Complementary Feeding and Growth in Infants Born Preterm: A 12 Months Follow-Up Study
Abstract
:1. Introduction
2. Materials and Methods
Statistics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Survive and Thrive: Transforming Care for Every Small and Sick Newborn 2019. Available online: https://www.who.int/publications/i/item/9789241515887 (accessed on 12 August 2019).
- Kumar, R.K.; Singhal, A.; Vaidya, U.; Banerjee, S.; Anwar, F.; Rao, S. Optimizing Nutrition in Preterm Low Birth Weight Infants-Consensus Summary. Front. Nutr. 2017, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- Terrin, G.; Boscarino, G.; Gasparini, C.; Di Chiara, M.; Faccioli, F.; Onestà, E.; Parisi, P.; Spalice, A.; De Nardo, M.C.; Dito, L.; et al. Energy-Enhanced Parenteral Nutrition and Neurodevelopment of Preterm Newborns: A Cohort Study. Nutrition 2021, 89, 111219. [Google Scholar] [CrossRef] [PubMed]
- Joosten, K.; Embleton, N.; Yan, W.; Senterre, T.; Braegger, C.; Bronsky, J.; Cai, W.; Campoy, C.; Carnielli, V.; Darmaun, D.; et al. ESPGHAN/ESPEN/ESPR/CSPEN Guidelines on Pediatric Parenteral Nutrition: Energy. Clin. Nutr. 2018, 37, 2309–2314. [Google Scholar] [CrossRef]
- Terrin, G.; De Nardo, M.C.; Boscarino, G.; Di Chiara, M.; Cellitti, R.; Ciccarelli, S.; Gasparini, C.; Parisi, P.; Urna, M.; Ronchi, B.; et al. Early Protein Intake Influences Neonatal Brain Measurements in Preterms: An Observational Study. Front. Neurol. 2020, 11, 885. [Google Scholar] [CrossRef]
- Boscarino, G.; Conti, M.G.; Gasparini, C.; Onestà, E.; Faccioli, F.; Dito, L.; Regoli, D.; Spalice, A.; Parisi, P.; Terrin, G. Neonatal Hyperglycemia Related to Parenteral Nutrition Affects Long-Term Neurodevelopment in Preterm Newborn: A Prospective Cohort Study. Nutrients 2021, 13, 1930. [Google Scholar] [CrossRef]
- Berni Canani, R.; Passariello, A.; Buccigrossi, V.; Terrin, G.; Guarino, A. The Nutritional Modulation of the Evolving Intestine. J. Clin. Gastroenterol. 2008, 42, S197–S200. [Google Scholar] [CrossRef]
- Koletzko, B.; Brands, B.; Grote, V.; Kirchberg, F.F.; Prell, C.; Rzehak, P.; Uhl, O.; Weber, M. For the Early Nutrition Programming Project Long-Term Health Impact of Early Nutrition: The Power of Programming. Ann. Nutr. Metab. 2017, 70, 161–169. [Google Scholar] [CrossRef]
- World Health Organization Guiding Principles for Complementary Feeding of the Breastfed Child. Available online: https://iris.paho.org/handle/10665.2/752 (accessed on 15 September 2019).
