Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (52,453)

Search Parameters:
Keywords = length

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2553 KB  
Article
A QCM-D Study of the Interaction of Early Endosomal Antigen 1 (EEA1) Protein with Supported Lipid Bilayers Mimicking the Early Endosomal Lipid Composition
by Fotini Papagavriil, Pablo Mateos-Gil, Janelle Lauer, Marino Zerial and Electra Gizeli
Membranes 2026, 16(2), 49; https://doi.org/10.3390/membranes16020049 (registering DOI) - 26 Jan 2026
Abstract
The combination of supported lipid bilayers (SLBs) with the Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) has been proven to be a powerful tool to simultaneously monitor mass and viscoelastic changes related to membrane binding-events. In this work, the above methodology is employed [...] Read more.
The combination of supported lipid bilayers (SLBs) with the Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) has been proven to be a powerful tool to simultaneously monitor mass and viscoelastic changes related to membrane binding-events. In this work, the above methodology is employed for the study of the interaction of the Early Endosomal Antigen 1 (EEA1) to a model lipid bilayer that mimics the early endosome (EE) membrane, focusing on the membrane composition. Starting with the formation of a lipid bilayer through the vesicles fusion technique, we investigated the formation of SLBs that incorporate phosphatidylinositol 3-phosphate (PI(3)P), a key component for EEA1 binding, in combination with other lipids, e.g., (1,2-dioleoyl-sn-glycero-3)-phosphocholine (DOPC), -phosphoserine (DOPS), -phosphoethanolamine (DOPE), and cholesterol (Chol). The interaction of the full-length coiled-coil EEA1 to the formed SLBs was further studied in real time with the QCM-D and characterized with respect to the lipid composition and pH. Our findings confirm that PI(3)P is essential for the EEA1–membrane interaction, while it was shown that Chol and phosphatidylserine greatly influence the binding event. In fact, including 30% Chol in a PI(3)P (3%):PS (6%) SLB resulted in almost double EEA1 binding than in the absence of Chol. Moreover, we employed the QCM-viscoelastic model available to analyze the QCM-D data with emphasis on the study of the protein conformation. Our results showed that, in our in vitro system, EEA1 is not fully extended and/or highly packed, but is mainly in a bent, distorted conformation with an average size close to 100 nm. This study complements previous works employing in vitro assays, also demonstrating the ability to reconstitute more complex biomimetic EE membranes containing inositol phospholipids on a QCM surface for the study of EEA1 binding. Full article
(This article belongs to the Section Biological Membranes)
Show Figures

