouchra Legssyer
Mar. Drugs 2025, 23(9), 367; https://doi.org/10.3390/md23090367 - 21 Sep 2025
Viewed by 327
Abstract
Biological invasions threaten biodiversity worldwide. The American blue crab Callinectes sapidus Rathbun, 1896, among the Mediterranean’s most damaging invaders, takes up the challenge to transform this threat into gain. To turn its impact into economic value and guide control efforts, we analysed separately [...] Read more.
Biological invasions threaten biodiversity worldwide. The American blue crab Callinectes sapidus Rathbun, 1896, among the Mediterranean’s most damaging invaders, takes up the challenge to transform this threat into gain. To turn its impact into economic value and guide control efforts, we analysed separately the meat composition and exoskeleton biopolymers of adult crabs from three Moroccan protected Sites of Biological and Ecological Interest: Marchica Lagoon (S1), Moulouya Estuary (S2), and Al Hoceima National Park (S3). Marchica specimens exhibited the highest protein content (21.87 ± 1.15 g 100 g−1, p < 0.001) and an elevated lipid fraction, yielding nutrient-dense meat suitable for premium markets. Moulouya crabs were noted for their taste potential, with a higher concentration of fat (1.73 ± 0.09%) and carbohydrates (0.91 ± 0.1%). Al Hoceima individuals displayed markedly mineralised exoskeletons producing lean and low-fat meat, valued in dietary applications. Exoskeleton organic-to-mineral (OM/MM) ratios and proximate composition revealed three adaptive profiles, opportunistic (S1), acclimatory (S2), and conservative (S3), presumably correlated to local salinity, productivity, and substrate conditions, underscoring the species’ phenotypic plasticity. X-ray diffraction confirmed the α-chitin polymorph, while FTIR analysis indicated degrees of deacetylation consistent with high-purity chitosan. These findings support the development of a site-specific circular economy framework and may contribute to the ecological resilience of Morocco’s protected coastal areas. Full article
Show Figures

Figure 1

17 pages, 2502 KB  
Article
A Biomimetic Treadmill-Driven Ankle Exoskeleton: A Study in Able-Bodied Individuals
by Matej Tomc, Matjaž Zadravec, Andrej Olenšek and Zlatko Matjačić
Biomimetics 2025, 10(9), 635; https://doi.org/10.3390/biomimetics10090635 - 21 Sep 2025
Viewed by 208
Abstract
Despite rapid growth in the body of research on ankle exoskeletons, we have so far not seen their massive adoption in clinical rehabilitation. We foresee that an ankle exo best suited to rehabilitation use should possess the power generation capabilities of state-of-the-art active [...] Read more.
Despite rapid growth in the body of research on ankle exoskeletons, we have so far not seen their massive adoption in clinical rehabilitation. We foresee that an ankle exo best suited to rehabilitation use should possess the power generation capabilities of state-of-the-art active exos as well as the simplistic control and inherently suitable assistance timing seen in passive exos. In this paper we present and evaluate our attempt to create such a hybrid device: an Ankle Exoskeleton with Treadmill Actuation for Push-off Assistance. Using our device, we assisted a group of able-bodied individuals in generating ankle plantarflexion torque and power while measuring changes in biomechanics and electromyographic activity. Changes were mostly contained to the ankle joint, where a reduction in biological power and torque generation was observed in proportion to provided exo assistance. Assistance was comparable to state-of-the-art active exos in both timing and torque trajectory shape and well synchronized with the user’s own biological efforts, despite using a very simplistic controller. Full article
(This article belongs to the Special Issue Bionic Technology—Robotic Exoskeletons and Prostheses: 3rd Edition)
Show Figures

Figure 1

23 pages, 6584 KB  
Article
Bilateral Teleoperation of Aerial Manipulator with Hybrid Mapping Framework for Physical Interaction
by Lingda Meng, Yongfeng Rong and Wusheng Chou
Sensors 2025, 25(18), 5844; https://doi.org/10.3390/s25185844 - 19 Sep 2025
Viewed by 332
Abstract
Bilateral teleoperation combines the agility of robotic manipulators with the ability to perform complex contact tasks guided by human expertise, thereby fulfilling a pivotal function in environments beyond human access. However, due to the limited workspace of existing master robots necessitating frequent mapping [...] Read more.
Bilateral teleoperation combines the agility of robotic manipulators with the ability to perform complex contact tasks guided by human expertise, thereby fulfilling a pivotal function in environments beyond human access. However, due to the limited workspace of existing master robots necessitating frequent mapping mode switches, coupled with the pronounced heterogeneity and asymmetry between the workspaces of the master and slave systems, achieving teleoperation of the mobile manipulator remains challenging. In this study, we innovatively introduced a 7 DOFs upper limb exoskeleton as the master control device, rigorously designed to align with the motion coordination of the human arm. Regarding teleoperation mapping, a hybrid heterogeneous teleoperation control framework with a variable mapping scheme, designed for an aerial manipulator performing physical operations, is proposed. The system incorporates mode switching driven by the operator’s hand gestures, seamlessly and intuitively integrating the advantages of position control and rate control modalities to enable adaptive transitions adaptable to diverse task requirements. Comparative teleoperation experiments were conducted using a fully actuated aerial equipped with a compliant 3D end-effector performing physical aerial writing tasks. The mode-switching algorithm was effectively validated in experiments, demonstrating no instability during transitions and achieving a position tracking RMSE of 7.7% and 5.2% in the X,Y-axis, respectively. This approach holds significant potential for future applications in UAM inspection and physical operational scenarios. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