- Fewtrell, M.; Bronsky, J.; Campoy, C.; Domellöf, M.; Embleton, N.; Fidler Mis, N.; Hojsak, I.; Hulst, J.M.; Indrio, F.; Lapillonne, A.; et al. Complementary Feeding: A Position Paper by the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN) Committee on Nutrition. J. Pediatric Gastroenterol. Nutr. 2017, 64, 119–132. [Google Scholar] [CrossRef]
- Eidelman, A.I. Breastfeeding and the Use of Human Milk: An Analysis of the American Academy of Pediatrics 2012 Breastfeeding Policy Statement. Breastfeed. Med. 2012, 7, 323–324. [Google Scholar] [CrossRef]
- Baldassarre, M.E.; Giannì, M.L.; Di Mauro, A.; Mosca, F.; Laforgia, N. Complementary Feeding in Preterm Infants: Where Do We Stand? Nutrients 2020, 12, 1259. [Google Scholar] [CrossRef]
- Cormack, B.E.; Harding, J.E.; Miller, S.P.; Bloomfield, F.H. The Influence of Early Nutrition on Brain Growth and Neurodevelopment in Extremely Preterm Babies: A Narrative Review. Nutrients 2019, 11, 2029. [Google Scholar] [CrossRef] [Green Version]
- Passariello, A. Diarrhea in Neonatal Intensive Care Unit. WJG 2010, 16, 2664. [Google Scholar] [CrossRef]
- Passariello, A.; Terrin, G.; Cecere, G.; Micillo, M.; Marco, G.; Di Costanzo, M.; Cosenza, L.; Leone, L.; Nocerino, R.; Berni Canani, R. Randomised Clinical Trial: Efficacy of a New Synbiotic Formulation Containing Lactobacillus Paracasei B21060 plus Arabinogalactan and Xilooligosaccharides in Children with Acute Diarrhoea. Aliment. Pharm. Ther. 2012, 35, 782–788. [Google Scholar] [CrossRef]
- Nocerino, R.; Paparo, L.; Terrin, G.; Pezzella, V.; Amoroso, A.; Cosenza, L.; Cecere, G.; De Marco, G.; Micillo, M.; Albano, F.; et al. Cow’s Milk and Rice Fermented with Lactobacillus Paracasei CBA L74 Prevent Infectious Diseases in Children: A Randomized Controlled Trial. Clin. Nutr. 2017, 36, 118–125. [Google Scholar] [CrossRef]
- Salvia, G.; Cascioli, C.F.; Ciccimarra, F.; Terrin, G.; Cucchiara, S. A Case of Protein-Losing Enteropathy Caused by Intestinal Lymphangiectasia in a Preterm Infant. Pediatrics 2001, 107, 416–417. [Google Scholar] [CrossRef]
- Canani, R.B.; Terrin, G. Recent Progress in Congenital Diarrheal Disorders. Curr. Gastroenterol. Rep. 2011, 13, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.R.; van Karnebeek, C.D.M. Inborn Errors of Metabolism. Handb. Clin. Neurol. 2019, 162, 449–481. [Google Scholar] [CrossRef]
- Pagano, F.; Conti, M.G.; Boscarino, G.; Pannucci, C.; Dito, L.; Regoli, D.; Di Chiara, M.; Battaglia, G.; Prota, R.; Cinicola, B.; et al. Atopic Manifestations in Children Born Preterm: A Long-Term Observational Study. Children 2021, 8, 843. [Google Scholar] [CrossRef]
- Parry, G.; Tucker, J.; Tarnow-Mordi, W. CRIB II: An Update of the Clinical Risk Index for Babies Score. Lancet 2003, 361, 1789–1791. [Google Scholar] [CrossRef]
- Vitali, R.; Terrin, G.; Palone, F.; Laudadio, I.; Cucchiara, S.; Boscarino, G.; Di Chiara, M.; Stronati, L. Fecal High-Mobility Group Box 1 as a Marker of Early Stage of Necrotizing Enterocolitis in Preterm Neonates. Front. Pediatr. 2021, 9, 672131. [Google Scholar] [CrossRef] [PubMed]
- Conti, M.G.; Angelidou, A.; Diray-Arce, J.; Smolen, K.K.; Lasky-Su, J.; De Curtis, M.; Levy, O. Immunometabolic Approaches to Prevent, Detect, and Treat Neonatal Sepsis. Pediatr. Res. 2020, 87, 399–405. [Google Scholar] [CrossRef]