Figure 1

22 pages, 5529 KB  
Article
Analysis and Testing of Straw Collector Crushing Mechanism Based on DEM-MBD Coupled Simulation
by Jie Yang, Song Yue, Zheng Zhang, Dongdong Gu, Ge Shi, Xiao Xiao and Jinfa Shi
Agriculture 2026, 16(3), 305; https://doi.org/10.3390/agriculture16030305 (registering DOI) - 25 Jan 2026
Abstract
To address the low efficiency of corn straw collection, this study aims to optimize the design of the straw shredding mechanism of corn straw harvesters. A multi-blade arrangement shredding mechanism was designed, with ANSYS 2022 employed for gas-phase flow field simulation of the [...] Read more.
To address the low efficiency of corn straw collection, this study aims to optimize the design of the straw shredding mechanism of corn straw harvesters. A multi-blade arrangement shredding mechanism was designed, with ANSYS 2022 employed for gas-phase flow field simulation of the pick-up and fan conveying chambers, and a multi-field coupled simulation was conducted to evaluate performance using pick-up rate and qualified cutting length rate as metrics. Field tests were carried out to validate the simulation results. The results show that the DC-type pick-up (symmetrically arranged Y-shaped and hammer claw blades) exhibited optimal performance. At a travel speed of 1.2 m/s and rotational speed of 2100 r/min, the pick-up rate and qualified cutting length rate reached 93.62% and 93.94%, respectively, in field tests (81.34% pick-up rate in simulation); its maximum collection efficiency reached 92.98% under the conditions of fan 1 speed of 2300 r/min, fan 2 speed of 4600 r/min, and single feed rate of 9.4 kg. All pick-up types had maximum forces below the stress limit (348 MPa), meeting operational requirements. This research provides reliable references for the design and optimization of corn straw returning machines and verifies the accuracy of the simulation method. Full article
(This article belongs to the Section Agricultural Technology)
26 pages, 12755 KB  
Article
Coupling Time-Series Sentinel-2 Imagery with Multi-Scale Landscape Metrics to Decipher Seasonal Waterbird Diversity Patterns
by Jiaxu Fan, Lei Cui, Yi Lian, Peng Du, Yangqianqian Ren, Xunqiang Mo and Zhengwang Zhang
Remote Sens. 2026, 18(3), 405; https://doi.org/10.3390/rs18030405 (registering DOI) - 25 Jan 2026
Abstract
Seasonal dynamics in wetland landscapes are closely associated with habitat availability and are likely to influence the spatial organization and diversity of waterbird communities. However, most existing studies rely on static land-cover representations or single spatial scales, limiting our ability to characterize how [...] Read more.
Seasonal dynamics in wetland landscapes are closely associated with habitat availability and are likely to influence the spatial organization and diversity of waterbird communities. However, most existing studies rely on static land-cover representations or single spatial scales, limiting our ability to characterize how waterbirds respond to seasonally shifting habitats across scales. Focusing on the Qilihai Wetland in Tianjin, China, we combined high-frequency waterbird surveys from 2019–2021 with multi-temporal, season-matched Sentinel-2 imagery and the Dynamic World dataset. Partial least squares regression (PLSR) was applied across a continuous spatial gradient (100–3000 m) to quantify scale-dependent statistical associations between landscape composition and configuration derived from satellite-mapped habitat mosaics on different functional groups. Waterbird diversity exhibited pronounced seasonal contrasts. During the breeding and post-fledging period, high-diversity assemblages were stably concentrated within core wetland areas, showing limited spatial variability. In contrast, during the wintering and stopover period, community distributions became increasingly dispersed, with elevated spatial heterogeneity and interannual variability associated with habitat reorganization. The scale of effect shifted systematically between seasons. In the breeding and post-fledging period, both waterfowl and waders responded predominantly to local-scale landscape factors (<800 m), consistent with nesting requirements and microhabitat conditions. During the wintering and stopover period, however, the characteristic response scale of waterfowl expanded to 1500–2000 m, suggesting stronger associations with broader landscape context, whereas waders remained closely linked to local-scale shallow-water and mudflat connectivity (~200 m). Functional traits played a key role in structuring these scale-dependent responses, with diving behavior and tarsus length being associated with strong constraints on habitat use. Overall, our results suggest that waterbird diversity patterns emerge from the interaction between seasonal habitat dynamics, landscape structure, and functional trait filtering, underscoring the need for phenology-informed, multi-scale conservation strategies that move beyond static spatial boundaries. Full article
(This article belongs to the Section Ecological Remote Sensing)
26 pages, 2167 KB  
Article
AI-Powered Service Robots for Smart Airport Operations: Real-World Implementation and Performance Analysis in Passenger Flow Management
by Eleni Giannopoulou, Panagiotis Demestichas, Panagiotis Katrakazas, Sophia Saliverou and Nikos Papagiannopoulos
Sensors 2026, 26(3), 806; https://doi.org/10.3390/s26030806 (registering DOI) - 25 Jan 2026
Abstract
The proliferation of air travel demand necessitates innovative solutions to enhance passenger experience while optimizing airport operational efficiency. This paper presents the pilot-scale implementation and evaluation of an AI-powered service robot ecosystem integrated with thermal cameras and 5G wireless connectivity at Athens International [...] Read more.
The proliferation of air travel demand necessitates innovative solutions to enhance passenger experience while optimizing airport operational efficiency. This paper presents the pilot-scale implementation and evaluation of an AI-powered service robot ecosystem integrated with thermal cameras and 5G wireless connectivity at Athens International Airport. The system addresses critical challenges in passenger flow management through real-time crowd analytics, congestion detection, and personalized robotic assistance. Eight strategically deployed thermal cameras monitor passenger movements across check-in areas, security zones, and departure entrances while employing privacy-by-design principles through thermal imaging technology that reduces personally identifiable information capture. A humanoid service robot, equipped with Robot Operating System navigation capabilities and natural language processing interfaces, provides real-time passenger assistance including flight information, wayfinding guidance, and congestion avoidance recommendations. The wi.move platform serves as the central intelligence hub, processing video streams through advanced computer vision algorithms to generate actionable insights including passenger count statistics, flow rate analysis, queue length monitoring, and anomaly detection. Formal trial evaluation conducted on 10 April 2025, with extended operational monitoring from April to June 2025, demonstrated strong technical performance with application round-trip latency achieving 42.9 milliseconds, perfect service reliability and availability ratings of one hundred percent, and comprehensive passenger satisfaction scores exceeding 4.3/5 across all evaluated dimensions. Results indicate promising potential for scalable deployment across major international airports, with identified requirements for sixth-generation network capabilities to support enhanced multi-robot coordination and advanced predictive analytics functionalities in future implementations. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