18 pages, 20480 KB  
Article
Design of a PEBA–Silicone Composite Magneto-Sensitive Airbag Sensor for Simultaneous Contact Force and Motion Detection
by Zhirui Zhao, Chun Xia, Xinyu Zeng, Xinyu Hou, Lina Hao, Dexing Shan and Jiqian Xu
Sensors 2025, 25(18), 5823; https://doi.org/10.3390/s25185823 - 18 Sep 2025
Viewed by 285
Abstract
Considering that soft airbag sensors made from soft materials are limited to detecting only normal forces, a novel PEBA–silicone composite magneto-sensitive airbag sensor is proposed for simultaneously detecting normal contact force and horizontal motion during human–robot interaction. In terms of structural design, the [...] Read more.
Considering that soft airbag sensors made from soft materials are limited to detecting only normal forces, a novel PEBA–silicone composite magneto-sensitive airbag sensor is proposed for simultaneously detecting normal contact force and horizontal motion during human–robot interaction. In terms of structural design, the PEBA–silicone composite airbag is manufactured using fused deposition modeling, 3D printing, and silicone casting, achieving a balance between high airtightness and adjustable stiffness. Beneath the airbag, a magneto-sensitive substrate with several NdFeB magnets is embedded, while a fixed Hall sensor detects spatially varying magnetic fields to determine horizontal displacements without contact. The results of contact-force and motion experiments show that the proposed sensor achieves a force resolution of 20 g, a force range of 0 to 1100 g, a fitting sensitivity of 7.54 N/Pa, an average static stiffness of 4.82 N/mm, and a horizontal motion detection range of 0.125 to 1 cm/s. In addition, the prototype of the sensor is lightweight (with the complete assembly weighing 81.25 g and the sensing part weighing 56.13 g) and low-cost, giving it potential application value in exoskeletons and industrial grippers. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

20 pages, 3591 KB  
Article
Abnormal Gait Phase Recognition and Limb Angle Prediction in Lower-Limb Exoskeletons
by Sheng Wang, Chunjie Chen and Xiaojun Wu
Biomimetics 2025, 10(9), 623; https://doi.org/10.3390/biomimetics10090623 - 16 Sep 2025
Viewed by 330
Abstract
The phase detection of abnormal gait and the prediction of lower-limb angles are key challenges in controlling lower-limb exoskeletons. This study simulated three types of abnormal gaits: scissor gait, foot-drop gait, and staggering gait. To enhance the recognition capability for abnormal gait phases, [...] Read more.
The phase detection of abnormal gait and the prediction of lower-limb angles are key challenges in controlling lower-limb exoskeletons. This study simulated three types of abnormal gaits: scissor gait, foot-drop gait, and staggering gait. To enhance the recognition capability for abnormal gait phases, a four-discrete-phase division for a single leg is proposed: pre-swing, swing, swing termination, and stance phases. The four phases of both legs further constitute four stages of walking. Using the Euler angles of the ankle joints as inputs, the capabilities of a Convolutional Neural Network and a Support Vector Machine in recognizing discrete gait phases are verified. Based on these discrete gait phases, a continuous phase estimation is further performed using an adaptive frequency oscillator. For predicting the lower-limb motion angle, this study innovatively proposes an input scheme that integrates three-axis ankle joint angles and continuous gait phases. Comparative experiments confirmed that this information fusion scheme improved the limb angle prediction accuracy, with the Convolutional Neural Network–Long Short-Term Memory network yielding the best prediction results. Full article
(This article belongs to the Section Locomotion and Bioinspired Robotics)
Show Figures

