Photodegradation of Decabrominated Diphenyl Ether in Soil Suspensions: Kinetics, Mechanisms and Intermediates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. BDE-209 Contaminated Soil and of Soil Suspension Preparation
2.3. BDE-209 Photodegradation in Soil Suspension
2.4. Sample Pretreatment
2.5. Analytic Determination
3. Results and Discussion
3.1. BDE-209 Photodegradation in Soil Suspensions
3.2. The Effect of HA on BDE-209 Photodegradation in Soil Suspensions
3.3. The Effect of HA on BDE-209 Photodegradation in Soil Suspensions
3.4. The Products of BDE-209 Degradation in Soil Suspensions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bu, Q.; Wu, D.; Xia, J.; Wu, M.; Liu, X.; Cao, Z.; Yu, G. Polybrominated diphenyl ethers and novel brominated flame retardants in indoor dust of different microenvironments in Beijing, China. Environ. Int. 2019, 122, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Han, W.; Yang, X.; Li, Y.; Wang, Y. The occurrence of polybrominated diphenyl ether (PBDE) contamination in soil, water/sediment, and air. Environ. Sci. Pollut. Res. 2019, 26, 23219–23241. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, G.; Buser, A.M.; Soehl, A.; Murray, M.W.; Diamond, M.L. Stocks and Flows of PBDEs in Products from Use to Waste in the US and Canada from 1970 to 2020. Environ. Sci. Technol. 2015, 49, 1521–1528. [Google Scholar] [CrossRef] [PubMed]
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef]
- Huang, K.; Guo, J.; Xu, Z. Recycling of waste printed circuit boards: A review of current technologies and treatment status in China. J. Hazard. Mater. 2009, 164, 399–408. [Google Scholar] [CrossRef]
- Cequier, E.; Ionas, A.C.; Covaci, A.; Maria Marce, R.; Becher, G.; Thomsen, C. Occurrence of a Broad Range of Legacy and Emerging Flame Retardants in Indoor Environments in Norway. Environ. Sci. Technol. 2014, 48, 6827–6835. [Google Scholar] [CrossRef]
- Darnerud, P. Toxic effects of brominated flame retardants in man and in wildlife. Environ. Int. 2003, 29, 841–853. [Google Scholar] [CrossRef]
- De Wit, C.A. An overview of brominated flame retardants in the environment. Chemosphere 2002, 46, 583–624. [Google Scholar] [CrossRef]
- Giulivo, M.; Capri, E.; Kalogianni, E.; Milacic, R.; Majone, B.; Ferrari, F.; Eljarrat, E.; Barcelo, D. Occurrence of halogenated and organophosphate flame retardants in sediment and fish samples from three European river basins. Sci. Total Environ. 2017, 586, 782–791. [Google Scholar] [CrossRef] [Green Version]
- Shen, M.; Ge, J.; Lam, J.C.W.; Zhu, M.; Li, J.; Zeng, L. Occurrence of two novel triazine-based flame retardants in an E-waste recycling area in South China: Implication for human exposure. Sci. Total Environ. 2019, 683, 249–257. [Google Scholar] [CrossRef]
- Bonde, J.P.; Flachs, E.M.; Rimborg, S.; Glazer, C.H.; Giwercman, A.; Ramlau-Hansen, C.H.; Hougaard, K.S.; Hoyer, B.B.; Haervig, K.K.; Petersen, S.B.; et al. The epidemiologic evidence linking prenatal and postnatal exposure to endocrine disrupting chemicals with male reproductive disorders: A systematic review and meta-analysis. Hum. Reprod. Update 2017, 23, 104–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boas, M.; Feldt-Rasmussen, U.; Main, K.M. Thyroid effects of endocrine disrupting chemicals. Mol. Cell. Endocrinol. 2012, 355, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.G.; de Laat, R.; Tagliaferri, S.; Pellacani, C. A mechanistic view of polybrominated diphenyl ether (PBDE) developmental neurotoxicity. Toxicol. Lett. 2014, 230, 282–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, J.; Lu, G.; Wang, R.; Tang, T.; Huang, K.; Jiang, F.; Yu, W.; Tao, X.; Yin, H.; Dang, Z. The formation pathways of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) from pyrolysis of polybrominated diphenyl ethers (PBDEs): Effects of bromination arrangement and level. J. Hazard. Mater. 2020, 399, 123004. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Tang, T.; Xie, J.; Tao, X.; Huang, K.; Zou, M.; Yin, H.; Dang, Z.; Lu, G. Debromination of polybrominated diphenyl ethers (PBDEs) and their conversion to polybrominated dibenzofurans (PBDFs) by UV light: Mechanisms and pathways. J. Hazard. Mater. 2018, 354, 1–7. [Google Scholar] [CrossRef]