15 pages, 6046 KB  
Article
Design and Characterization of a Fully Automated Free-Standing Liquid Crystal Film Holder
by Elias Bürkle, Marius Lutz, Klara M. Meyer-Hermann, Azat Khadiev, Dmitri Novikov, Patrick Friebel and Laura Cattaneo
Liquids 2026, 6(1), 7; https://doi.org/10.3390/liquids6010007 (registering DOI) - 25 Jan 2026
Abstract
We present the design and characterization of a fully automated free-standing liquid crystal (FSLC) film holder, enabling remote and precise control of liquid crystal (LC) volume release, wiping speed, and temperature. Using 4-octyl-4′-cyanobiphenyl (8CB) as a test material, we systematically investigated the influence [...] Read more.
We present the design and characterization of a fully automated free-standing liquid crystal (FSLC) film holder, enabling remote and precise control of liquid crystal (LC) volume release, wiping speed, and temperature. Using 4-octyl-4′-cyanobiphenyl (8CB) as a test material, we systematically investigated the influence of formation parameters on the resulting film thickness and temporal evolution. Thickness measurements performed by monitoring the difference in optical path lengths of two arms of a standard optical intensity autocorrelation setup reveal that the wiping speed is the dominant factor determining both the initial film thickness and the subsequent annealing dynamics, while temperature becomes relevant only at the highest wiping speeds. Faster wiping speeds consistently produce thinner and more uniform FSLC films on the order of 3 µm, due to reduced LC mass deposition. Time-resolved optical and X-ray scattering measurements confirm the presence of an annealing phase following film formation, which can last for between 1 s and 10 min time scales, until a stable smectic configuration is reached. The holder provides a reliable and fully remote tool for generating high-quality FSLC films at rates up to 1 Hz, suitable for optical to hard X-ray experiments where direct access to the sample environment is limited. Full article
(This article belongs to the Section Physics of Liquids)
Show Figures

