CARL and His POT: Measuring Risks in Commodity Markets
Abstract
1. Introduction
2. Methodology
2.1. POT Methods
2.2. CARL Models
3. Empirical Application
3.1. Data Description
3.2. ES Testing Procedures
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Acerbi, Carlo, and Dirk Tasche. 2002. On the coherence of expected shortfall. Journal of Banking & Finance 26: 1487–503. [Google Scholar]
- Algieri, Bernardina. 2014a. The influence of biofuels, economic and financial factors on daily returns of commodity futures prices. Energy Policy 69: 227–47. [Google Scholar] [CrossRef]
- Algieri, Bernardina. 2014b. A roller coaster ride: an empirical investigation of the main drivers of the international wheat price. Agricultural Economics 45: 459–75. [Google Scholar] [CrossRef]
- Algieri, Bernardina, and Arturo Leccadito. 2017. Assessing contagion risk from energy and non-energy commodity markets. Energy Economics 62: 312–22. [Google Scholar] [CrossRef]
- Algieri, Bernardina, and Arturo Leccadito. 2019. Ask CARL: Forecasting tail probabilities for energy commodities. Energy Economics 84: 104497. [Google Scholar] [CrossRef]
- Anatolyev, Stanislav, and Nikolay Gospodinov. 2010. Modeling financial return dynamics via decomposition. Journal of Business & Economic Statistics 28: 232–45. [Google Scholar]
- Antonakakis, Nikolaos, Tsangyao Chang, Juncal Cunado, and Rangan Gupta. 2018. The relationship between commodity markets and commodity mutual funds: A wavelet-based analysis. Finance Research Letters 24: 1–9. [Google Scholar] [CrossRef]
- Artzner, Philippe, Freddy Delbaen, Jean-Marc Eber, and David Heath. 1999. Coherent measures of risk. Mathematical Finance 9: 203–28. [Google Scholar] [CrossRef]
- Bhardwaj, Geetesh, Gary B. Gorton, and Kevin G. Rouwenhorst. 2016. Investor interestand the returns tocommodity investing. The Journal of Portfolio Management 42: 44–55. [Google Scholar] [CrossRef]
- Bouri, Elie, Rangan Gupta, Amine Lahiani, and Muhammad Shahbaz. 2018. Testing for asymmetric nonlinear short- and long-run relationships between bitcoin, aggregate commodity and gold prices. Resources Policy 57: 224–35. [Google Scholar] [CrossRef]
- Davison, A. C., and R. L. Smith. 1990. Models for exceedances over high thresholds. Journal of the Royal Statistical Society. Series B (Methodological) 52: 393–442. [Google Scholar] [CrossRef]
- de Nicola, Francesca, Pierangelo De Pace, and Manuel A. Hernandez. 2016. Co-movement of major energy, agricultural, and food commodity price returns: A time-series assessment. Energy Economics 57: 28–41. [Google Scholar] [CrossRef]
- Fernandez-Perez, Adrian, Bart Frijns, and Alireza Tourani-Rad. 2016. Contemporaneous interactions among fuel, biofuel and agricultural commodities. Energy Economics 58: 1–10. [Google Scholar] [CrossRef]
- Giot, Pierre, and Sebastien Laurent. 2003. Market risk in commodity markets: A VaR approach. Energy Economics 25: 435–57. [Google Scholar] [CrossRef]
- Han, Heejoon. 2016. Quantile Dependence between Stock Markets and its Application in Volatility Forecasting. arXiv arXiv:1608.07193. [Google Scholar]
