The Role of Oxidative Stress in the Pathogenesis of Childhood Asthma: A Comprehensive Review
Abstract
Highlights
- Oxidative stress is a central driver of childhood asthma—linking environmental and endogenous ROS/RNS to airway inflammation, epithelial damage and remodeling, and reduced corticosteroid responsiveness.
- Redox-sensitive biomarkers (exhaled 8-isoprostane, H2O2, FeNO) rise with disease activity; susceptibility is further shaped by prenatal/early-life exposures (e.g., PM2.5, tobacco smoke) and antioxidant-gene variants (GSTP1, CAT).
- Incorporating oxidative-stress assessment and redox biomarkers into monitoring could help identify high-risk children and anticipate exacerbations.
- Adjunct antioxidant and lifestyle strategies (Mediterranean-style diet, regular exercise) and emerging Nrf2/GSH-targeted therapies may improve control and enable personalized care based on redox profiles and genetic susceptibility.
Abstract
1. Introduction
2. Materials and Methods
3. Oxidative Stress, the Role of ROS and RNS
4. Oxidative Stress-Induced Airway Inflammation
5. Antioxidant Defense Systems in the Airway
Antioxidant System | Mechanism/Location | Role in Asthma |
---|---|---|
Enzymatic | SOD, CAT, GPX, HO-1 [31,32,33] | Neutralize ROS/RNS, protect epithelium |
Non-enzymatic | Vitamin C, E, α-tocopherol, GSH, uric acid [34,35,42] | Scavenge radicals, support enzymes |
Inducible—Nrf2 axis | Nrf2, Keap1, PRDX6, HO-1 [41] | Upregulate antioxidant gene expression |
6. Oxidative Stress and Its Role in the Pathogenesis of Childhood Asthma
7. Environmental & Lifestyle Modifiers of Pediatric Airway Redox Imbalance
8. Genetic and Epigenetic Modifiers
9. Therapeutic Strategies
9.1. Reducing Exposure to Environmental Oxidants—Lifestyle Factors
9.2. Dietary Antioxidants
9.3. Pharmacological Agents
10. Future Considerations
11. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention, Updated 2025. Available online: www.ginasthma.org (accessed on 4 June 2025).
- The Centers for Disease Control and Prevention (CDC). Most Recent National Asthma Data. Available online: https://www.cdc.gov/asthma/most_recent_national_asthma_data.htm (accessed on 4 June 2025).
- Han, Y.; Zhang, M.; Yu, S.; Jia, L. Oxidative stress in pediatric asthma: Sources, mechanisms, and therapeutic potential of antioxidants. Front. Biosci. 2025, 30, 22688. [Google Scholar] [CrossRef] [PubMed]
- Jesenak, M.; Zelieskova, M.; Babusikova, E. Oxidative stress and bronchial asthma in children—Causes or consequences? Front. Pediatr. 2017, 5, 122. [Google Scholar] [CrossRef]
- He, L.; Norris, C.; Palaguachi-Lopez, K.; Barkjohn, K.; Li, Z.; Li, F.; Zhang, Y.; Black, M.; Bergin, M.H.; Zhang, J.J. Nasal oxidative stress mediating the effects of colder temperature exposure on pediatric asthma symptoms. Pediatr. Res. 2024, 96, 1045–1051. [Google Scholar] [CrossRef] [PubMed]
- Vilcins, D.; Lee, W.R.; Pham, C.; Tanner, S.; Knibbs, L.D.; Burgner, D.; Blake, T.L.; Mansell, T.; Ponsonby, A.L.; Sly, P.D. Barwon Infant Study Investigator group. Association of maternal air pollution exposure and infant lung function is modified by genetic propensity to oxidative stress. Children 2024, 11, 937. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Chen, Q.; Lin, C.; Huang, H.; Chen, L. Genetic polymorphisms of antioxidant enzymes (GSTP1/CAT/HMOX1/EPHX1) and childhood asthma risk in Fuzhou. Front. Pediatr. 2025, 13, 1524055. [Google Scholar] [CrossRef]