Figure 1

33 pages, 10743 KB  
Article
Bi-Level Optimization for Multi-UAV Collaborative Coverage Path Planning in Irregular Areas
by Hua Gong, Ziyang Fu, Ke Xu, Wenjuan Sun, Wanning Xu and Mingming Du
Mathematics 2026, 14(3), 416; https://doi.org/10.3390/math14030416 (registering DOI) - 25 Jan 2026
Abstract
Multiple Unmanned Aerial Vehicle (UAV) collaborative coverage path planning is widely applied in fields such as regional surveillance. However, optimizing the trade-off between deployment costs and task execution efficiency remains challenging. To balance resource costs and execution efficiency with an uncertain number of [...] Read more.
Multiple Unmanned Aerial Vehicle (UAV) collaborative coverage path planning is widely applied in fields such as regional surveillance. However, optimizing the trade-off between deployment costs and task execution efficiency remains challenging. To balance resource costs and execution efficiency with an uncertain number of UAVs, this paper analyzes the characteristics of irregular mission areas and formulates a bi-level optimization model for multi-UAV collaborative CPP. The model aims to minimize both the number of UAVs and the total path length. First, in the upper level, an improved Best Fit Decreasing algorithm based on binary search is designed. Straight-line scanning paths are generated by determining the minimum span direction of the irregular regions. Task allocation follows a longest-path-first, minimum-residual-range rule to rapidly determine the minimum number of UAVs required for complete coverage. Considering UAV’s turning radius constraints, Dubins curves are employed to plan transition paths between scanning regions, ensuring path feasibility. Second, the lower level transforms the problem into a Multiple Traveling Salesman Problem that considers path continuity, range constraints, and non-overlapping path allocation. This problem is solved using an Improved Biased Random Key Genetic Algorithm. The algorithm employs a variable-length master–slave chromosome encoding structure to adapt to the task allocation of each UAV. By integrating biased crossover operators with 2-opt interval mutation operators, the algorithm accelerates convergence and improves solution quality. Finally, comparative experiments on mission regions of varying scales demonstrate that, compared with single-level optimization and other intelligent algorithms, the proposed method reduces the required number of UAVs and shortens the total path length, while ensuring complete coverage of irregular regions. This method provides an efficient and practical solution for multi-UAV collaborative CPP in complex environments. Full article
Show Figures

Figure 1

31 pages, 11069 KB  
Article
Prenatal Melatonin Modulates Cardiovascular Function and Oxidative Stress in Guinea Pig Neonates Under Normoxic and Hypoxic Gestation
by Adolfo A. Paz, Tamara A. Jiménez, Pedro Herrera, Josefa Carreño, Damaris Cornejo, Julieta Ibarra-González, Javiera N. Ponce, Felipe A. Beñaldo, Mario Salamanca, Rodrigo Jeria, Esteban G. Figueroa, Alejandro González-Candia and Emilio A. Herrera
Antioxidants 2026, 15(2), 162; https://doi.org/10.3390/antiox15020162 (registering DOI) - 25 Jan 2026
Abstract
Introduction: Gestational hypoxia (GH) increases the risk of cardiovascular diseases by inducing oxidative stress and vascular dysfunction. This study investigates whether prenatal melatonin can mitigate these effects in guinea pigs. Methods: Pregnant guinea pigs were exposed to normoxia or hypoxia and [...] Read more.
Introduction: Gestational hypoxia (GH) increases the risk of cardiovascular diseases by inducing oxidative stress and vascular dysfunction. This study investigates whether prenatal melatonin can mitigate these effects in guinea pigs. Methods: Pregnant guinea pigs were exposed to normoxia or hypoxia and treated with melatonin (1 mg/kg/day). Echocardiography, vascular reactivity, and molecular assays were used to assess cardiovascular structure, function, and redox balance in neonates. Results: GH reduced neonatal birth weight and altered left ventricular (LV) development, resulting in increased LV systolic function and aortic blood flow velocity. Melatonin treatment reversed these effects, restoring endothelial-dependent vasodilation and decreasing oxidative stress in the LV and thoracic aorta. Catalase antioxidant enzyme activity was elevated in melatonin-treated hypoxic neonates. Unexpectedly, melatonin treatment altered cardiac structure in normoxic pregnancies, increasing LV length and decreasing LV myocardial nuclei density. Conclusions: Prenatal melatonin partially modulates GH-induced endothelial dysfunction and oxidative stress, offering potential therapeutic value. However, its effects under normoxic conditions deserve caution, emphasizing the need for targeted use only in pregnancies with evident hypoxic and oxidative stress conditions. Full article
26 pages, 2618 KB  
Article
A Cascaded Batch Bayesian Yield Optimization Method for Analog Circuits via Deep Transfer Learning
by Ziqi Wang, Kaisheng Sun and Xiao Shi
Electronics 2026, 15(3), 516; https://doi.org/10.3390/electronics15030516 (registering DOI) - 25 Jan 2026
Abstract
In nanometer integrated-circuit (IC) manufacturing, advanced technology scaling has intensified the effects of process variations on circuit reliability and performance. Random fluctuations in parameters such as threshold voltage, channel length, and oxide thickness further degrade design margins and increase the likelihood of functional [...] Read more.
In nanometer integrated-circuit (IC) manufacturing, advanced technology scaling has intensified the effects of process variations on circuit reliability and performance. Random fluctuations in parameters such as threshold voltage, channel length, and oxide thickness further degrade design margins and increase the likelihood of functional failures. These variations often lead to rare circuit failure events, underscoring the importance of accurate yield estimation and robust design methodologies. Conventional Monte Carlo yield estimation is computationally infeasible as millions of simulations are required to capture failure events with extremely low probability. This paper presents a novel reliability-based circuit design optimization framework that leverages deep transfer learning to improve the efficiency of repeated yield analysis in optimization iterations. Based on pre-trained neural network models from prior design knowledge, we utilize model fine-tuning to accelerate importance sampling (IS) for yield estimation. To improve estimation accuracy, adversarial perturbations are introduced to calibrate uncertainty near the model decision boundary. Moreover, we propose a cascaded batch Bayesian optimization (CBBO) framework that incorporates a smart initialization strategy and a localized penalty mechanism, guiding the search process toward high-yield regions while satisfying nominal performance constraints. Experimental validation on SRAM circuits and amplifiers reveals that CBBO achieves a computational speedup of 2.02×–4.63× over state-of-the-art (SOTA) methods, without compromising accuracy and robustness. Full article
(This article belongs to the Topic Advanced Integrated Circuit Design and Application)
Show Figures

