Associations between Public Transport Accessibility around Homes and Schools and Walking and Cycling among Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Outcomes
2.3. Exposures
Public Transport Measure
2.4. Covariates
2.5. Statistical Analysis
3. Results
3.1. Outcome: Main Mode of Transport to School
3.2. Outcome: 20 Min of Active Travel Daily
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grocott, K.; Boath, E.; Richardson, J.; Lewis, M.; Croft, P. Physical activity in young people. Prim. Health Care 2002, 12, 25–31. [Google Scholar] [CrossRef]
- Händel, M.N.; Larsen, S.; Rohde, J.F.; Stougaard, M.; Olsen, N.; Heitmann, B.L. Effects of the Healthy Start randomized intervention trial on physical activity among normal weight preschool children predisposed to overweight and obesity. PLoS ONE 2017, 12, e0185266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, C.; Kellou, N.; Dugas, J.; Platat, C.; Copin, N.; Schweitzer, B.; Hausser, F.; Bergouignan, A.; Lefai, E.; Blanc, S. A socio-ecological approach promoting physical activity and limiting sedentary behavior in adolescence showed weight benefits maintained 2.5 years after intervention cessation. Int. J. Obes. 2014, 38, 936–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okely, A.D.; Salmon, J.; Vella, S.; Cliff, D.; Timperio, A.; Tremblay, M.; Trost, S.; Shilton, T.; Hinkley, T.; Ridgers, N. A Systematic Review to Update the Australian Physical Activity Guidelines for Children and Young People; Commonwealth of Australia: Canberra, Australia, 2012. [Google Scholar]
- Janssen, I.; Leblanc, A.G. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Bere, E.; Oenema, A.; Prins, R.G.; Seiler, S.; Brug, J. Longitudinal associations between cycling to school and weight status. Pediatr. Obes. 2011, 6, 182–187. [Google Scholar] [CrossRef]
- Australia’s Physical Activity and Sedentary Behaviour Guidelines. Available online: http://www.health.gov.au/internet/main/publishing.nsf/content/health-pubhlth-strateg-phys-act-guidelines (accessed on 1 June 2018).
- Australian Burden of Disease Study; Australian Institute of Health and Welfare: Canberra, ACT, Australia, 2016.
- McDonald, N.C. Critical Factors for Active Transportation to School Among Low-Income and Minority Students. Am. J. Prev. Med. 2008, 34, 341–344. [Google Scholar] [CrossRef]
- Active Healthy Kids Australia. The Road Less Travelled: The 2015 Active Healthy Kids Australia Progress Report Card on Active Transport for Children and Young People, 2015; Active Healthy Kids Australia: Adelaide, Australia, 2015. [Google Scholar]
- Freeman, L.; Neckerman, K.; Schwartz-Soicher, O.; Quinn, J.; Richards, C.; Bader, M.; Lovasi, G.S.; Jack, D.; Weiss, C.; Konty, K.; et al. Neighborhood Walkability and Active Travel (Walking and Cycling) in New York City. J. Hered. 2012, 90, 575–585. [Google Scholar] [CrossRef] [Green Version]
- Frank, L.D.; Sallis, J.F.; Conway, T.L.; Chapman, J.E.; Saelens, B.E.; Bachman, W. Many Pathways from Land Use to Health: Associations between Neighborhood Walkability and Active Transportation, Body Mass Index, and Air Quality. J. Am. Plan. Assoc. 2006, 72, 75–87. [Google Scholar] [CrossRef]
- Williams, G.C.; Borghese, M.M.; Janssen, I. Neighborhood walkability and objectively measured active transportation among 10–13 year olds. J. Transp. Health 2018, 8, 202–209. [Google Scholar] [CrossRef]
- Carlson, J.A.; Saelens, B.E.; Kerr, J.; Schipperijn, J.; Conway, T.L.; Frank, L.D.; Chapman, J.E.; Glanz, K.; Cain, K.; Sallis, J.F. Association between neighborhood walkability and GPS-measured walking, bicycling and vehicle time in adolescents. Health Place 2015, 32, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Christiansen, L.B.; Toftager, M.; Schipperijn, J.; Ersbøll, A.K.; Giles-Corti, B.; Troelsen, J. School site walkability and active school transport – association, mediation and moderation. J. Transp. Geogr. 2014, 34, 7–15. [Google Scholar] [CrossRef]