- Terrin, G.; Di Chiara, M.; Boscarino, G.; Metrangolo, V.; Faccioli, F.; Onestà, E.; Giancotti, A.; Di Donato, V.; Cardilli, V.; De Curtis, M. Morbidity Associated with Patent Ductus Arteriosus in Preterm Newborns: A Retrospective Case-Control Study. Ital. J. Pediatr. 2021, 47, 9. [Google Scholar] [CrossRef]
- Naeem, A.; Ahmed, I.; Silveyra, P. Bronchopulmonary Dysplasia: An Update on Experimental Therapeutics. Eur. Med. J. (Chelmsf) 2019, 4, 20–29. [Google Scholar]
- Terrin, G.; Di Chiara, M.; Boscarino, G.; Versacci, P.; Di Donato, V.; Giancotti, A.; Pacelli, E.; Faccioli, F.; Onestà, E.; Corso, C.; et al. Echocardiography-Guided Management of Preterms with Patent Ductus Arteriosus Influences the Outcome: A Cohort Study. Front. Pediatr. 2020, 8, 582735. [Google Scholar] [CrossRef]
- Peila, C.; Spada, E.; Giuliani, F.; Maiocco, G.; Raia, M.; Cresi, F.; Bertino, E.; Coscia, A. Extrauterine Growth Restriction: Definitions and Predictability of Outcomes in a Cohort of Very Low Birth Weight Infants or Preterm Neonates. Nutrients 2020, 12, 1224. [Google Scholar] [CrossRef]
- Terrin, G.; Coscia, A.; Boscarino, G.; Faccioli, F.; Di Chiara, M.; Greco, C.; Onestà, E.; Oliva, S.; Aloi, M.; Dito, L.; et al. Long-Term Effects on Growth of an Energy-Enhanced Parenteral Nutrition in Preterm Newborn: A Quasi-Experimental Study. PLoS ONE 2020, 15, e0235540. [Google Scholar] [CrossRef]
- Terrin, G.; Boscarino, G.; Di Chiara, M.; Iacobelli, S.; Faccioli, F.; Greco, C.; Onestà, E.; Sabatini, G.; Pietravalle, A.; Oliva, S.; et al. Nutritional Intake Influences Zinc Levels in Preterm Newborns: An Observational Study. Nutrients 2020, 12, 529. [Google Scholar] [CrossRef] [Green Version]
- Boscarino, G.; Conti, M.G.; De Luca, F.; Di Chiara, M.; Deli, G.; Bianchi, M.; Favata, P.; Cardilli, V.; Di Nardo, G.; Parisi, P.; et al. Intravenous Lipid Emulsions Affect Respiratory Outcome in Preterm Newborn: A Case-Control Study. Nutrients 2021, 13, 1243. [Google Scholar] [CrossRef]
- EFSA. Panel on Dietetic Products, Nutrition and Allergies (NDA) Scientific Opinion on Nutrient Requirements and Dietary Intakes of Infants and Young Children in the European Union. EFS2 2013, 11, 3408. [Google Scholar] [CrossRef] [Green Version]
- Jonsdottir, O.H.; Thorsdottir, I.; Hibberd, P.L.; Fewtrell, M.S.; Wells, J.C.; Palsson, G.I.; Lucas, A.; Gunnlaugsson, G.; Kleinman, R.E. Timing of the Introduction of Complementary Foods in Infancy: A Randomized Controlled Trial. Pediatrics 2012, 130, 1038–1045. [Google Scholar] [CrossRef] [Green Version]
- Wells, J.C.; Jonsdottir, O.H.; Hibberd, P.L.; Fewtrell, M.S.; Thorsdottir, I.; Eaton, S.; Lucas, A.; Gunnlaugsson, G.; Kleinman, R.E. Randomized Controlled Trial of 4 Compared with 6 Mo of Exclusive Breastfeeding in Iceland: Differences in Breast-Milk Intake by Stable-Isotope Probe. Am. J. Clin. Nutr. 2012, 96, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Cohen, R.J.; Brown, K.H.; Canahuati, J.; Rivera, L.L.; Dewey, K.G. Effects of Age of Introduction of Complementary Foods on Infant Breast Milk Intake, Total Energy Intake, and Growth: A Randomised Intervention Study in Honduras. Lancet 1994, 344, 288–293. [Google Scholar] [CrossRef]