Figure 1

18 pages, 5275 KB  
Article
Interference Characteristics of a Primary–Secondary Integrated Distribution Switch Under Lightning Strike Conditions Based on a Field-Circuit Hybrid Full-Wave Model
by Ge Zheng, Shilei Guan, Yilin Tian, Changkai Shi, Hui Yin, Chengbo Jiang, Meng Yuan, Yijun Fu, Yiheng Chen, Shen Lai and Shaofei Wang
Energies 2026, 19(3), 623; https://doi.org/10.3390/en19030623 (registering DOI) - 25 Jan 2026
Abstract
As distribution networks become increasingly intelligent, primary–secondary integrated distribution switches are replacing the traditional electromagnetic type. However, the high degree of integration intensifies inherent electromagnetic compatibility (EMC) challenges. This paper presents a field-circuit hybrid full-wave model to investigate switch characteristics during lightning strikes. [...] Read more.
As distribution networks become increasingly intelligent, primary–secondary integrated distribution switches are replacing the traditional electromagnetic type. However, the high degree of integration intensifies inherent electromagnetic compatibility (EMC) challenges. This paper presents a field-circuit hybrid full-wave model to investigate switch characteristics during lightning strikes. A 3D full-wave model of the switch and a distributed parameter circuit model of the connecting lines are coupled via a network parameter matrix. This approach comprehensively accounts for the impacts of transmission lines and structural components on electromagnetic disturbances. Simulation and experimental results reveal that lightning strikes induce high-frequency damped oscillatory waves, primarily caused by traveling wave reflections along overhead lines. The characteristic frequency of disturbance is inversely proportional to the transmission line length. Additionally, internal components significantly influence this frequency; specifically, a larger voltage dividing capacitance in the voltage transformer results in a lower frequency. Model validation was performed using a 20 m transmission line setup. A 75 kV standard lightning impulse was injected into Phase B. At a distance of 500 mm from the voltage transformer, the measured radiated electric field amplitude was 14.12 kV/m (deviation < 5%), and the characteristic frequency was 1.11 MHz (deviation < 20%). These findings offer vital guidance for the lightning protection and EMC design of primary–secondary integrated distribution switches. Full article
(This article belongs to the Topic EMC and Reliability of Power Networks)
Show Figures