- Kleniewska, P.; Pawliczak, R. The Link Between Dysbiosis, Inflammation, Oxidative Stress, and Asthma—The Role of Probiotics, Prebiotics, and Antioxidants. Nutrients 2024, 17, 16. [Google Scholar] [CrossRef]
- Bowman, W.S.; Schmidt, R.J.; Sanghar, G.K.; Thompson Iii, G.R.; Ji, H.; Zeki, A.A.; Haczku, A. “Air That Once Was Breath” Part 1: Wildfire-Smoke-Induced Mechanisms of Airway Inflammation—“Climate Change, Allergy and Immunology” Special IAAI Article Collection: Collegium Internationale Allergologicum Update 2023. Int. Arch. Allergy Immunol. 2024, 185, 600–616. [Google Scholar] [CrossRef]
- Vincenzo, S.D.; Ferrante, G.; Ferraro, M.; Cascio, C.; Malizia, V.; Licari, A.; La Grutta, S.; Pace, E. Oxidative Stress, Environmental Pollution, and Lifestyle as Determinants of Asthma in Children. Biology 2023, 12, 133. [Google Scholar] [CrossRef]
- Comhair, S.A.; Erzurum, S.C. Antioxidant responses to oxidant-mediated lung diseases. Am. J. Physiol. Lung Cell Mol. Physiol. 2002, 283, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Pruchniak, M.P.; Aražna, M.; Demkow, U. Biochemistry of Oxidative Stress. Adv. Exp. Med. Biol. 2016, 878, 9–19. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Oxygen: Boon yet bane—introducing oxygen toxicity and reactive species. In Free Radicals in Biology and Medicine, 5th ed.; Oxford Academic: Oxford, UK, 2015. [Google Scholar] [CrossRef]
- Li, R.; Jia, Z.; Trush, M.A. Defining ROS in Biology and Medicine. React. Oxyg. Species 2016, 1, 9–21. [Google Scholar] [CrossRef]
- Weidinger, A.; Kozlov, A. Biological Activities of Reactive Oxygen and Nitrogen Species: Oxidative Stress versus Signal Transduction. Biomolecules 2015, 5, 472–484. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, F.S.; Lanzetti, M.; Nesi, R.T.; Nagato, A.C.; Silva, C.P.E.; Kennedy-Feitosa, E.; Melo, A.C.; Cattani-Cavalieri, I.; Porto, L.C.; Valenca, S.S. Oxidative Stress and Inflammation in Acute and Chronic Lung Injuries. Antioxidants 2023, 12, 548. [Google Scholar] [CrossRef]
- Miller, E.K.; Avila, P.C.; Khan, Y.W.; Word, C.R.; Pelz, B.J.; Papadopoulos, N.G.; Peebles, R.S., Jr.; Heymann, P.W.; Microbes, Allergy, and Asthma Committee. Wheezing exacerbations in early childhood: Evaluation, treatment, and recent advances relevant to the genesis of asthma. J. Allergy Clin. Immunol. Pract. 2014, 2, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Bohadana, A.; Izbicki, G.; Kraman, S.S. Fundamentals of lung auscultation. N. Engl. J. Med. 2014, 370, 2053. [Google Scholar] [CrossRef] [PubMed]
- El-Gamal, Y.M.; El-Sayed, S.S. Wheezing in infancy. World Allergy Organ. J. 2011, 4, 85–90. [Google Scholar] [CrossRef]
- Ducharme, F.M.; Tse, S.M.; Chauhan, B. Diagnosis, management, and prognosis of preschool wheeze. Lancet 2014, 383, 1593–1604. [Google Scholar] [CrossRef] [PubMed]
- Hollins, F.; Sutcliffe, A.; Gomez, E.; Berair, R.; Russell, R.; Szyndralewiez, C.; Saunders, R.; Brightling, C. Airway smooth muscle NOX4 is upregulated and modulates ROS generation in COPD. Respir. Res. 2016, 17, 84. [Google Scholar] [CrossRef]
- Kim, H.R.; Ingram, J.L.; Que, L.G. Effects of Oxidative Stress on Airway Epithelium Permeability in Asthma and Potential Implications for Patients with Comorbid Obesity. J. Asthma Allergy 2023, 16, 481–499. [Google Scholar] [CrossRef]