- Schack-Nielsen, L.; Sørensen, T.I.; Mortensen, E.L.; Michaelsen, K.F. Late Introduction of Complementary Feeding, rather than Duration of Breastfeeding, May Protect against Adult Overweight. Am. J. Clin. Nutr. 2010, 91, 619–627. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.C.; Forsyth, J.S.; Greene, S.A.; Irvine, L.; Hau, C.; Howie, P.W. Relation of Infant Diet to Childhood Health: Seven Year Follow up of Cohort of Children in Dundee Infant Feeding Study. BMJ 1998, 316, 21–25. [Google Scholar] [CrossRef] [Green Version]
- Grote, V.; Schiess, S.A.; Closa-Monasterolo, R.; Escribano, J.; Giovannini, M.; Scaglioni, S.; Stolarczyk, A.; Gruszfeld, D.; Hoyos, J.; Poncelet, P.; et al. The Introduction of Solid Food and Growth in the First 2 y of Life in Formula-Fed Children: Analysis of Data from a European Cohort Study. Am. J. Clin. Nutr. 2011, 94, 1785S–1793S. [Google Scholar] [CrossRef] [Green Version]
- Daniels, L.; Mallan, K.M.; Fildes, A.; Wilson, J. The Timing of Solid Introduction in an ‘Obesogenic’ Environment: A Narrative Review of the Evidence and Methodological Issues. Aust. N. Z. J. Public Health 2015, 39, 366–373. [Google Scholar] [CrossRef] [Green Version]
- Marriott, L.D.; Foote, K.D.; Bishop, J.A.; Kimber, A.C.; Morgan, J.B. Weaning Preterm Infants: A Randomised Controlled Trial. Arch Dis. Child. Fetal. Neonatal. Ed. 2003, 88, F302–F307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, J.B. Does Weaning Influence Growth and Health up to 18 Months? Arch. Dis. Child. 2004, 89, 728–733. [Google Scholar] [CrossRef]
- Boscarino, G.; Di Chiara, M.; Cellitti, R.; De Nardo, M.C.; Conti, M.G.; Parisi, P.; Spalice, A.; Di Mario, C.; Ronchi, B.; Russo, A.; et al. Effects of Early Energy Intake on Neonatal Cerebral Growth of Preterm Newborn: An Observational Study. Sci. Rep. 2021, 11, 18457. [Google Scholar] [CrossRef]
- Dubois, J.; Benders, M.; Cachia, A.; Lazeyras, F.; Ha-Vinh Leuchter, R.; Sizonenko, S.V.; Borradori-Tolsa, C.; Mangin, J.F.; Hüppi, P.S. Mapping the Early Cortical Folding Process in the Preterm Newborn Brain. Cereb. Cortex 2008, 18, 1444–1454. [Google Scholar] [CrossRef] [Green Version]
- Bensley, J.G.; Moore, L.; De Matteo, R.; Harding, R.; Black, M.J. Impact of Preterm Birth on the Developing Myocardium of the Neonate. Pediatr. Res. 2018, 83, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Volpe, J.J. Brain Injury in Premature Infants: A Complex Amalgam of Destructive and Developmental Disturbances. Lancet Neurol. 2009, 8, 110–124. [Google Scholar] [CrossRef] [Green Version]
Group 1 (Early Weaning) (n = 61) | Group 2 (Late Weaning) (n = 93) | |
---|---|---|
Maternal age, years | 36 (34 to 37) | 35 (35 to 36) |
Intrauterine growth restriction, No (%) | 5 (8.2) | 11 (11.8) |
Birth weight, grams | 1337 (1248 to 1427) | 1249 (1184 to 1313) |
Gestational age, week | 29 (29 to 30) | 29 (29 to 30) |
Small for gestational age at birth, No (%) | 10 (16.4) | 17 (18.3) |
Antenatal steroids a, No. (%) | 36 (59.0) | 68 (73.1) |
Cesarean section, No. (%) | 53 (86.9) | 85 (91.4) |
Male sex, No. (%) | 36 (59.0) | 43 (46.2) |
Twins, No. (%) | 20 (32.8) | 35 (37.6) |
5-min Apgar score | 8 (7 to 8) | 8 (7 to 8) |
pH at birth | 7.3 (7.2 to 7.3) | 7.3 (7.2 to 7.3) |
CRIB II score | 5 (5 to 6) | 6 (5 to 7) |