Figure 1

20 pages, 6100 KB  
Article
Application of Sustainable Crab-Waste-Derived Nanochitosan as a Soil Amendment for Tomato Cultivation in Loam Soil
by Divya Shanmugavel and Omar Solorza-Feria
Sustainability 2026, 18(3), 1213; https://doi.org/10.3390/su18031213 (registering DOI) - 25 Jan 2026
Abstract
Converting marine biowaste into nano-bioproducts for their application as bio-sourced, circular biostimulants to enhance crop productivity is a promising approach. This study evaluated chitosan–TPP nanoparticles (nanochitosan, ~38 nm) derived from blue crab (Callinectes sapidus) shells as a soil-applied biostimulant and conditioner [...] Read more.
Converting marine biowaste into nano-bioproducts for their application as bio-sourced, circular biostimulants to enhance crop productivity is a promising approach. This study evaluated chitosan–TPP nanoparticles (nanochitosan, ~38 nm) derived from blue crab (Callinectes sapidus) shells as a soil-applied biostimulant and conditioner for tomato (Solanum lycopersicum) grown in loam soil without mineral fertilizer. Our results showed that nanochitosan application as a soil supplement by drench improved the soil moisture content (39% vs. 22%), water-holding capacity (84% vs. 70%), total nitrogen (3.8 vs. 1.4 gm N kg−1), and organic carbon content (48.4 vs. 34.1 gm C kg−1) in nanochitosan-amended soil compared with the non-amended soil. This was accompanied by higher biomass, better root/shoot development and synthesis of phytohormones leading to increased shoot length, early flowering, and increased total soluble solids of fruits in nanochitosan-amended soil compared with control, suggesting that nanochitosan can act both as a beneficial soil conditioner and as a plant biostimulant. The results further show that nanochitosan-based formulations may be used not only as fertilizer-saving bio-inputs but also as bio-based nanochitosan plant biostimulants, which can partly substitute mineral fertilizer application for sustainable production of tomato. Moreover, generic fabrication of such nanochitosan from marine biowaste would support the circular-bioeconomy model to further improve sustainability of agroecosystems. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

17 pages, 1202 KB  
Article
Evaluation of the Relationship Between Escape Passage Length and Fire Door Pressure Difference
by Danjie Wang, Qinghai Yang, Ke Zhong, Liang Wang, He Li, Xiaoyun Han, Junwei Yuan, Shuyu Yang and Hanfang Zhang
Fire 2026, 9(2), 55; https://doi.org/10.3390/fire9020055 (registering DOI) - 25 Jan 2026
Abstract
The issue of overpressure at fire doors in escape passage is often overlooked in traditional tunnel design. Current design approaches tend to overemphasize maintaining positive pressure inside the passage for smoke prevention, which results in excessive resistance when opening fire doors. This can [...] Read more.
The issue of overpressure at fire doors in escape passage is often overlooked in traditional tunnel design. Current design approaches tend to overemphasize maintaining positive pressure inside the passage for smoke prevention, which results in excessive resistance when opening fire doors. This can hinder emergency evacuation efficiency and pose a threat to personnel safety. This study focused on a typical 1000-m-long straight escape passage to investigate the overpressure problem of fire doors in highway tunnels from both theoretical and empirical perspectives. Traditional pressure calculations for tunnel escape passages adopt relevant guiding designs from the building category, which may lead to certain errors. Therefore, on this basis, this paper employs pressure calculation equations based on the specific pipeline characteristics of smoke control systems. By solving the pressure calculation equations for the fire doors in escape passages, the thrust required to open the doors in the closed state was analyzed. Results show that the force needed to open a fire door can reach up to 168 N under fire conditions, which far exceeds the allowable limits stipulated in relevant design standards. Furthermore, the results indicate that the maximum allowable length of the escape passage should not exceed 3200 m within acceptable pressure limits through numerical simulation. A mathematical relationship between passage length and fire door pressure was also established, confirming the accuracy of the maximum allowable passage length. This study analyzed the hazards of overpressure in escape passages and proposes a method for determining the maximum permissible passage length, aiming to balance the requirements of smoke control with the safety of personnel evacuation. Full article
(This article belongs to the Special Issue Modeling, Experiment and Simulation of Tunnel Fire)
Show Figures