- Ganesan, S.; Comstock, A.T.; Sajjan, U.S. Barrier function of airway tract epithelium. Tissue Barriers 2013, 1, e24997. [Google Scholar] [CrossRef]
- Victoni, T.; Barreto, E.; Lagente, V.; Carvalho, V.F. Oxidative Imbalance as a Crucial Factor in Inflammatory Lung Diseases: Could Antioxidant Treatment Constitute a New Therapeutic Strategy? Oxid. Med. Cell Longev. 2021, 2021, 6646923. [Google Scholar] [CrossRef]
- Caramori, G.; Papi, A. Oxidants and asthma. Thorax 2004, 59, 170–173. [Google Scholar] [CrossRef]
- Zhao, H.; Eguchi, S.; Alam, A.; Ma, D. The role of nuclear factor-erythroid 2 related factor 2 (Nrf-2) in the protection against lung injury. Am. J. Physiol. Lung Cell Mol. Physiol. 2017, 312, 155–162. [Google Scholar] [CrossRef]
- Fujioka, S.; Niu, J.; Schmidt, C.; Sclabas, G.M.; Peng, B.; Uwagawa, T.; Li, Z.; Evans, D.B.; Abbruzzese, J.L.; Chiao, P.J. NF-kappaB and AP-1 connection: Mechanism of NF-kappaB-dependent regulation of AP-1 activity. Mol. Cell Biol. 2004, 24, 7806–7819. [Google Scholar] [CrossRef]
- Bousquet, J.; Jeffery, P.K.; Busse, W.W.; Johnson, M.; Vignola, A.M. Asthma. From bronchoconstriction to airways inflammation and remodeling. Am. J. Respir. Crit. Care Med. 2000, 161, 1720–1745. [Google Scholar] [CrossRef]
- Barnes, P.J.; Shapiro, S.D.; Pauwels, R.A. Chronic obstructive pulmonary disease: Molecular and cellular mechanisms. Eur. Respir. J. 2003, 22, 672–688. [Google Scholar] [CrossRef] [PubMed]
- Ighodaro, O.M.; Akinloye, O.A. First Line Defence Antioxidants-Superoxide Dismutase (SOD), Catalase (CAT) and Glutathione Peroxidase (GPX): Their Fundamental Role in the Entire Antioxidant Defence Grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef]
- Kiyokawa, H.; Hoshino, Y.; Sakaguchi, K.; Muro, S.; Yodoi, J. Redox Regulation in Aging Lungs and Therapeutic Implications of Antioxidants in COPD. Antioxidants 2021, 10, 1429. [Google Scholar] [CrossRef]
- Fredenburgh, L.E.; Perrella, M.A.; Mitsialis, S.A. The Role of Heme Oxygenase-1 in Pulmonary Disease. Am. J. Respir. Cell Mol. Biol. 2006, 36, 158. [Google Scholar] [CrossRef] [PubMed]
- Janciauskiene, S. The Beneficial Effects of Antioxidants in Health and Diseases. Chronic Obstr. Pulm. Dis. 2020, 7, 182–202. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Teng, H.; Zhang, L.; Wu, L. Association between Dietary Antioxidant Intakes and Chronic Respiratory Diseases in Adults. World Allergy Organ. J. 2024, 17, 100851. [Google Scholar] [CrossRef]
- Thimmulappa, R.K.; Chattopadhyay, I.; Rajasekaran, S. Oxidative Stress Mechanisms in the Pathogenesis of Environmental Lung Diseases. In Oxidative Stress in Lung Diseases, 1st ed.; Chakraborti, S., Parinandi, N., Ghosh, R., Ganguly, N., Chakraborti, T., Eds.; Springer: Singapore, 2019; Volume 2, pp. 103–137. [Google Scholar]
- Moskwa, P.; Lorentzen, D.; Excoffon, K.J.; Zabner, J.; McCray, P.B., Jr.; Nauseef, W.M.; Dupuy, C.; Bánfi, B. A novel host defense system of airways is defective in cystic fibrosis. Am. J. Respir. Crit. Care Med. 2007, 175, 174–183. [Google Scholar] [CrossRef]