Extrauterine growth restriction at 36 weeks of PMA, No. (%) | 43 (70.5) | 66 (71.0) |
Group 1 (Early Weaning) (n = 61) | Group 2 (Late Weaning) (n = 93) | |
---|---|---|
Morbidity a | 15 (24.6) | 26 (28.0) |
Necrotizing enterocolitis | 2 (3.3) | 3 (3.2) |
Intraventricular hemorrhage | 1 (1.6) | 4 (4.3) |
Periventricular Leukomalacia | 0 (0.0) | 2 (2.2) |
Sepsis proven by positive cultures | 1 (1.6) | 6 (6.5) |
Retinopathy of prematurity | 11 (18.0) | 18 (19.4) |
Bronchopulmonary dysplasia | 3 (4.9) | 3 (3.2) |
Invasive mechanical ventilation | 20 (32.8) | 21 (22.6) |
Non-invasive mechanical ventilation | 45 (73.8) | 74 (79.8) |
Group 1 (Early Weaning) (n = 61) | Group 2 (Late Weaning) (n = 93) | |
---|---|---|
Full enteral feeding, days of life | 14 (11 to 17) | 14 (11 to 18) |
Start of enteral nutrition before 72 h of life, No. (%) | 50 (82.0) | 81 (87.1) |
Duration of parenteral nutrition, days | 13 (10 to 15) | 12 (10 to 14) |
Exclusive breastfeeding up to weaning, No. (%) | 5 (8.2) * | 1 (1.1) |
Exclusive infant formula up to weaning, No. (%) | 14 (23.0) | 15 (16.1) |
Duration of breastfeeding, weeks | 4 (2 to 6) | 5 (2 to 8) |
Age of weaning, months | 4 (4 to 5) * | 6 (6 to 7) |
Group 1 (Early Weaning) (n = 61) | Group 2 (Late Weaning) (n = 93) | |
---|---|---|
Body weight, grams | 8848 (8444 to 9251) | 9031 (8746 to 9317) |
Body weight Z-Score | −0.6 (−1.0 to −0.1) | −0.3 (−0.5 to −0.1) |
Length, cm | 74.3 (73.4 to 75.1) | 73.5 (72.6 to 74.4) |
Length Z-Score | 0 (−0,4 to 0.3) | −0.2 (−0.5 to 0.1) |
Body mass index | 16 (15 to 17) | 17 (16 to 17) |
Body mass index Z-Score | −0.8 (−1.3 to −0.2) | −0.2 (−0.5 to 0) |
Ponderal Index | 22 (21 to 23) | 23 (22 to 23) |
Dependent Variables | Confounding Variables | B | p-Value | β | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Male newborns | Body weight Z-Score | Maternal age | −0.023 | 0.542 | −0.613 | −0.097 to 0.051 |
Gestational age at birth | −0.013 | 0.906 | −0.119 | −0.235 to 0.209 | ||
Duration of breastfeeding | 0.000 | 0.995 | 0.007 | −0.064 to 0.065 | ||
Age of weaning | 0.256 | 0.063 | 1.890 | −0.014 to 0.526 | ||
Length Z-Score | Maternal age | 0.018 | 0.530 | 0.631 | −0.040 to 0.077 | |
Gestational age at birth | 0.012 | 0.894 | 0.133 | −0.162 to 0.186 | ||
Duration of breastfeeding | −0.019 | 0.449 | −0.762 | −0.070 to 0.031 | ||
Age of weaning | 0.098 | 0.358 | 0.926 | −0.113 to 0.310 | ||
Body mass index Z-Score | Maternal age | −0.043 | 0.362 | −0.917 | −0.136 to 0.050 | |
Gestational age at birth | −0.026 | 0.850 | −0.190 | −0.304 to 0.251 | ||
Duration of breastfeeding | 0.013 | 0.741 | 0.331 | −0.067 to 0.094 | ||
Age of weaning | 0.254 | 0.137 | 1.503 | −0.083 to 0.251 | ||
Female newborns | Body weight Z-Score | Maternal age | 0.008 | 0.775 | 0.288 | −0.049 to 0.066 |
Gestational age at birth | −0.004 | 0.947 | −0.067 | −0.133 to 0.124 | ||
Duration of breastfeeding | 0.006 | 0.586 | 0.547 | −0.015 to 0.026 | ||
Age of weaning | 0.015 | 0.832 | 0.213 | −0.123 to 0.152 | ||
Length Z-Score | Maternal age | 0.036 | 0.285 | 1.078 | −0.031 to 0.103 | |
Gestational age at birth | −0.053 | 0.484 | −0.704 | −0.203 to 0.097 | ||
Duration of breastfeeding | 0.007 | 0.540 | 0.616 | −0.106 to 0.031 | ||
Age of weaning | −0.010 | 0.901 | −0.124 | −0.171 to 0.151 | ||