Figure 1

16 pages, 1763 KB  
Article
The Complete Chloroplast Genomic Characteristics and Phylogenetic Analysis of Abutilon theophrasti Medicus
by Changli Chen, Xiahong Luo, Ziyi Zhu, Xingcai An, Junyuan Dong, Qingqing Ji, Tingting Liu, Lina Zou, Shaocui Li, Jikang Chen and Xia An
Int. J. Mol. Sci. 2026, 27(3), 1205; https://doi.org/10.3390/ijms27031205 (registering DOI) - 25 Jan 2026
Abstract
To clarify the phylogenetic relationship between Abutilon theophrasti M. and other Malvaceae plants, the chloroplast genome of A. theophrasti was assembled, annotated, and analyzed. The complete chloroplast genome was sequenced using the Illumina NovaSeq 6000 platform. Bioinformatics methods were employed to systematically analyze [...] Read more.
To clarify the phylogenetic relationship between Abutilon theophrasti M. and other Malvaceae plants, the chloroplast genome of A. theophrasti was assembled, annotated, and analyzed. The complete chloroplast genome was sequenced using the Illumina NovaSeq 6000 platform. Bioinformatics methods were employed to systematically analyze its genomic structure, repetitive sequences, nucleic acid diversity, and codon preference. Additionally, a phylogenetic tree was constructed by integrating chloroplast genomic sequences from other Malvaceae species. The results showed that the chloroplast genome of A. theophrasti was 160,440 bp in length with a GC content of 36.89%, exhibiting a typical tetrad structure. A total of 130 coding genes were annotated, including 85 mRNA genes, 37 tRNA genes, and 8 rRNA genes, with no pseudogenes detected. Codon preference analysis indicates that leucine (Leu) is the most frequently used amino acid. There are 31 codons with a relative synonymous codon usage (RSCU) value greater than 1, most of which end with A or U. The genome contains 61 scattered repeat sequences and 288 simple repeat sequences (SSR). Ka/Ks analysis revealed that the overall chloroplast genes of A. theophrasti undergo purifying selection, while genes such as psbK and rps12 are subjected to positive selection, which may be associated with adaptive evolution. Phylogenetically, A. theophrasti is most closely related to its congener A. indicum, followed by a clade comprising M. cathayensis and Malva crispa of the genus Malva. This study enhances the understanding of the phylogenetic relationship of A. theophrasti and provides a theoretical basis for the genetic improvement and breeding strategies of A. theophrasti and other Malvaceae plants. Full article
26 pages, 712 KB  
Article
Comparing Multi-Scale and Pipeline Models for Speaker Change Detection
by Alymzhan Toleu, Gulmira Tolegen and Bagashar Zhumazhanov
Acoustics 2026, 8(1), 5; https://doi.org/10.3390/acoustics8010005 (registering DOI) - 25 Jan 2026
Abstract
Speaker change detection (SCD) in long, multi-party meetings is essential for diarization, Automatic speech recognition (ASR), and summarization, and is now often performed in the space of pre-trained speech embeddings. However, unsupervised approaches remain dominant when timely labeled audio is scarce, and their [...] Read more.
Speaker change detection (SCD) in long, multi-party meetings is essential for diarization, Automatic speech recognition (ASR), and summarization, and is now often performed in the space of pre-trained speech embeddings. However, unsupervised approaches remain dominant when timely labeled audio is scarce, and their behavior under a unified modeling setup is still not well understood. In this paper, we systematically compare two representative unsupervised approaches on the multi-talker audio meeting corpus: (i) a clustering-based pipeline that segments and clusters embeddings/features and scores boundaries via cluster changes and jump magnitude, and (ii) a multi-scale jump-based detector that measures embedding discontinuities at several window lengths and fuses them via temporal clustering and voting. Using a shared front-end and protocol, we vary the underlying features (ECAPA, WavLM, wav2vec 2.0, MFCC, and log-Mel) and test the model’s robustness under additive noise. The results show that embedding choice is crucial and that the two methods offer complementary trade-offs: the pipeline yields low false alarm rates but higher misses, while the multi-scale detector achieves relatively high recall at the cost of many false alarms. Full article
Show Figures