- Ji, Qiang, and Ying Fan. 2012. How does oil price volatility affect non-energy commodity markets? Special issue on Thermal Energy Management in the Process Industries. Applied Energy 89: 273–80. [Google Scholar] [CrossRef]
- Ji, Qiang, Elie Bouri, David Roubaud, and Syed Jawad Hussain Shahzad. 2018. Risk spillover between energy and agricultural commodity markets: A dependence-switching covar-copula model. Energy Economics 75: 14–27. [Google Scholar] [CrossRef]
- Kang, Sang Hoon, Ron McIver, and Seong-Min Yoon. 2017. Dynamic spillover effects among crude oil, precious metal, and agricultural commodity futures markets. Energy Economics 62: 19–32. [Google Scholar] [CrossRef]
- Kratz, Marie, Yen H. Lok, and Alexander J. McNeil. 2018. Multinomial VaR backtests: A simple implicit approach to backtesting expected shortfall. Journal of Banking & Finance 88: 393–407. [Google Scholar]
- Kumar, Satish, Aviral Kumar Tiwari, I. D. Raheem, and Qiang Ji. 2019. Dependence risk analysis in energy, agricultural and precious metals commodities: a pair vine copula approach. Applied Economics, 1–18. [Google Scholar] [CrossRef]
- McNeil, Alexander J., Rudiger Frey, and Paul Embrechts. 2005. Quantitative Risk Management: Concepts, Techniques And Tools. Princeton Series in Finance; Princeton: Princeton University Press. [Google Scholar]
- Mensi, Walid, Shawkat Hammoudeh, Duc Khuong Nguyen, and Seong-Min Yoon. 2014. Dynamic spillovers among major energy and cereal commodity prices. Energy Economics 43: 225–43. [Google Scholar] [CrossRef]
- Mensi, Walid, Aviral Tiwari, Elie Bouri, David Roubaud, and Khamis H. Al-Yahyaee. 2017. The dependence structure across oil, wheat, and corn: A wavelet-based copula approach using implied volatility indexes. Energy Economics 66: 122–39. [Google Scholar] [CrossRef]
- Nazlioglu, Saban, and Ugur Soytas. 2012. Oil price, agricultural commodity prices, and the dollar: A panel cointegration and causality analysis. Energy Economics 34: 1098–104. [Google Scholar] [CrossRef]
- Pickands, James, III. 1975. Statistical inference using extreme order statistics. Annals of Statistics 3: 119–31. [Google Scholar] [CrossRef]
- Pindyck, Robert S., and Julio J. Rotemberg. 1990. The excess co-movement of commodity prices. The Economic Journal 100: 1173–89. [Google Scholar] [CrossRef]
- Rehman, Mobeen Ur, Elie Bouri, Veysel Eraslan, and Satish Kumar. 2019. Energy and non-energy commodities: An asymmetric approach towards portfolio diversification in the commodity market. Resources Policy 63: 1–19. [Google Scholar] [CrossRef]
- Rydberg, Tina Hviid, and Neil Shephard. 2003. Dynamics of trade-by-trade price movements: Decomposition and models. Journal of Financial Econometrics 1: 2–25. [Google Scholar] [CrossRef]
- Sadorsky, Perry. 1999. Oil price shocks and stock market activity. Energy Economics 21: 449–69. [Google Scholar] [CrossRef]
- Shahzad, Jawad, Jose Arreola Hernandez, Khamis Al-Yahyaee, and Rania Jammazi. 2018. Asymmetric risk spillovers between oil and agricultural commodities. Energy Policy 118: 182–98. [Google Scholar] [CrossRef]