- Owen, N.; Cerin, E.; Leslie, E.; Dutoit, L.; Coffee, N.; Frank, L.D.; Bauman, A.E.; Hugo, G.; Saelens, B.E.; Sallis, J.F. Neighborhood Walkability and the Walking Behavior of Australian Adults. Am. J. Prev. Med. 2007, 33, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Boreham, C.; Robson, P.J.; Gallagher, A.; Cran, G.W.; Savage, J.M.; Murray, L.J. Tracking of physical activity, fitness, body composition and diet from adolescence to young adulthood: The Young Hearts Project, Northern Ireland. Int. J. Behav. Nutr. Phys. Act. 2004, 1, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elsenburg, L.K.; Smidt, N.; Hoek, H.W.; Liefbroer, A.C. Body Mass Index Trajectories from Adolescence to Early Young Adulthood: Do Adverse Life Events Play a Role? Obesity 2017, 25, 2142–2148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, S.S.; Chumlea, W.C. Tracking of body mass index in children in relation to overweight in adulthood. Am. J. Clin. Nutr. 1999, 70, 145S–148S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaix, B.; Duncan, D.; Vallée, J.; Vernez-Moudon, A.; Benmarhnia, T.; Kestens, Y. The “Residential” Effect Fallacy in Neighborhood and Health Studies. Epidemiology 2017, 28, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Carver, A.; Timperio, A.; Crawford, D. Young and free? A study of independent mobility among urban and rural dwelling Australian children. J. Sci. Med. Sport 2012, 15, 505–510. [Google Scholar] [CrossRef]
- Currie, G.; Stanley, J. No Way to Go: Transport and Social Disadvantage in Australian Communities; Monash University ePress: Melbourne, Australia, 2007. [Google Scholar]
- Cole, B.L.; Shimkhada, R.; Rutt, C.D.; Russ, L.; Martin, S.; Roux, L.; Yanagawa, T.; West, L.; Fielding, J.; Pratt, M. Modeling the potential health effects of a walk-to-school program. In Health Impact Assessment: Procedures, Technologies and Outcomes; Nova Science Publishers Inc.: New York, NY, USA, 2015; pp. 1–20. [Google Scholar]
- Brown, A.; Blumenberg, E.; Taylor, B.; Ralph, K.; Voulgaris, C. A Taste for Transit? Analyzing Public Transit Use Trends among Youth. J. Public Transp. 2016, 19, 49–67. [Google Scholar] [CrossRef] [Green Version]
- Djurhuus, S.; Hansen, H.S.; Aadahl, M.; Glumer, C. The Association between Access to Public Transportation and Self-Reported Active Commuting. Int. J. Environ. Res. Public Health 2014, 11, 12632–12651. [Google Scholar] [CrossRef] [Green Version]
- Ermagun, A.; Levinson, D. Public Transit, Active Travel, and the Journey to School: A Cross-nested Logit Analysis. Transp. A Transp. Sci. 2016, 13, 1–16. [Google Scholar] [CrossRef]
- Voss, C.; Winters, M.; Frazer, A.; McKay, H. School-travel by public transit: Rethinking active transportation. Prev. Med. Rep. 2015, 2, 65–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burke, M.; Brown, A. In Active transport in brisbane: How much is happening and what are its characteristics? In Proceedings of the State of Australian Cities National Conference; University of South Australia: Adelaide, Australia, 2007; pp. 656–667. [Google Scholar]
- Burke, M.; Brown, A. Distances people walk for transport. Road Transp. Res. A J. Aust. N. Z. Res. Pract. 2007, 16, 16. [Google Scholar]
- Villanueva, K.; Giles-Corti, B.; McCormack, G. Achieving 10,000 steps: A comparison of public transport users and drivers in a University setting. Prev. Med. 2008, 47, 338–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rissel, C.; Curac, N.; Greenaway, M.; Bauman, A. Physical Activity Associated with Public Transport Use—A Review and Modelling of Potential Benefits. Int. J. Environ. Res. Public Health 2012, 9, 2454–2478. [Google Scholar] [CrossRef] [Green Version]
- Victoria, T.F. Victorian Integrated Survey of Travel and Activity (Vista). Available online: https://transport.vic.gov.au/data-and-research/vista/ (accessed on 1 June 2018).
