A Gated Recurrent Unit Model with Fibonacci Attenuation Particle Swarm Optimization for Carbon Emission Prediction
Abstract
1. Introduction
2. Materials and Methods
2.1. GRU Models
2.2. Fibonacci Attenuation Particle Swarm Optimization
2.3. The Process of FAPSO-GRU
3. Experiments and Results
3.1. Data Preparation
3.2. FAPSO-GRU Results
3.3. FAPSO-GRU Results with Complex Data
- In Shanghai, the test MAE for FAPSO-GRU is 3.5079, while the MAE for GRU is 17.3467.
- In Beijing, the test MAE for FAPSO-GRU is 2.6671, while the MAE for GRU is 9.9971.
- In Guangdong, the test MAE for FAPSO-GRU is 26.987, while the MAE for GRU is 108.838.
- In Hubei, the test MAE for FAPSO-GRU is 17.8247, while the MAE for GRU is 39.4897.
- In Hunan, the test MAE for FAPSO-GRU is 22.6347, while the MAE for GRU is 33.4465.
3.4. Validation and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jin, H. Prediction of direct carbon emissions of Chinese provinces using artificial neural networks. PLoS ONE 2021, 16, e0236685. [Google Scholar] [CrossRef] [PubMed]
- Abeydeera, L.H.U.W.; Mesthrige, J.W.; Samarasinghalage, T.I. Global research on carbon emissions: A scientometric review. Sustainability 2019, 11, 3972. [Google Scholar] [CrossRef]
- Chen, X.; Cheng, F.; Liu, C.; Cheng, L.; Mao, Y. An improved Wolf pack algorithm for optimization problems: Design and evaluation. PLoS ONE 2021, 16, e0254239. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Tian, Z.; Zhang, G.; Li, W. Multi-AUV Formation Predictive Control Based on CNN-LSTM under Communication Constraints. J. Mar. Sci. Eng. 2023, 11, 873. [Google Scholar] [CrossRef]
- Majeed, M.T.; Ozturk, I.; Samreen, I.; Luni, T. Evaluating the asymmetric effects of nuclear energy on carbon emissions in Pakistan. Nucl. Eng. Technol. 2022, 54, 1664–1673. [Google Scholar] [CrossRef]
- Zhu, Y.; Huo, C. The Impact of Agricultural Production Efficiency on Agricultural Carbon Emissions in China. Energies 2022, 15, 4464. [Google Scholar] [CrossRef]
- Yu, Y.; Sun, R.; Sun, Y.; Wu, J.; Zhu, W. China’s Port Carbon Emission Reduction: A Study of Emission-Driven Factors. Atmosphere 2022, 13, 550. [Google Scholar] [CrossRef]
- Kong, F.; Song, J.; Yang, Z. A daily carbon emission prediction model combining two-stage feature selection and optimized extreme learning machine. Environ. Sci. Pollut. Res. 2022, 29, 87983–87997. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhu, S.; Qiu, Y.; Armaghani, D.J.; Zhou, A.; Yong, W. Predicting tunnel squeezing using support vector machine optimized by whale optimization algorithm. Acta Geotech. 2022, 17, 1343–1366. [Google Scholar] [CrossRef]
- Kong, F.; Song, J.; Yang, Z. A novel short-term carbon emission prediction model based on secondary decomposition method and long short-term memory network. Environ. Sci. Pollut. Res. 2022, 29, 64983–64998. [Google Scholar] [CrossRef]
- Zhao, A.; Song, X.; Li, J.; Yuan, Q.; Pei, Y.; Li, R.; Hitch, M. Effects of Carbon Tax on Urban Carbon Emission Reduction: Evidence in China Environmental Governance. Int. J. Environ. Res. Public Health 2023, 20, 2289. [Google Scholar] [CrossRef]