- Rahman, I.; MacNee, W. Oxidative stress and regulation of glutathione in lung inflammation. Eur. Respir. J. 2000, 16, 534–554. [Google Scholar] [CrossRef]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, J.; Liu, R.; Wang, Q.; Qin, S.; Chen, Y.; Li, W. The role of Keap1-Nrf2 signaling pathway in the treatment of respiratory diseases and the research progress on targeted drugs. Heliyon 2024, 10, e37326. [Google Scholar] [CrossRef]
- Jia, W.; Dong, C.; Li, B. Anti-Oxidant and Pro-Oxidant Effects of Peroxiredoxin 6: A Potential Target in Respiratory Diseases. Cells 2023, 12, 181. [Google Scholar] [CrossRef]
- Busse, W.W. The relationship of airway hyperresponsiveness and airway inflammation: Airway hyperresponsiveness in asthma: Its measurement and clinical significance. Chest 2010, 138, 4S–10S. [Google Scholar] [CrossRef]
- Koumpagioti, D.; Boutopoulou, B.; Moriki, D.; Priftis, K.N.; Douros, K. Does Adherence to the Mediterranean Diet Have a Protective Effect against Asthma and Allergies in Children? A Systematic Review. Nutrients 2022, 14, 1618. [Google Scholar] [CrossRef] [PubMed]
- Ricciardolo, F.L.M.; Sprio, A.E.; Baroso, A.; Gallo, F.; Riccardi, E.; Bertolini, F.; Carriero, V.; Arrigo, E.; Ciprandi, G. Characterization of T2-Low and T2-High Asthma Phenotypes in Real-Life. Biomedicines 2021, 9, 1684. [Google Scholar] [CrossRef] [PubMed]
- Bakakos, A.; Anagnostopoulos, N.; Bakakos, P. Eosinophils and T2 inflammation in severe asthma. Explor. Asthma Allergy 2024, 2, 399–409. [Google Scholar] [CrossRef]
- Thomas, D.; Hamada, Y.; Gibson, P.; Brightling, C.E.; Castro, M.; Heaney, L.G. Diagnosis and Treatment Options for T2-Low Asthma. J. Allergy Clin. Immunol. Pract. 2025, 13, 1527–1539. [Google Scholar] [CrossRef] [PubMed]
- Ioniuc, I.K.; Lupu, A.; Dragan, F.; Tarnita, I.; Alexoae, M.M.; Streanga, V.; Mitrofan, C.; Thet, A.A.; Nedelcu, A.H.; Salaru, D.L.; et al. Oxidative Stress and Antioxidants in Pediatric Asthma’s Evolution and Management. Antioxidants 2024, 13, 1331. [Google Scholar] [CrossRef]
- Jude, J.A.; Wylam, M.E.; Walseth, T.F.; Kannan, M.S. Calcium signaling in airway smooth muscle. Proc. Am. Thorac. Soc. 2008, 5, 15–22. [Google Scholar] [CrossRef]
- Lutter, R.; van Lieshout, B.; Folisi, C. Reduced Antioxidant and Cytoprotective Capacity in Allergy and Asthma. Ann. Am. Thorac. Soc. 2015, 12, 133–136. [Google Scholar] [CrossRef]
- Utsch, L.; Folisi, C.; Akkerdaas, J.H.; Logiantara, A.; van de Pol, M.A.; van der Zee, J.S.; Krop, E.J.; Lutter, R.; van Ree, R.; van Rijt, L.S. Allergic sensitization is associated with inadequate antioxidant responses in mice and men. Allergy 2015, 70, 1246–1258. [Google Scholar] [CrossRef]
- Ojiaku, C.A.; Yoo, E.J.; Panettieri, R.A., Jr. Transforming Growth Factor β1 Function in Airway Remodeling and Hyperresponsiveness. The Missing Link? Am. J. Respir. Cell Mol. Biol. 2017, 56, 432–442. [Google Scholar] [CrossRef]
- Shahid, S.K.; Kharitonov, S.A.; Wilson, N.M.; Bush, A.; Barnes, P.J. Exhaled 8-isoprostane in childhood asthma. Respir. Res. 2005, 6, 79. [Google Scholar] [CrossRef]
- Caffarelli, C.; Calcinai, E.; Rinaldi, L.; Povesi Dascola, C.; Terracciano, L.; Corradi, M. Hydrogen peroxide in exhaled breath condensate in asthmatic children during acute exacerbation and after treatment. Respiration 2012, 84, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Chai, M.; Gu, W.; Yuan, H. Changes in fractional exhaled nitric oxide, exhaled carbon monoxide and pulmonary function during the acute attack, treatment and remission phases of pediatric asthma. Transl. Pediatr. 2020, 9, 784–794. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, T.; Dong, Y.A.; Zhang, J. Exploring the interplay between oxidative stress and autophagy in asthma: Pathophysiology and therapeutic potential. Allergol. Immunopathol. 2025, 53, 167–180. [Google Scholar] [CrossRef]