- Kurtz, T.; Zeng, T.; Rosario-Ortiz, F.L. Photodegradation of cyanotoxins in surface waters. Water Res. 2021, 192, 116804. [Google Scholar] [CrossRef]
- Rodenburg, L.A.; Meng, Q.; Yee, D.; Greenfield, B.K. Evidence for photochemical and microbial debromination of polybrominated diphenyl ether flame retardants in San Francisco Bay sediment. Chemosphere 2014, 106, 36–43. [Google Scholar] [CrossRef]
- Pan, Y.; Tsang, D.C.; Wang, Y.; Li, Y.; Yang, X. The photodegradation of polybrominated diphenyl ethers (PBDEs) in various environmental matrices: Kinetics and mechanisms. Chem. Eng. J. 2016, 297, 74–96. [Google Scholar] [CrossRef] [Green Version]
- Santos, M.S.; Alves, A.; Madeira, L.M. Chemical and photochemical degradation of polybrominated diphenyl ethers in liquid systems—A review. Water Res. 2016, 88, 39–59. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.; Lu, G.; Zheng, Z.; Wang, R.; Tang, T.; Tao, X.; Cai, R.; Dang, Z.; Wu, P.; Yin, H. Photodegradation of 2,4,4′-tribrominated diphenyl ether in various surfactant solutions: Kinetics, mechanisms and intermediates. Environ. Sci. Processes Impacts 2018, 20, 806–812. [Google Scholar] [CrossRef]
- Hua, I.; Kang, N.; Jafvert, C.T.; Fábrega-Duque, J.R. Heterogeneous photochemical reactions of decabromodiphenyl ether. Environ. Toxicol. Chem. Int. J. 2003, 22, 798–804. [Google Scholar] [CrossRef]
- Ahn, M.; Filley, T.; Jafvert, C.; Nies, L.; Hua, I.; Bezares-Cruz, J. Photodegradation of Decabromodiphenyl Ether Adsorbed onto Clay Minerals, Metal Oxides, and Sediment. Environ. Sci. Technol. 2006, 40, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Lu, G.; Lin, H.; Huang, K.; Tang, T.; Xue, X.; Yang, X.; Yin, H.; Dang, Z. Relative roles of H-atom transfer and electron transfer in the debromination of polybrominated diphenyl ethers by palladized nanoscale zerovalent iron. Environ. Pollut. 2016, 222, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xu, X.; Wu, Y.; Ge, J.; Li, W.; Huo, X. Polybrominated diphenyl ethers in residential and agricultural soils from an electronic waste polluted region in South China: Distribution, compositional profile, and sources. Chemosphere 2014, 102, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Liu, H.; He, J.; Li, Y.; Wang, R.; Tang, T.; Tao, X.; Yin, H.; Dang, Z.; Lu, G. Photoassisted degradation of 2,2′,4,4′-tetrabrominated diphenyl ether in simulated soil washing system containing Triton X series surfactants. Environ. Pollut. 2020, 265, 115005. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Wang, J.; Zeng, G.; Liu, Y.; Deng, Y.; Zhou, Y.; Tang, J.; Wang, J.; Guo, Z. Enhanced photocatalytic degradation of norfloxacin in aqueous Bi2WO6 dispersions containing nonionic surfactant under visible light irradiation. J. Hazard. Mater. 2016, 306 (Suppl. C), 295–304. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.W.; Han, R.; Wang, H.T.; Zhao, Y.; Chu, Z.; Wu, H.Y. Photoassisted degradation of pentachlorophenol in a simulated soil washing system containing nonionic surfactant Triton X-100 with La–B codoped TiO2 under visible and solar light irradiation. Appl. Catal. B Environ. 2011, 103, 470–478. [Google Scholar] [CrossRef]
- Wang, R.; Tang, T.; Wei, Y.; Dang, D.; Huang, K.; Chen, X.; Yin, H.; Tao, X.; Lin, Z.; Dang, Z.; et al. Photocatalytic debromination of polybrominated diphenyl ethers (PBDEs) on metal doped TiO2 nanocomposites: Mechanisms and pathways. Environ. Int. 2019, 127, 5–12. [Google Scholar] [CrossRef]
- Huang, K.; Liu, H.; He, J.; He, Y.; Tao, X.; Yin, H.; Dang, Z.; Lu, G. Application of Ag/TiO2 in photocatalytic degradation of 2,2′,4,4′-tetrabromodiphenyl ether in simulated washing waste containing Triton X-100. J. Environ. Chem. Eng. 2021, 9, 105077. [Google Scholar] [CrossRef]