- Smith, Richard L. 1989. Extreme value analysis of environmental time series: An application to trend detection in ground-level ozone. Statistical Science 4: 367–77. [Google Scholar] [CrossRef]
- Tadesse, Getaw, Bernardina Algieri, Matthias Kalkuhl, and Joachim von Braun. 2014. Drivers and triggers of international food price spikes and volatility. Food Policy 47: 117–28. [Google Scholar] [CrossRef]
- Tang, Ke, and Wei Xiong. 2012. Index investment and the financialization of commodities. Financial Analysts Journal 68: 54–74. [Google Scholar] [CrossRef]
- Taylor, James W., and Keming Yu. 2016. Using auto-regressive logit models to forecast the exceedance probability for financial risk management. Journal of the Royal Statistical Society: Series A (Statistics in Society) 179: 1069–92. [Google Scholar] [CrossRef]
- Tiwari, Aviral Kumar, Nader Trabelsi, Faisal Alqahtani, and Ibrahim D. Raheem. 2020. Systemic risk spillovers between crude oil and stock index returns of g7 economies: Conditional value-at-risk and marginal expected shortfall approaches. Energy Economics 86: 104646. [Google Scholar] [CrossRef]
Statistic | WTI | Natural Gas | Gold | Corn |
---|---|---|---|---|
Mean | 0.017 | −0.019 | 0.033 | 0.009 |
Min | −13.065 | −14.893 | −9.821 | −26.862 |
Max | 16.410 | 26.771 | 8.625 | 12.757 |
Standard Deviation | 2.363 | 3.201 | 1.188 | 1.948 |
Kurtosis | 7.134 | 7.536 | 8.186 | 15.195 |
Skewness | 0.115 | 0.685 | −0.371 | −0.691 |
Jarque-Bera | 2500.4 | 3274.2 | 4002.4 | 21,964.9 |
J-B p-value | 0.000 | 0.000 | 0.000 | 0.000 |
ADF p-value | 0.000 | 0.000 | 0.000 | 0.000 |
N. of observations | 3500 | 3500 | 3500 | 3500 |
Correlation | WTI | Natural Gas | Gold | Corn |
---|---|---|---|---|
WTI | 1 | |||
Natural gas | 0.244 | 1 | ||
Gold | 0.242 | 0.074 | 1 | |
Corn | 0.241 | 0.107 | 0.174 | 1 |
WTI | Gold | Natural Gas | Corn | |
---|---|---|---|---|
Pearson Test; TVPOT-CARL-IND Model | 0.0716 | 0.0696 | 0.0493 | 0.0883 |
Pearson Test; TVPOT-CARL-IND-X Model | 0.3282 | 0.1630 | 0.2558 | 0.0412 |
Pearson Test; TVPOT-CARL-ABS Model | 0.5879 | 0.0129 | 0.0897 | 0.0061 |
Pearson Test; TVPOT-CARL-ABS-X Model | 0.7000 | 0.0541 | 0.2124 | 0.0564 |
Pearson Test; GARCH Model | 0.2583 | 0.0787 | 0.0600 | 0.0000 |
Pearson Test; HS | 0.0000 | 0.0102 | 0.1954 | 0.0878 |
Pearson Test; FHS | 0.0307 | 0.0303 | 0.0152 | 0.0735 |
Pearson Test; QAV Model | 0.0000 | 0.0019 | 0.2236 | 0.0108 |
Nass Test; TVPOT-CARL-IND Model | 0.0726 | 0.0705 | 0.0502 | 0.0893 |
Nass Test; TVPOT-CARL-IND-X Model | 0.3281 | 0.1639 | 0.2562 | 0.0420 |
Nass Test; TVPOT-CARL-ABS Model | 0.5859 | 0.0133 | 0.0908 | 0.0064 |
Nass Test; TVPOT-CARL-ABS-X Model | 0.6975 | 0.0550 | 0.2131 | 0.0574 |
Nass Test; GARCH Model | 0.2587 | 0.0797 | 0.0609 | 0.0000 |
Nass Test; HS | 0.0000 | 0.0106 | 0.1956 | 0.0659 |
Nass Test; FHS | 0.0314 | 0.0310 | 0.0157 | 0.0810 |
Nass Test; QAV Model | 0.0000 | 0.0020 | 0.2113 | 0.0112 |
LRT Test; TVPOT-CARL-IND Model | 0.0479 | 0.0465 | 0.0284 | 0.0552 |
LRT Test; TVPOT-CARL-IND-X Model | 0.2791 | 0.1212 | 0.2180 | 0.0193 |
LRT Test; TVPOT-CARL-ABS Model | 0.5583 | 0.0051 | 0.0647 | 0.0017 |