- Ott, C.; Schiemann, F. The market value of decomposed carbon emissions. J. Bus. Financ. Account. 2023, 50, 3–30. [Google Scholar] [CrossRef]
- Kılıç, M.; Kuzey, C. The effect of corporate governance on carbon emission disclosures: Evidence from Turkey. Int. J. Clim. Chang. Strateg. Manag. 2019, 11, 35–53. [Google Scholar] [CrossRef]
- Houqe, M.N.; Opare, S.; Zahir-Ul-hassan, M.K.; Ahmed, K. The Effects of Carbon Emissions and Agency Costs on Firm Performance. J. Risk Financ. Manag. 2022, 15, 152. [Google Scholar] [CrossRef]
- Wang, L.; Cao, Q.; Zhang, Z.; Mirjalili, S.; Zhao, W. Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems. Eng. Appl. Artif. Intell. 2022, 114, 105082. [Google Scholar] [CrossRef]
- Li, Z.; He, J.; Ni, T.; Huo, J. Numerical computation based few-shot learning for intelligent sea surface temperature prediction. Multimed. Syst. 2022, 29, 3001–3013. [Google Scholar] [CrossRef]
- Kolemen, E.; Egrioglu, E.; Bas, E.; Turkmen, M. A new deep recurrent hybrid artificial neural network of gated recurrent units and simple seasonal exponential smoothing. Granul. Comput. 2024, 9, 7. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Zhang, Z.; Chen, K.; Jin, Y.; Yan, Y.; Liu, J. Sparse Data-Extended Fusion Method for Sea Surface Temperature Prediction on the East China Sea. Appl. Sci. 2022, 12, 5905. [Google Scholar] [CrossRef]
- Hu, Y.; Lv, K. Hybrid prediction model for the interindustry carbon emissions transfer network based on the grey model and general vector machine. IEEE Access 2020, 8, 20616–20627. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, B.; Yu, Z.; Cao, J. Effects of the Digital Economy on Carbon Emissions: Evidence from China. Int. J. Environ. Res. Public Health 2022, 19, 9450. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar] [CrossRef]
- Guo, J.; Shi, B.; Yan, K.; Di, Y.; Tang, J.; Xiao, H.; Sato, Y. A twinning bare bones particle swarm optimization algorithm. PLoS ONE 2022, 17, e0267197. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhou, G.; Di, Y.; Shi, B.; Yan, K.; Sato, Y. A Bare-bones Particle Swarm Optimization with Crossed Memory for Global Optimization. IEEE Access 2023, 11, 31549–31568. [Google Scholar] [CrossRef]
- Guo, J.; Zhou, G.; Yan, K.; Shi, B.; Di, Y.; Sato, Y. A novel hermit crab optimization algorithm. Sci. Rep. 2023, 13, 9934. [Google Scholar] [CrossRef] [PubMed]
Parameters | GRU | LSTM | PSO-GRU | FAPSO-GRU |
---|---|---|---|---|
Populations | None | None | 5 | 5 |
Iterations | None | None | 20 | 20 |
Learning rate | 0.001 | 0.001 | [0.001, 0.15] | [0.001, 0.15] |
Number of neurons | 25 | 25 | [10, 50] | [10, 50] |
Epochs | 1000 | 1000 | 1000 | 1000 |
Optimizer | Amda | Amda | Amda | Amda |
GRU | LSTM | PSO-GRU | FAPSO-GRU | ||||||
---|---|---|---|---|---|---|---|---|---|
Year | Reality | Prediction | Error | Prediction | Error | Prediction | Error | Prediction | Error |
2016 | 62.26 | 64.153496 | 3.05% | 68.30172 | 9.71% | 65.77932 | 5.66% | 63.01046 | 1.21% |
2017 | 60.75 | 62.97126 | 3.65% | 68.251022 | 12.34% | 66.186607 | 8.94% | 61.601376 | 1.40% |
2018 | 63.83 | 60.2159 | 5.67% | 67.634743 | 5.96% | 63.729317 | 0.16% | 60.186832 | 5.71% |