Body mass index Z-Score | Maternal age | −0.019 | 0.482 | −0.708 | −0.073 to 0.035 | |
Gestational age at birth | 0.034 | 0.569 | 0.573 | −0.085 to 0.154 | ||
Duration of breastfeeding | 0.001 | 0.897 | 0.131 | −0.018 to 0.020 | ||
Age of weaning | 0.034 | 0.600 | 0.527 | −0.094 to 0.162 |
Dependent Variables (Not or Yes) | Confounding Variables (Not or Yes) | B | p-Value | O.R. (95% Confidence Interval) |
---|---|---|---|---|
Body weightZ-Score < −1 | Intrauterine growth restriction | 0.338 | 0.574 | 1.402 (0.432 to 4.549) |
Born before 28 weeks of gestational age | 0.354 | 0.407 | 1.425 (0.617 to 3.292) | |
Male sex | 0.003 | 0.993 | 1.003 (0.468 to 2.149) | |
Morbidity a | 0.169 | 0.695 | 1.184 (0.509 to 2.754) | |
Extrauterine growth restriction | 0.604 | 0.186 | 1.830 (0.747 to 4.483) | |
Exclusive breastfeeding up to weaning | 0.127 | 0.890 | 1.135 (0.188 to 6.836) | |
Group 2 (Late weaning) | −0.374 | 0.332 | 0.688 (0.323 to 1.464) | |
LengthZ-Score < −1 | Intrauterine growth restriction | 0.739 | 0.202 | 2.094 (0.673 to 6.515) |
Born before 28 weeks of gestational age | 0.273 | 0.545 | 1.314 (0.542 to 3.185) | |
Male sex | 0.246 | 0.541 | 1.280 (0.581 to 2.819) | |
Morbidity a | −0.320 | 0.496 | 0.726 (0.289 to 1.825) | |
Extrauterine growth restriction | 0.561 | 0.228 | 1.753 (0.704 to 4.364) | |
Exclusive breastfeeding up to weaning | 0.181 | 0.844 | 1.198 (0.197 to 7.294) | |
Group 2 (Late weaning) | −0.304 | 0.446 | 0.738 (0.338 to 1.613) | |
Body mass indexZ-Score < −1 | Intrauterine growth restriction | −0.527 | 0.447 | 0.591 (0.152 to 2.293) |
Born before 28 weeks of gestational age | −0.173 | 0.702 | 0.841 (0.347 to 2.040) | |
Male sex | 0.365 | 0.353 | 1.440 (0.667 to 3.111) | |
Morbidity a | 0.347 | 0.428 | 1.414 (0.600 to 3.334) | |
Extrauterine growth restriction | 0.667 | 0.151 | 1.948 (0.783 to 4.846) | |
Exclusive breastfeeding up to weaning | −0.974 | 0.397 | 0.378 (0.040 to 3.598) | |
Group 2 (Late weaning) | −0.584 | 0.131 | 0.558 (0.261 to 1.191) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boscarino, G.; Conti, M.G.; Pagano, F.; Di Chiara, M.; Pannucci, C.; Onestà, E.; Prota, R.; Deli, G.; Dito, L.; Regoli, D.; et al. Complementary Feeding and Growth in Infants Born Preterm: A 12 Months Follow-Up Study. Children 2021, 8, 1085. https://doi.org/10.3390/children8121085
Boscarino G, Conti MG, Pagano F, Di Chiara M, Pannucci C, Onestà E, Prota R, Deli G, Dito L, Regoli D, et al. Complementary Feeding and Growth in Infants Born Preterm: A 12 Months Follow-Up Study. Children. 2021; 8(12):1085. https://doi.org/10.3390/children8121085
Chicago/Turabian StyleBoscarino, Giovanni, Maria Giulia Conti, Federica Pagano, Maria Di Chiara, Chiara Pannucci, Elisa Onestà, Rita Prota, Giorgia Deli, Lucia Dito, Daniela Regoli, and et al. 2021. "Complementary Feeding and Growth in Infants Born Preterm: A 12 Months Follow-Up Study" Children 8, no. 12: 1085. https://doi.org/10.3390/children8121085
APA StyleBoscarino, G., Conti, M. G., Pagano, F., Di Chiara, M., Pannucci, C., Onestà, E., Prota, R., Deli, G., Dito, L., Regoli, D., Oliva, S., & Terrin, G. (2021). Complementary Feeding and Growth in Infants Born Preterm: A 12 Months Follow-Up Study. Children, 8(12), 1085. https://doi.org/10.3390/children8121085