- Marwick, J.A.; Ito, K.; Adcock, I.M.; Kirkham, P.A. Oxidative stress and steroid resistance in asthma and COPD: Pharmacological manipulation of HDAC-2 as a therapeutic strategy. Expert Opin. Ther. Targets 2007, 11, 745–755. [Google Scholar] [CrossRef] [PubMed]
- Lewis, B.W.; Ford, M.L.; Rogers, L.K.; Britt, R.D., Jr. Oxidative Stress Promotes Corticosteroid Insensitivity in Asthma and COPD. Antioxidants 2021, 10, 1335. [Google Scholar] [CrossRef]
- Marsal, A.; Slama, R.; Lyon-Caen, S.; Borlaza, L.J.S.; Jaffrezo, J.L.; Boudier, A.; Darfeuil, S.; Elazzouzi, R.; Gioria, Y.; Lepeule, J.; et al. SEPAGES cohort study group. Prenatal Exposure to PM2.5 Oxidative Potential and Lung Function in Infants and Preschool- Age Children: A Prospective Study. Environ. Health Perspect. 2023, 131, 17004. [Google Scholar] [CrossRef]
- Dearborn, L.C.; Hazlehurst, M.F.; Sherris, A.R.; Szpiro, A.A.; Day, D.B.; Loftus, C.T.; Blanco, M.N.; Adgent, M.A.; Andrade-Torres, A.R.; Ni, Y.; et al. Early-Life Ozone Exposure and Asthma and Wheeze in Children. JAMA Netw. Open 2025, 8, e254121. [Google Scholar] [CrossRef]
- Unsal, H.; Karaguzel, D.; Sarac, B.E.; Aytekin, E.S.; Dal, S.T.; Gurel, D.I.; Soyer, O.; Sekerel, B.E.; Karaaslan, C.; Sahiner, U.M. Inflammatory and oxidative stress markers in serum, urine and exhaled breath condensate: Relationship between asthma and obesity in children. Respir. Med. 2025, 242, 108096. [Google Scholar] [CrossRef]
- Rodrigues, M.; de Castro Mendes, F.; Padrão, P.; Delgado, L.; Paciência, I.; Barros, R.; Rufo, J.C.; Silva, D.; Moreira, A.; Moreira, P. Mediterranean Diet and Airway Inflammation in School-Aged Children. Children 2023, 10, 1305. [Google Scholar] [CrossRef] [PubMed]
- Gokcek, O.; Yurdalan, U.; Tugay, B.U.; El, C.; Dogan, S. Evaluation of the possible effect of inspiratory muscle training on inflammation markers and oxidative stress in childhood asthma. Eur. J. Pediatr. 2023, 182, 3713–3722. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, R.; Keeler, C.; Staley, B.S.; Jardel, H.V.; Ward-Caviness, C.; Rebuli, M.E.; Xi, Y.; Rappazzo, K.; Hernandez, M.; Chelminski, A.N.; et al. Wildfire smoke exposure and early childhood respiratory health: A study of prescription claims data. Environ. Health 2023, 22, 48. [Google Scholar] [CrossRef]
- Mazumder, M.H.H.; Hussain, S. Air-Pollution-Mediated Microbial Dysbiosis in Health and Disease: Lung-Gut Axis and Beyond. J. Xenobiot. 2024, 14, 1595–1612. [Google Scholar] [CrossRef]
- Gambadauro, A.; Galletta, F.; Andrenacci, B.; Foti Randazzese, S.; Patria, M.F.; Manti, S. Impact of E-Cigarettes on Fetal and Neonatal Lung Development: The Influence of Oxidative Stress and Inflammation. Antioxidants 2025, 14, 262. [Google Scholar] [CrossRef]