Figure 1

19 pages, 3927 KB  
Article
Numerical Simulation Study on the Influence of Karst Conduits on the Inversion of Hydrogeological Parameters in Pumping Tests
by Yanmei Chen, Ke Hu and Siyuan Huo
Water 2026, 18(3), 306; https://doi.org/10.3390/w18030306 (registering DOI) - 25 Jan 2026
Abstract
The strong heterogeneity of karst aquifers limits the applicability of traditional pumping test parameter inversion methods, and karst conduits are the key factor causing this heterogeneity. To reveal how karst conduits influence the inversion of hydrogeological parameters, this study established a series of [...] Read more.
The strong heterogeneity of karst aquifers limits the applicability of traditional pumping test parameter inversion methods, and karst conduits are the key factor causing this heterogeneity. To reveal how karst conduits influence the inversion of hydrogeological parameters, this study established a series of s numerical models in FEFLOW, based on the Lianhuashan mining area in Jingmen. These models was used to systematically analyze the effects of conduit characteristics (hydraulic conductivity, diameter, length, burial depth) and pumping test conditions (pumping rate and distance from the well) on the flow field, drawdown behavior, and parameter inversion results. Results indicate that the well-conduit distance R is the most critical factor: inversion errors exceeded 60% when R < 25 m; the larger the deviation between the conduit permeability coefficient (Kp) and the aquifer permeability coefficient, the larger the inversion error; the conduit length (L) and diameter (D) determine the catchment area and the cross-sectional area for flow, respectively, and are positively correlated with the inversion error; the conduit burial depth (Z) and the pumping rate (Q) affect the lag in vertical recharge and the magnitude of the drawdown, respectively, and have a small impact on the inversion error. The findings provide a theoretical basis for improving parameter estimation and well-field design in karst terrains. Full article
(This article belongs to the Special Issue Groundwater Dynamics and Modeling)
Show Figures

Figure 1

20 pages, 3570 KB  
Article
Large-Eddy Simulation of Flow Structures Around Two Finite-Length Tandem Cylinders
by Mengyang Liu and Yisen Wang
Water 2026, 18(3), 305; https://doi.org/10.3390/w18030305 (registering DOI) - 25 Jan 2026
Abstract
Large-eddy simulation (LES) is utilized to elucidate the flow characteristics and overall time-averaged drag coefficients of finite-length tandem cylinders. This study focuses explicitly on the three-dimensional effects induced by the free end, a feature absent in classical studies of infinite (two-dimensional) tandem cylinders. [...] Read more.
Large-eddy simulation (LES) is utilized to elucidate the flow characteristics and overall time-averaged drag coefficients of finite-length tandem cylinders. This study focuses explicitly on the three-dimensional effects induced by the free end, a feature absent in classical studies of infinite (two-dimensional) tandem cylinders. By varying the cylinder spacing ratio L/D from 1.5 to 5, the evolution of wake regimes and their variations along the vertical direction of the cylinders are systematically examined. The results reveal a distinct vertical transition of wake patterns: at the mid-height plane, the wake falls into the extended-body regime for L/D = 1.5 and 2, where vortex shedding occurs downstream of the downstream cylinder. When L/D = 3–5, the flow enters the reattachment regime, characterized by the separated shear layers from the upstream cylinder reattaching onto the windward face of the downstream cylinder, while a Kármán vortex street persists in its wake. In contrast, at planes near the free end, the flow characteristics shift towards the co-shedding regime for L/D ≥ 2, though strong downwash suppresses organized vortex shedding. This vertical transition of wake regimes, driven by free-end downwash, clarifies a significant gap in applying two-dimensional regime classifications to finite-length bodies. The overall time-averaged drag coefficients of the upstream and downstream cylinders show opposite trends with increasing L/D: the former decreases, whereas the latter increases. The force on the downstream cylinder changes from an upstream-directed drag to a downstream-directed thrust at L/D = 2. Overall, the results indicate that for L/D = 3–5, the overall drag coefficient of the cylinder is dominated by the co-shedding regime. These findings advance the understanding of flow interference in finite-length tandem configurations and offer refined insights for modeling analogous systems such as adjacent vegetation stems in aquatic environments. Full article
(This article belongs to the Special Issue Effects of Vegetation on Open Channel Flow and Sediment Transport)
Show Figures

Figure 1

Back to TopTop