Graphical abstract

25 pages, 2311 KB  
Article
Deep Learning Models Optimization for Gait Phase Identification from EMG Data During Exoskeleton-Assisted Walking
by Roberto Soldi, Bruna Maria Vittoria Guerra, Stefania Sozzi, Leo Russo, Serena Pizzocaro, Renato Baptista, Alessandro Marco De Nunzio, Micaela Schmid and Stefano Ramat
Biomimetics 2025, 10(9), 617; https://doi.org/10.3390/biomimetics10090617 - 13 Sep 2025
Viewed by 505
Abstract
Exoskeletons are a fast-growing technology that enables multiple use-cases in clinical scenarios. They can be useful tools for the rehabilitation of patients with motor dysfunctions caused by neurological conditions, aging or trauma. Assistive exoskeletons modulate the torque exerted by the electrical motors moving [...] Read more.
Exoskeletons are a fast-growing technology that enables multiple use-cases in clinical scenarios. They can be useful tools for the rehabilitation of patients with motor dysfunctions caused by neurological conditions, aging or trauma. Assistive exoskeletons modulate the torque exerted by the electrical motors moving their joints to allow the patients wearing them to achieve an intended movement, such as gait, correctly. Their effectiveness, therefore, requires accurate online control of such torques to complement those generated by the patient. Hereby we explored Deep Learning (DL) models to generate an online prediction of the gait phase, i.e., stance or swing, during assisted walking with a lower-limb exoskeleton based on surface electromyography (sEMG) data. We leveraged the lead of muscular activation with respect to the movement of the limbs to adjust the labeling based on joints kinematics. The cross-subject design allowed to generalize over subjects not considered for training A hyperparameter optimization algorithm was also implemented to further explore the capabilities of DL models of a reduced size. We simulated a use case scenario to assess whether online implementation of the proposed technique is feasible. We also proposed a new metric called trade-of score (TOS) for evaluating the cost-performance compromise of the optimized models which lead to identifying a DL model capable of classifying gait phases with an accuracy of about 95% while significantly reducing the number of parameters compared to the full architecture. Its mean computational time of less than 10 ms offers the opportunity for accurate, online exoskeleton control based on sEMG data. Full article
(This article belongs to the Special Issue Bionic Wearable Robotics and Intelligent Assistive Technologies)
Show Figures

Graphical abstract

38 pages, 8196 KB  
Review
Morph and Function: Exploring Origami-Inspired Structures in Versatile Robotics Systems
by Tran Vy Khanh Vo, Tan Kai Noel Quah, Li Ting Chua and King Ho Holden Li
Micromachines 2025, 16(9), 1047; https://doi.org/10.3390/mi16091047 - 13 Sep 2025
Viewed by 536
Abstract
The art of folding paper, named “origami”, has transformed from serving religious and cultural purposes to various educational and entertainment purposes in the modern world. Significantly, the fundamental folds and creases in origami, which enable the creation of 3D structures from a simple [...] Read more.
The art of folding paper, named “origami”, has transformed from serving religious and cultural purposes to various educational and entertainment purposes in the modern world. Significantly, the fundamental folds and creases in origami, which enable the creation of 3D structures from a simple flat sheet with unique crease patterns, serve as a great inspiration in engineering applications such as deployable mechanisms for space exploration, self-folding structures for exoskeletons and surgical procedures, micro-grippers, energy absorption, and programmable robotic morphologies. Therefore, this paper will provide a systematic review of the state-of-the-art origami-inspired structures that have been adopted and exploited in robotics design and operation, called origami-inspired robots (OIRs). The advantages of the flexibility and adaptability of these folding mechanisms enable robots to achieve agile mobility and shape-shifting capabilities that are suited to diverse tasks. Furthermore, the inherent compliance structure, meaning that stiffness can be tuned from rigid to soft with different folding states, allows these robots to perform versatile functions, ranging from soft interactions to robust manipulation and a high-DOF system. In addition, the potential to simplify the fabrication and assembly processes, together with its integration into a wide range of actuation systems, further broadens its capabilities. However, these mechanisms increase the complexity in theoretical analysis and modelling, as well as posing a challenge in control algorithms when the robot’s DOF and reconfigurations are significantly increased. By leveraging the principles of folding and integrating actuation and design strategies, these robots can adapt their shapes, stiffness, and functionality to meet the demands of diverse tasks and environments, offering significant advantages over traditional rigid robots. Full article
Show Figures

Figure 1

31 pages, 1359 KB  
Article
Innovative Technologies to Improve Occupational Safety in Mining and Construction Industries—Part II
by Paweł Bęś, Paweł Strzałkowski, Justyna Górniak-Zimroz, Mariusz Szóstak and Mateusz Janiszewski
Sensors 2025, 25(18), 5717; https://doi.org/10.3390/s25185717 - 13 Sep 2025
Viewed by 615
Abstract
Innovative technologies have been supporting the improvement of comfort and safety at work in construction and mining, which are classified as high-risk sectors, for many years. A two-part study (Part I and Part II) was conducted in which the implementation of innovative technologies [...] Read more.
Innovative technologies have been supporting the improvement of comfort and safety at work in construction and mining, which are classified as high-risk sectors, for many years. A two-part study (Part I and Part II) was conducted in which the implementation of innovative technologies was analysed and evaluated (opportunities and limitations). In Part II, the technologies employed in the work environment by employees to enhance their comfort and safety at work were analysed. These technologies encompass virtual and augmented reality, innovative personal and collective protective equipment, and exoskeletons. Following a thorough analysis of the extant scientific literature from the Scopus database, it was determined that there were research gaps that required attention. In addition to the evident advantages of enhancing the safety of workers, innovative technological solutions also engender numerous economic benefits for employers, which impact sustainable development in enterprises. In order to fully exploit the potential of modern technologies, it is necessary to continue their integration and overcome implementation barriers, such as the need for changes in education and training, adequate funding, and the development of safety awareness and culture in companies. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

Back to TopTop