- Yang, I.V.; Pedersen, B.S.; Liu, A.; O’Connor, G.T.; Teach, S.J.; Kattan, M.; Misiak, R.T.; Gruchalla, R.; Steinbach, S.F.; Szefler, S.J.; et al. DNA methylation and childhood asthma in the inner city. J. Allergy Clin. Immunol. 2015, 136, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Ercan, H.; Birben, E.; Dizdar, E.A.; Keskin, O.; Karaaslan, C.; Soyer, O.U.; Dut, R.; Sackesen, C.; Besler, T.; Kalayci, O. Oxidative stress and genetic and epidemiologic determinants of oxidant injury in childhood asthma. J. Allergy Clin. Immunol. 2006, 118, 1097–1104. [Google Scholar] [CrossRef]
- Wang, I.J.; Karmaus, W.J. Oxidative Stress-Related Genetic Variants May Modify Associations of Phthalate Exposures with Asthma. Int. J. Environ. Res. Public Health 2017, 14, 162. [Google Scholar] [CrossRef] [PubMed]
- Manti, S.; Marseglia, L.; D’Angelo, G.; Cuppari, C.; Cusumano, E.; Arrigo, T.; Gitto, E.; Salpietro, C. “Cumulative Stress”: The Effects of Maternal and Neonatal Oxidative Stress and Oxidative Stress-Inducible Genes on Programming of Atopy. Oxid. Med. Cell Longev. 2016, 2016, 8651820. [Google Scholar] [CrossRef] [PubMed]
- Onur, E.; Kabaroğlu, C.; Günay, O.; Var, A.; Yilmaz, O.; Dündar, P.; Tikiz, C.; Güvenç, Y.; Yüksel, H. The beneficial effects of physical exercise on antioxidant status in asthmatic children. Allergol. Immunopathol. 2011, 39, 90–95. [Google Scholar] [CrossRef]
- Kiani, A.K.; Medori, M.C.; Bonetti, G.; Aquilanti, B.; Velluti, V.; Matera, G.; Iaconelli, A.; Stuppia, L.; Connelly, S.T.; Herbst, K.L.; et al. Modern vision of the Mediterranean diet. J. Prev. Med. Hyg. 2022, 63, 36–43. [Google Scholar] [CrossRef]
- Songnuy, T.; Ninla-Aesong, P.; Thairach, P.; Thok-Ngaen, J. Effectiveness of an antioxidant-rich diet on childhood asthma outcomes: A randomized controlled trial. BMC Nutr. 2025, 11, 89. [Google Scholar] [CrossRef]
- Knebusch, N.; Mansour, M.; Vazquez, S.; Coss-Bu, J.A. Macronutrient and Micronutrient Intake in Children with Lung Disease. Nutrients 2023, 15, 4142. [Google Scholar] [CrossRef]
- Anand, V.; Yadev, I.; Sasidharan, B. Childhood Asthma and Vitamin D-case Control Study in an Academic Tertiary Care Hospital. J. Pediatr. Res. 2021, 8, 188–194. [Google Scholar] [CrossRef]
- Siripornpanich, S.; Chongviriyaphan, N.; Manuyakorn, W.; Matangkasombut, P. Zinc and vitamin C deficiencies associate with poor pulmonary function in children with persistent asthma. Asian Pac. J. Allergy Immunol. 2022, 40, 103–110. [Google Scholar] [CrossRef]
- Thakur, C.; Kumar, J.; Kumar, P.; Goyal, J.P.; Singh, K.; Gupta, A. Vitamin-D Supplementation as an Adjunct to Standard Treatment of Asthma in Children: A Randomized Controlled Trial (ViDASTA Trial). Pediatr. Pulmonol. 2021, 56, 1427–1433. [Google Scholar] [CrossRef]
- Tsovolas, K.; Iliodromitis, E.K.; Andreadou, I.; Zoga, A.; Demopoulou, M.; Iliodromitis, K.E.; Manolaki, T.; Markantonis, S.L.; Kremastinos, D.T. Acute administration of vitamin C abrogates protection from ischemic preconditioning in rabbits. Pharmacol. Res. 2008, 57, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.Y.; Blatter, J.; Brehm, J.M.; Forno, E.; Litonjua, A.A.; Celedón, J.C. Diet and Asthma: Vitamins and Methyl Donors. Lancet Respir. Med. 2013, 1, 813. [Google Scholar] [CrossRef] [PubMed]
- Traber, M.G.; Stevens, J.F. Vitamins C and E: Beneficial Effects from a Mechanistic Perspective. Free Radic. Biol. Med. 2011, 51, 1000. [Google Scholar] [CrossRef]