- Statistics, A.B.O. Main Structure and Greater Capital City Statistical Areas. Available online: https://www.abs.gov.au/ausstats/[email protected]/Lookup/by%20Subject/1270.0.55.001~July%202016~Main%20Features~Statistical%20Area%20Level%201%20(SA1)~10013 (accessed on 28 March 2019).
- Trost, S.G.; Pate, R.R.; Sallis, J.F.; Freedson, P.S.; Taylor, W.C.; Dowda, M.; Sirard, J. Age and gender differences in objectively measured physical activity in youth. Med. Sci. Sports Exerc. 2002, 34, 350–355. [Google Scholar] [CrossRef]
- Troiano, R.; Berrigan, D.; Dodd, K.W.; Mâsse, L.C.; Tilert, T.; McDowell, M. Physical Activity in the United States Measured by Accelerometer. Med. Sci. Sports Exerc. 2008, 40, 181–188. [Google Scholar] [CrossRef]
- Simons-Morton, B.G.; Parcel, G.S.; O’Hara, N.M.; Blair, S.N.; Pate, R.R. Health-related physical fitness in childhood: Status and recommendations. Annual review of public health 1988, 9, 403–425. [Google Scholar] [CrossRef]
- Curtis, C.; Scheurer, J. Planning for Public Transport Accessibility; Informa UK Limited: New York, NY, USA, 2016. [Google Scholar]
- Curtis, C.; Scheurer, J.; Robertson, D.; Joutsinemi, A.; Thomson, O.; Mcleod, S.; Bell, K. Spatial Network Analysis for Multi-Modal Urban Transport Systems. Available online: http://www.snamuts.com/ (accessed on 1 June 2018).
- Yu, C.-Y.; Zhu, X. Impacts of Residential Self-Selection and Built Environments on Children’s Walking-to-School Behaviors. Environ. Behav. 2013, 47, 268–287. [Google Scholar] [CrossRef]
Variable Name | Categories | n | % |
---|---|---|---|
Age of respondents (years) | 12 | 145 | 10.9 |
13 | 211 | 15.9 | |
14 | 238 | 17.9 | |
15 | 237 | 17.8 | |
16 | 233 | 17.5 | |
17 | 188 | 14.2 | |
18 | 77 | 5.8 | |
Gender | Male | 687 | 51.7 |
Female | 642 | 48.3 | |
Distance Travelled from Home to School | <2.5 km | 331 | 24.9 |
2.5–8.5 km | 665 | 50.0 | |
≥8.5 km | 333 | 25.1 | |
Usual number of residents in household | 2 | 48 | 3.6 |
3 | 225 | 16.9 | |
4 | 570 | 42.9 | |
5 | 344 | 25.9 | |
6 | 98 | 7.4 | |
7 | 26 | 2.0 | |
8 | 10 | 0.8 | |
9 | 8 | 0.6 | |
Household Income Groups | $0–$799 | 180 | 13.5 |
$800–$1249 | 175 | 13.2 | |
$1250–$1999 | 302 | 22.7 | |
$2000–$2999 | 333 | 25.1 | |
$3000+ | 339 | 25.5 | |
Total Vehicles Owned | 0 or 1 | 300 | 22.6 |
2 or more | 1029 | 77.4 | |
Neighbourhood Socioeconomic Status | Quartile 1 (Lowest) | 333 | 25.1 |
Quartile 2 | 333 | 25.1 | |
Quartile 3 | 333 | 25.1 | |
Quartile 4 (Highest) | 330 | 24.8 | |
How was diary completed? | Proxy-Reported | 846 | 63.8 |
Self-Reported | 480 | 36.2 | |
Main Mode of Transport to School | Private Motorised | 857 | 64.5 |
Public Transport | 228 | 17.2 | |
Active Travel | 244 | 18.4 | |