- Huang, K.; Lu, G.; Lian, W.; Xu, Y.; Wang, R.; Tang, T.; Tao, X.; Yi, X.; Dang, Z.; Yin, H. Photodegradation of 4,4′-dibrominated diphenyl ether in Triton X-100 micellar solution. Chemosphere 2017, 180, 423–429. [Google Scholar] [CrossRef]
- Wu, D.; Li, M.; Du, L.; Ren, D.; Wang, J. Straw return in paddy field alters photodegradation of organic contaminants by changing the quantity rather than the quality of water-soluble soil organic matter. Sci. Total Environ. 2022, 821, 153371. [Google Scholar] [CrossRef] [PubMed]
- Moeckel, C.; Breivik, K.; Nøst, T.H.; Sankoh, A.; Jones, K.C.; Sweetman, A. Soil pollution at a major West African E-waste recycling site: Contamination pathways and implications for potential mitigation strategies. Environ. Int. 2020, 137, 105563. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Liang, J.; Jafvert, C.T.; Li, Q.; Chen, S.; Tao, X.; Zou, M.; Dang, Z.; Lu, G. Effects of ferric ion on the photo-treatment of nonionic surfactant Brij35 washing waste containing 2,2′,4,4′-terabromodiphenyl ether. J. Hazard. Mater. 2021, 415, 125572. [Google Scholar] [CrossRef]
- Hu, J.; Chen, H.; Hou, X.; Jiang, X. Cobalt and Copper Ions Synergistically Enhanced Photochemical Vapor Generation of Molybdenum: Mechanism Study and Analysis of Water Samples. Anal. Chem. 2019, 91, 5938–5944. [Google Scholar] [CrossRef] [PubMed]
- Panda, D.; Manickam, S. Heterogeneous Sono-Fenton treatment of decabromodiphenyl ether (BDE-209): Debromination mechanism and transformation pathways. Sep. Purif. Technol. 2019, 209, 914–920. [Google Scholar] [CrossRef]
Contents | pH | SOM g/kg | Fe g/kg | H2O % | CEC mmol/kg | Sand 1 % | Silt 1 % | Clay 1 % |
---|---|---|---|---|---|---|---|---|
Soil | 5.33 | 6.89 | 41.57 | 1.55 | 84.8 | 44.0 | 41.0 | 15.0 |
Light Source | BDE-209/Soil (mg/g) | t1/2 (h) | kp (h−1) | R2 |
---|---|---|---|---|
500 W mercury lamp | 2 | 9.079 | 0.076 | 0.9407 |
300 W mercury lamp | 2 | 18.809 | 0.036 | 0.9502 |
500 W Xenon lamp | 2 | 52.750 | 0.013 | 0.9371 |
300 W Xenon lamp | 2 | 69.038 | 0.010 | 0.9525 |
BDE-209/Soil (mg/g) | Amount (g) | t1/2 (h) | kp (h−1) | R2 |
---|---|---|---|---|
2 | 0.02 | 9.079 | 0.076 | 0.9407 |
2 | 0.05 | 11.301 | 0.061 | 0.9682 |
2 | 0.10 | 22.323 | 0.031 | 0.9695 |
1 | 0.02 | 7.672 | 0.090 | 0.9763 |
BDE-209/Soil (mg/g) | pH Value | t1/2 (h) | kp (h−1) | R2 |
---|---|---|---|---|
2 | 3.5 | 12.543 | 0.055 | 0.9721 |
2 | 5.5 | 12.340 | 0.056 | 0.9779 |
2 | 7.5 | 10.445 | 0.066 | 0.9596 |
2 | 9.5 | 9.628 | 0.071 | 0.9907 |
BDE-209/Soil (mg/g) | HA (mg/L) | t1/2 (h) | kp (h−1) | R2 |
---|---|---|---|---|
2 | 0 | 9.627 | 0.072 | 0.9355 |
2 | 5 | 12.836 | 0.054 | 0.9387 |
2 | 10 | 28.881 | 0.024 | 0.8902 |
BDE-209/Soil (mg/g) | Metal Ions | t1/2 (h) | kp (h−1) | R2 |
---|---|---|---|---|
2 | Water | 19.736 | 0.035 | 0.8462 |
2 | 1 mM FeCl3 | 52.194 | 0.013 | 0.8180 |
2 | 0.1 mM FeCl3 | 20.852 | 0.033 | 0.7777 |
2 | 1 mM CuCl2 | 29.259 | 0.023 | 0.7906 |
2 | 0.1 mM CuCl2 | 26.496 | 0.026 | 0.7427 |
2 | 1 mM ZnCl2 | 22.410 | 0.030 | 0.8791 |
2 | 0.1 mM ZnCl2 | 21.023 | 0.032 | 0.8513 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, K.; Lin, H.; Tao, X.; Zou, M.; Lu, G. Photodegradation of Decabrominated Diphenyl Ether in Soil Suspensions: Kinetics, Mechanisms and Intermediates. Processes 2022, 10, 718. https://doi.org/10.3390/pr10040718
Huang K, Lin H, Tao X, Zou M, Lu G. Photodegradation of Decabrominated Diphenyl Ether in Soil Suspensions: Kinetics, Mechanisms and Intermediates. Processes. 2022; 10(4):718. https://doi.org/10.3390/pr10040718
Chicago/Turabian StyleHuang, Kaibo, Haozhong Lin, Xueqin Tao, Mengyao Zou, and Guining Lu. 2022. "Photodegradation of Decabrominated Diphenyl Ether in Soil Suspensions: Kinetics, Mechanisms and Intermediates" Processes 10, no. 4: 718. https://doi.org/10.3390/pr10040718
APA StyleHuang, K., Lin, H., Tao, X., Zou, M., & Lu, G. (2022). Photodegradation of Decabrominated Diphenyl Ether in Soil Suspensions: Kinetics, Mechanisms and Intermediates. Processes, 10(4), 718. https://doi.org/10.3390/pr10040718