- Burbank, A.J.; Duran, C.G.; Pan, Y.; Burns, P.; Jones, S.; Jiang, Q.; Yang, C.; Jenkins, S.; Wells, H.; Alexis, N.; et al. Gamma tocopherol-enriched supplement reduces sputum eosinophilia and endotoxin-induced sputum neutrophilia in volunteers with asthma. J. Allergy Clin. Immunol. 2018, 141, 1231–1238. [Google Scholar] [CrossRef]
- Lee, S.; Ahn, K.; Paik, H.Y.; Chung, S.J. Serum Immunoglobulin E (IgE) Levels and Dietary Intake of Korean Infants and Young Children with Atopic Dermatitis. Nutr. Res. Pract. 2012, 6, 429. [Google Scholar] [CrossRef]
- Centanni, S.; Santus, P.; Di Marco, F.; Fumagalli, F.; Zarini, S.; Sala, A. The potential role of tocopherol in asthma and allergies: Modification of the leukotriene pathway. BioDrugs 2001, 15, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, A.; Chhabra, S.K.; Masood, A.; Raj, H.G. Increased Oxidative Stress and Altered Levels of Antioxidants in Asthma. J. Allergy Clin. Immunol. 2003, 111, 72–78. [Google Scholar] [CrossRef]
- Fabian, E.; Pölöskey, P.; Kósa, L.; Elmadfa, I.; Réthy, L.A. Nutritional supplements and plasma antioxidants in childhood asthma. Wien Klin. Wochenschr. 2013, 125, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Wood, L.G.; Garg, M.L.; Blake, R.J.; Simpson, J.L.; Gibson, P.G. Oxidized vitamin E and glutathione as markers of clinical status in asthma. Clin. Nutr. 2008, 27, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Azqueta, A.; Collins, A.R. Carotenoids and DNA Damage. Mutat. Res. 2012, 733, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Riccioni, G.; Bucciarelli, T.; Mancini, B.; Ilio, C.D.; Della Vecchia, R.; D’Orazio, N. Plasma Lycopene and Antioxidant Vitamins in Asthma: The PLAVA Study. J. Asthma 2007, 44, 429–432. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.; Britton, J.R.; Leonardi-Bee, J.A. Association between Antioxidant Vitamins and Asthma Outcome Measures: Systematic Review and Meta-Analysis. Thorax 2009, 64, 610–619. [Google Scholar] [CrossRef]
- Xue, M.; Wang, Q.; Pang, B.; Zhang, X.; Zhang, Y.; Deng, X.; Zhang, Z.; Niu, W. Association Between Circulating Zinc and Risk for Childhood Asthma and Wheezing: A Meta-analysis on 21 Articles and 2205 Children. Biol. Trace Elem. Res. 2024, 202, 442–453. [Google Scholar] [CrossRef]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Front. Pharmacol. 2022, 13, 806470. [Google Scholar] [CrossRef]
- Emran, T.B.; Eva, T.A.; Zehravi, M.; Islam, F.; Khan, J.; Kareemulla, S.; Arjun, U.V.N.V.; Balakrishnan, A.; Taru, P.P.; Nainu, F.; et al. Polyphenols as Therapeutics in Respiratory Diseases: Moving from Preclinical Evidence to Potential Clinical Applications. Int. J. Biol. Sci. 2024, 20, 3236. [Google Scholar] [CrossRef]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef]
- Tanaka, T.; Takahashi, R. Flavonoids and Asthma. Nutrients 2013, 5, 2128. [Google Scholar] [CrossRef]
- Dębińska, A.; Sozańska, B. Dietary Polyphenols—Natural Bioactive Compounds with Potential for Preventing and Treating Some Allergic Conditions. Nutrients 2023, 15, 4823. [Google Scholar] [CrossRef]
- Sahasrabudhe, S.A.; Terluk, M.R.; Kartha, R.V. N-Acetylcysteine Pharmacology and Applications in Rare Diseases—Repurposing an Old Antioxidant. Antioxidants 2023, 12, 1316. [Google Scholar] [CrossRef]