2019 | 66.10 | 56.059467 | 15.19% | 67.536888 | 2.18% | 62.896084 | 4.84% | 61.087147 | 7.58% |
Indicator | Type | GRU | LSTM | PSO-GRU | FAPSO-GRU |
---|---|---|---|---|---|
MAE | Train | 3.7650 | 3.3301 | 2.4651 | 2.0798 |
Test | 4.4426 | 4.6969 | 3.0654 | 2.5647 | |
MAPE | Train | 0.2651 | 0.2276 | 0.2169 | 0.1882 |
Test | 0.0689 | 0.0755 | 0.0490 | 0.0397 | |
RMSE | Train | 5.8398 | 6.1205 | 3.8574 | 3.6503 |
Test | 5.5306 | 5.2278 | 3.6125 | 3.1494 |
Shanghai | GRU | LSTM | PSO-GRU | FAPSO-GRU | |||||
---|---|---|---|---|---|---|---|---|---|
Year | Reality | Prediction | Error | Prediction | Error | Prediction | Error | Prediction | Error |
2017 | 1.57 × 102 | 1.48 × 102 | 5.28% | 1.51 × 102 | 3.75% | 1.69 × 102 | 8.21% | 1.56 × 102 | 0.31% |
2018 | 1.51 × 102 | 1.42 × 102 | 6.48% | 1.47 × 102 | 3.26% | 1.71 × 102 | 12.94% | 1.55 × 102 | 2.31% |
2019 | 1.59 × 102 | 1.36 × 102 | 14.85% | 1.42 × 102 | 11.03% | 1.67 × 102 | 4.48% | 1.54 × 102 | 3.52% |
2020 | 1.55 × 102 | 1.34 × 102 | 13.15% | 1.41 × 102 | 8.95% | 1.66 × 102 | 7.44% | 1.51 × 102 | 2.42% |
2021 | 1.61 × 102 | 1.37 × 102 | 15.27% | 1.43 × 102 | 11.42% | 1.83 × 102 | 13.72% | 1.57 × 102 | 2.61% |
Beijing | GRU | LSTM | PSO-GRU | FAPSO-GRU | |||||
2017 | 7.01 × 101 | 7.73 × 101 | 10.36% | 7.54 × 101 | 7.65% | 7.65 × 101 | 9.22% | 7.48 × 101 | 6.72% |
2018 | 7.19 × 101 | 7.78 × 101 | 8.21% | 7.50 × 101 | 4.41% | 7.97 × 101 | 10.87% | 7.17 × 101 | 0.19% |
2019 | 7.16 × 101 | 7.98 × 101 | 11.40% | 7.52 × 101 | 4.94% | 8.05 × 101 | 12.37% | 6.92 × 101 | 3.38% |
2020 | 6.61 × 101 | 8.04 × 101 | 21.76% | 7.53 × 101 | 14.04% | 7.90 × 101 | 19.50% | 6.43 × 101 | 2.69% |
2021 | 6.70 × 101 | 8.12 × 101 | 21.17% | 7.55 × 101 | 12.70% | 7.86 × 101 | 17.30% | 6.26 × 101 | 6.49% |
Guangdong | GRU | LSTM | PSO-GRU | FAPSO-GRU | |||||
2017 | 5.33 × 102 | 4.93 × 102 | 7.45% | 4.83 × 102 | 9.46% | 4.83 × 102 | 9.49% | 5.13 × 102 | 3.71% |
2018 | 5.57 × 102 | 4.75 × 102 | 14.85% | 4.81 × 102 | 13.74% | 4.75 × 102 | 14.75% | 5.22 × 102 | 6.27% |
2019 | 5.52 × 102 | 4.62 × 102 | 16.43% | 4.80 × 102 | 13.03% | 4.78 × 102 | 13.43% | 5.56 × 102 | 0.63% |
2020 | 5.75 × 102 | 4.56 × 102 | 20.67% | 4.77 × 102 | 17.06% | 4.97 × 102 | 13.60% | 5.86 × 102 | 1.97% |
2021 | 6.70 × 102 | 4.58 × 102 | 31.68% | 4.73 × 102 | 29.36% | 4.95 × 102 | 26.04% | 6.04 × 102 | 9.78% |
Hubei | GRU | LSTM | PSO-GRU | FAPSO-GRU | |||||
2017 | 2.67 × 102 | 2.43 × 102 | 9.03% | 2.37 × 102 | 11.17% | 2.39 × 102 | 10.44% | 2.56 × 102 | 4.19% |
2018 | 2.58 × 102 | 2.32 × 102 | 10.13% | 2.31 × 102 | 10.62% | 2.29 × 102 | 11.37% | 2.56 × 102 | 0.78% |
2019 | 2.82 × 102 | 2.29 × 102 | 18.91% | 2.28 × 102 | 19.36% | 2.28 × 102 | 19.16% | 2.56 × 102 | 9.27% |
2020 | 2.42 × 102 | 2.14 × 102 | 11.54% | 2.23 × 102 | 8.07% | 2.32 × 102 | 4.22% | 2.43 × 102 | 0.32% |
2021 | 2.87 × 102 | 2.21 × 102 | 22.94% | 2.20 × 102 | 23.24% | 2.34 × 102 | 18.55% | 2.38 × 102 | 17.07% |
Hunan | GRU | LSTM | PSO-GRU | FAPSO-GRU | |||||
2017 | 2.76 × 102 | 2.75 × 102 | 0.30% | 2.65 × 102 | 3.96% | 2.64 × 102 | 4.47% | 2.52 × 102 | 8.54% |