LRT Test; TVPOT-CARL-ABS-X Model | 0.6912 | 0.0294 | 0.1736 | 0.0329 |
LRT Test; GARCH Model | 0.3190 | 0.0786 | 0.0296 | 0.0000 |
LRT Test; HS | 0.0000 | 0.0049 | 0.1780 | 0.0628 |
LRT Test; FHS | 0.0178 | 0.0102 | 0.0196 | 0.0722 |
LRT Test; QAV Model | 0.0000 | 0.0004 | 0.1877 | 0.0284 |
WTI | Gold | Natural Gas | Corn | |
---|---|---|---|---|
Pearson Test; TVPOT-CARL-IND Model | 0.2318 | 0.2374 | 0.1576 | 0.2739 |
Pearson Test; TVPOT-CARL-IND-X Model | 0.1231 | 0.3822 | 0.2025 | 0.2738 |
Pearson Test; TVPOT-CARL-ABS Model | 0.2986 | 0.0605 | 0.1253 | 0.0377 |
Pearson Test; TVPOT-CARL-ABS-X Model | 0.3281 | 0.1279 | 0.1489 | 0.2723 |
Pearson Test; GARCH Model | 0.0153 | 0.0000 | 0.1265 | 0.0000 |
Pearson Test; HS | 0.0000 | 0.0375 | 0.0221 | 0.2518 |
Pearson Test; FHS | 0.0356 | 0.0596 | 0.0444 | 0.2658 |
Pearson Test; QAV Model | 0.0000 | 0.0003 | 0.1213 | 0.0142 |
Nass Test; TVPOT-CARL-IND Model | 0.2336 | 0.2391 | 0.1600 | 0.2754 |
Nass Test; TVPOT-CARL-IND-X Model | 0.1256 | 0.3820 | 0.2045 | 0.2757 |
Nass Test; TVPOT-CARL-ABS Model | 0.2996 | 0.0627 | 0.1278 | 0.0395 |
Nass Test; TVPOT-CARL-ABS-X Model | 0.3287 | 0.1304 | 0.1477 | 0.2736 |
Nass Test; GARCH Model | 0.0163 | 0.0000 | 0.1290 | 0.0000 |
Nass Test; HS | 0.0000 | 0.0393 | 0.0235 | 0.2529 |
Nass Test; FHS | 0.0373 | 0.0617 | 0.0463 | 0.2629 |
Nass Test; QAV Model | 0.0000 | 0.0004 | 0.1167 | 0.0152 |
LRT Test; TVPOT-CARL-IND Model | 0.1421 | 0.1507 | 0.0925 | 0.2749 |
LRT Test; TVPOT-CARL-IND-X Model | 0.0456 | 0.2799 | 0.1314 | 0.2754 |
LRT Test; TVPOT-CARL-ABS Model | 0.2064 | 0.0183 | 0.0622 | 0.0107 |
LRT Test; TVPOT-CARL-ABS-X Model | 0.2274 | 0.0695 | 0.1735 | 0.2733 |
LRT Test; GARCH Model | 0.0496 | 0.0003 | 0.0466 | 0.0000 |
LRT Test; HS | 0.0000 | 0.0125 | 0.0398 | 0.2483 |
LRT Test; FHS | 0.0092 | 0.0139 | 0.0466 | 0.2652 |
LRT Test; QAV Model | 0.0000 | 0.0000 | 0.0769 | 0.0357 |
WTI | Gold | Natural Gas | Corn | ||
---|---|---|---|---|---|
Pearson Test; TVPOT-CARL-IND Model | 0.2394 | 0.0612 | 0.0603 | 0.0562 | |
Pearson Test; TVPOT-CARL-IND-X Model | 0.5092 | 0.0964 | 0.1462 | 0.0606 | |
Pearson Test; TVPOT-CARL-ABS Model | 0.7089 | 0.0131 | 0.0474 | 0.0084 | |
Pearson Test; TVPOT-CARL-ABS-X Model | 0.7518 | 0.0804 | 0.0839 | 0.1046 | |
Nass Test; TVPOT-CARL-IND Model | 0.2399 | 0.0622 | 0.0613 | 0.0571 | |
Nass Test; TVPOT-CARL-IND-X Model | 0.5078 | 0.0974 | 0.1472 | 0.0615 | |
Nass Test; TVPOT-CARL-ABS Model | 0.7063 | 0.0135 | 0.0482 | 0.0087 | |
Nass Test; TVPOT-CARL-ABS-X Model | 0.7508 | 0.0814 | 0.0849 | 0.1056 | |
LRT Test; TVPOT-CARL-IND Model | 0.2022 | 0.0365 | 0.0408 | 0.0351 | |
LRT Test; TVPOT-CARL-IND-X Model | 0.4673 | 0.0635 | 0.1125 | 0.0387 | |
LRT Test; TVPOT-CARL-ABS Model | 0.6808 | 0.0055 | 0.0307 | 0.0028 | |
LRT Test; TVPOT-CARL-ABS-X Model | 0.6110 | 0.0510 | 0.0566 | 0.0796 | |
Pearson Test; TVPOT-CARL-IND Model | 0.2200 | 0.3348 | 0.2215 | 0.2693 | |
Pearson Test; TVPOT-CARL-IND-X Model | 0.1260 | 0.4058 | 0.4691 | 0.2488 | |
Pearson Test; TVPOT-CARL-ABS Model | 0.3967 | 0.0307 | 0.2348 | 0.0630 | |
Pearson Test; TVPOT-CARL-ABS-X Model | 0.4063 | 0.3113 | 0.3827 | 0.3606 | |