Accrued 20 Minutes+ of Active Transport per Day | No | 754 | 56.9 |
Yes | 572 | 43.1 | |
Household Walkability | Tertile 1 (Low) | 447 | 33.6 |
Tertile 2 (Medium) | 577 | 43.4 | |
Tertile 3 (High) | 305 | 23.0 | |
School Walkability | Tertile 1 (Low) | 447 | 33.6 |
Tertile 2 (Medium) | 441 | 33.2 | |
Tertile 3 (High) | 441 | 33.2 | |
Household Public Transport Accessibility | None | 921 | 69.3 |
Low (below mean) | 212 | 16.0 | |
High (above mean) | 196 | 14.8 | |
School Public Transport Accessibility | None | 738 | 55.5 |
Low (below mean) | 306 | 23.0 | |
High (above mean) | 285 | 21.4 |
Unadjusted | Adjusted | |||
---|---|---|---|---|
Travel Mode | OR | 95% CI | OR | 95% CI |
Active Travel | ||||
None | 1.00 | 1.00 | ||
Low | 1.74 | (1.17, 2.57) | 1.09 | (0.66, 1.82) |
High | 1.93 | (1.27, 2.92) | 1.00 | (0.56, 1.78) |
Public Transport | ||||
None | 1.00 | 1.00 | ||
Low | 2.49 | (1.71, 3.63) | 1.94 | (1.28, 2.94) |
High | 3.81 | (2.63, 5.52) | 2.86 | (1.80, 4.53) |
20+ minutes active travel | PR | 95% CI | PR | 95% CI |
None | 1.00 | 1.00 | ||
Low | 1.33 | (1.14, 1.56) | 1.14 | (0.97, 1.34) |
High | 1.67 | (1.46, 1.91) | 1.31 | (1.11, 1.54) |
Unadjusted | Adjusted | |||
---|---|---|---|---|
Travel Mode | OR | 95% CI | OR | 95% CI |
Active Travel | ||||
None | 1.00 | 1.00 | ||
Low | 1.40 | (0.99, 1.98) | 1.57 | (0.98, 2.51) |
High | 1.20 | (0.80, 1.81) | 1.44 | (0.82, 2.52) |
Public Transport | ||||
None | 1.00 | 1.00 | ||
Low | 2.33 | (1.59, 3.42) | 2.13 | (1.40, 3.24) |
High | 6.40 | (4.51, 9.10) | 5.07 | (3.35, 7.67) |
20+ minutes active travel | PR | 95% CI | PR | 95% CI |
None | 1.00 | 1.00 | ||
Low | 1.21 | (1.03, 1.42) | 1.18 | (1.00, 1.38) |
High | 1.73 | (1.52, 1.97) | 1.64 | (1.41, 1.90) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zulkefli, S.H.B.; Barr, A.; Singh, A.; Carver, A.; Mavoa, S.; Scheurer, J.; Badland, H.; Bentley, R. Associations between Public Transport Accessibility around Homes and Schools and Walking and Cycling among Adolescents. Children 2020, 7, 30. https://doi.org/10.3390/children7040030
Zulkefli SHB, Barr A, Singh A, Carver A, Mavoa S, Scheurer J, Badland H, Bentley R. Associations between Public Transport Accessibility around Homes and Schools and Walking and Cycling among Adolescents. Children. 2020; 7(4):30. https://doi.org/10.3390/children7040030
Chicago/Turabian StyleZulkefli, Syafiqah Hannah Binte, Alison Barr, Ankur Singh, Alison Carver, Suzanne Mavoa, Jan Scheurer, Hannah Badland, and Rebecca Bentley. 2020. "Associations between Public Transport Accessibility around Homes and Schools and Walking and Cycling among Adolescents" Children 7, no. 4: 30. https://doi.org/10.3390/children7040030