2018 | 2.43 × 102 | 2.83 × 102 | 16.53% | 2.62 × 102 | 7.76% | 2.83 × 102 | 16.32% | 2.41 × 102 | 1.08% |
2019 | 2.42 × 102 | 2.82 × 102 | 16.37% | 2.58 × 102 | 6.76% | 3.09 × 102 | 27.86% | 2.12 × 102 | 12.27% |
2020 | 2.28 × 102 | 2.67 × 102 | 17.21% | 2.55 × 102 | 11.94% | 3.25 × 102 | 42.59% | 1.97 × 102 | 13.52% |
2021 | 2.18 × 102 | 2.65 × 102 | 21.73% | 2.54 × 102 | 16.55% | 3.39 × 102 | 55.47% | 1.92 × 102 | 12.16% |
Indicator | Type | GRU | LSTM | PSO-GRU | FAPSO-GRU | |
---|---|---|---|---|---|---|
Shanghai | MAE | Train | 3.9906 | 6.2799 | 1.8563 | 6.4119 |
Figure 4 | Test | 17.3467 | 12.1303 | 14.6456 | 3.5079 | |
MAPE | Train | 0.03143 | 0.056309 | 0.018076 | 0.049994 | |
Test | 0.11006 | 0.076807 | 0.093571 | 0.022325 | ||
RMSE | Train | 5.3332 | 11.536 | 3.5607 | 7.918 | |
Test | 18.6869 | 13.4085 | 15.6362 | 3.8907 | ||
Beijing | MAE | Train | 3.2317 | 3.4758 | 1.9523 | 3.6039 |
Figure 5 | Test | 9.9771 | 5.9717 | 9.5209 | 2.6771 | |
MAPE | Train | 0.043489 | 0.046034 | 0.023622 | 0.046167 | |
Test | 0.14581 | 0.0875 | 0.13851 | 0.038925 | ||
RMSE | Train | 4.5037 | 4.9129 | 3.7689 | 5.0115 | |
Test | 10.6025 | 6.4778 | 9.8139 | 3.1643 | ||
Guangdong | MAE | Train | 10.2797 | 22.6605 | 51.8649 | 17.8525 |
Figure 6 | Test | 108.838 | 98.7454 | 91.9193 | 26.987 | |
MAPE | Train | 0.048321 | 0.12716 | 0.24141 | 0.09715 | |
Test | 0.18214 | 0.16531 | 0.15463 | 0.044691 | ||
RMSE | Train | 20.1912 | 49.8581 | 62.2152 | 32.5912 | |
Test | 123.1097 | 111.2409 | 101.3371 | 34.744 | ||
Hubei | MAE | Train | 12.1843 | 21.7037 | 13.4301 | 18.4447 |
Figure 7 | Test | 39.4897 | 39.6322 | 34.9526 | 17.8247 | |
MAPE | Train | 0.063819 | 0.14075 | 0.091632 | 0.12562 | |
Test | 0.14511 | 0.14494 | 0.12748 | 0.063255 | ||
RMSE | Train | 15.8157 | 32.4832 | 17.6059 | 24.2832 | |
Test | 42.9677 | 43.4993 | 38.7343 | 25.3507 | ||
Hunan | MAE | Train | 7.5641 | 34.3669 | 36.1966 | 8.8814 |
Figure 8 | Test | 33.4465 | 21.8872 | 67.4729 | 22.6347 | |
MAPE | Train | 0.063502 | 0.34756 | 0.32783 | 0.092538 | |
Test | 0.14429 | 0.093944 | 0.29342 | 0.095131 | ||
RMSE | Train | 12.1432 | 47.1701 | 43.5294 | 14.7654 | |
Test | 37.3306 | 23.5976 | 77.8497 | 24.876 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Li, J.; Sato, Y.; Yan, Z. A Gated Recurrent Unit Model with Fibonacci Attenuation Particle Swarm Optimization for Carbon Emission Prediction. Processes 2024, 12, 1063. https://doi.org/10.3390/pr12061063
Guo J, Li J, Sato Y, Yan Z. A Gated Recurrent Unit Model with Fibonacci Attenuation Particle Swarm Optimization for Carbon Emission Prediction. Processes. 2024; 12(6):1063. https://doi.org/10.3390/pr12061063
Chicago/Turabian StyleGuo, Jia, Jiacheng Li, Yuji Sato, and Zhou Yan. 2024. "A Gated Recurrent Unit Model with Fibonacci Attenuation Particle Swarm Optimization for Carbon Emission Prediction" Processes 12, no. 6: 1063. https://doi.org/10.3390/pr12061063
APA StyleGuo, J., Li, J., Sato, Y., & Yan, Z. (2024). A Gated Recurrent Unit Model with Fibonacci Attenuation Particle Swarm Optimization for Carbon Emission Prediction. Processes, 12(6), 1063. https://doi.org/10.3390/pr12061063