Nass Test; TVPOT-CARL-IND Model | 0.2219 | 0.3352 | 0.2234 | 0.2707 | |
Nass Test; TVPOT-CARL-IND-X Model | 0.1285 | 0.4053 | 0.4676 | 0.2504 | |
Nass Test; TVPOT-CARL-ABS Model | 0.3963 | 0.0323 | 0.2366 | 0.0651 | |
Nass Test; TVPOT-CARL-ABS-X Model | 0.4058 | 0.3121 | 0.3825 | 0.3607 | |
LRT Test; TVPOT-CARL-IND Model | 0.1522 | 0.2396 | 0.1328 | 0.1818 | |
LRT Test; TVPOT-CARL-IND-X Model | 0.0547 | 0.3092 | 0.3878 | 0.1621 | |
LRT Test; TVPOT-CARL-ABS Model | 0.3227 | 0.0069 | 0.1629 | 0.0229 | |
LRT Test; TVPOT-CARL-ABS-X Model | 0.3278 | 0.2071 | 0.2921 | 0.2799 |
WTI | Gold | Natural Gas | Corn | ||
---|---|---|---|---|---|
Pearson Test; TVPOT-CARL-IND Model | 0.3600 | 0.0551 | 0.0090 | 0.0259 | |
Pearson Test; TVPOT-CARL-IND-X Model | 0.1534 | 0.0937 | 0.1236 | 0.0831 | |
Pearson Test; TVPOT-CARL-ABS Model | 0.6923 | 0.0144 | 0.0397 | 0.0112 | |
Pearson Test; TVPOT-CARL-ABS-X Model | 0.6961 | 0.0600 | 0.0553 | 0.0303 | |
Nass Test; TVPOT-CARL-IND Model | 0.3597 | 0.0561 | 0.0094 | 0.0266 | |
Nass Test; TVPOT-CARL-IND-X Model | 0.1543 | 0.0947 | 0.1246 | 0.0841 | |
Nass Test; TVPOT-CARL-ABS Model | 0.6898 | 0.0149 | 0.0405 | 0.0116 | |
Nass Test; TVPOT-CARL-ABS-X Model | 0.6971 | 0.0609 | 0.0562 | 0.0311 | |
LRT Test; TVPOT-CARL-IND Model | 0.3238 | 0.0348 | 0.0034 | 0.0111 | |
LRT Test; TVPOT-CARL-IND-X Model | 0.1564 | 0.0597 | 0.0858 | 0.0578 | |
LRT Test; TVPOT-CARL-ABS Model | 0.6521 | 0.0058 | 0.0220 | 0.0042 | |
LRT Test; TVPOT-CARL-ABS-X Model | 0.6970 | 0.0356 | 0.0313 | 0.0156 | |
Pearson Test; TVPOT-CARL-IND Model | 0.6558 | 0.1940 | 0.0228 | 0.0776 | |
Pearson Test; TVPOT-CARL-IND-X Model | 0.1213 | 0.2612 | 0.3367 | 0.1966 | |
Pearson Test; TVPOT-CARL-ABS Model | 0.0371 | 0.0430 | 0.1741 | 0.0649 | |
Pearson Test; TVPOT-CARL-ABS-X Model | 0.7857 | 0.0784 | 0.2262 | 0.1238 | |
Nass Test; TVPOT-CARL-IND Model | 0.6518 | 0.1961 | 0.0241 | 0.0800 | |
Nass Test; TVPOT-CARL-IND-X Model | 0.1238 | 0.2627 | 0.3372 | 0.1987 | |
Nass Test; TVPOT-CARL-ABS Model | 0.0389 | 0.0449 | 0.1764 | 0.0671 | |
Nass Test; TVPOT-CARL-ABS-X Model | 0.7809 | 0.0807 | 0.2281 | 0.1262 | |
LRT Test; TVPOT-CARL-IND Model | 0.5764 | 0.1160 | 0.0065 | 0.0288 | |
LRT Test; TVPOT-CARL-IND-X Model | 0.1112 | 0.1625 | 0.2079 | 0.1200 | |
LRT Test; TVPOT-CARL-ABS Model | 0.0249 | 0.0139 | 0.0919 | 0.0192 | |
LRT Test; TVPOT-CARL-ABS-X Model | 0.7339 | 0.0447 | 0.1262 | 0.0654 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Algieri, B.; Leccadito, A. CARL and His POT: Measuring Risks in Commodity Markets. Risks 2020, 8, 27. https://doi.org/10.3390/risks8010027
Algieri B, Leccadito A. CARL and His POT: Measuring Risks in Commodity Markets. Risks. 2020; 8(1):27. https://doi.org/10.3390/risks8010027
Chicago/Turabian StyleAlgieri, Bernardina, and Arturo Leccadito. 2020. "CARL and His POT: Measuring Risks in Commodity Markets" Risks 8, no. 1: 27. https://doi.org/10.3390/risks8010027
APA StyleAlgieri, B., & Leccadito, A. (2020). CARL and His POT: Measuring Risks in Commodity Markets. Risks, 8(1), 27. https://doi.org/10.3390/risks8010027