- Aldini, G.; Altomare, A.; Baron, G.; Vistoli, G.; Carini, M.; Borsani, L.; Sergio, F. N-Acetylcysteine as an Antioxidant and Disulphide Breaking Agent: The Reasons Why. Free Radic. Res. 2018, 52, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Pang, C.; Han, J.; Yan, H. Effect of Orally Administered N-Acetylcysteine on Chronic Bronchitis: A Meta-Analysis. Adv. Ther. 2019, 36, 3356–3367. [Google Scholar] [CrossRef]
- Samuni, Y.; Goldstein, S.; Dean, O.M.; Berk, M. The Chemistry and Biological Activities of N-Acetylcysteine. Biochim. Biophys. Acta 2013, 1830, 4117–4129. [Google Scholar] [CrossRef]
- Eftekhari, P.; Hajizadeh, S.; Raoufy, M.R.; Masjedi, M.R.; Yang, M.; Hansbro, N.; Li, J.J.; Foster, P.S. Preventive effect of N-acetylcysteine in a mouse model of steroid resistant acute exacerbation of asthma. EXCLI J. 2013, 12, 184–192. [Google Scholar] [PubMed] [PubMed Central]
- Ahmed, S.M.; Luo, L.; Namani, A.; Wang, X.J.; Tang, X. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim. Biophys. Acta Mol. Basis. Dis. 2017, 1863, 585–597. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.A.; Rahman, M.M. Mitochondrial dysfunction in obesity: Potential benefit and mechanism of Co-enzyme Q10 supplementation in metabolic syndrome. J. Diabetes Metab. Disord. 2014, 13, 60. [Google Scholar] [CrossRef]
- Gvozdjáková, A.; Kucharská, J.; Bartkovjaková, M.; Gazdíková, K.; Gazdík, F.E. Coenzyme Q10 supplementation reduces corticosteroids dosage in patients with bronchial asthma. Biofactors 2005, 25, 235–240. [Google Scholar] [CrossRef]
- Du, Q.; Meng, W.; Athari, S.S.; Wang, R. The effect of Co-Q10 on allergic rhinitis and allergic asthma. Allergy Asthma Clin. Immunol. 2021, 17, 32. [Google Scholar] [CrossRef]
- Bao, A.; Yang, H.; Ji, J.; Chen, Y.; Bao, W.; Li, F.; Zhang, M.; Zhou, X.; Li, Q.; Ben, S. Involvements of p38 MAPK and oxidative stress in the ozone-induced enhancement of AHR and pulmonary inflammation in an allergic asthma model. Respir. Res. 2017, 18, 216. [Google Scholar] [CrossRef]
- Yoo, E.J.; Ojiaku, C.A.; Sunder, K.; Panettieri, R.A., Jr. Phosphoinositide 3-Kinase in Asthma: Novel Roles and Therapeutic Approaches. Am. J. Respir. Cell Mol. Biol. 2017, 56, 700–707. [Google Scholar] [CrossRef] [PubMed]
Source | Examples/Key Molecules | Main Effects in Asthma |
---|---|---|
Endogenous | Mitochondria, NADPH oxidases (NOX2, NOX4), immune cells [4,11,12,13] | Increase of ROS/RNS, airway inflammation, tissue remodeling |
Exogenous | Air pollution (PM2.5, NO2, O3), tobacco smoke, allergens [4] | Initiation of oxidative reactions, worsened control |
Genetic Factors | GSTP1, CAT gene polymorphisms [7] | Modify susceptibility, affect the antioxidant response |
Microbiome (Dysbiosis) | Altered gut–lung axis, Reduction of SCFAs production [8] | Enhances type 2 inflammation, increases ROS |
Biomarker | Measurement/Source | Clinical Significance |
---|---|---|
8-Isoprostane [52] | Exhaled breath | Increased in children with asthma, marker of exacerbation risk |
H2O2 [53] | Exhaled breath condensate | Elevated during exacerbation and recovery |
FeNO [54] | Exhaled breath | High values predict more frequent relapses |
MDA [5] | Nasal/serum samples | Linked to symptom worsening, cold exposure |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koumpagioti, D.; Dimitroglou, M.; Mpoutopoulou, B.; Moriki, D.; Douros, K. The Role of Oxidative Stress in the Pathogenesis of Childhood Asthma: A Comprehensive Review. Children 2025, 12, 1110. https://doi.org/10.3390/children12091110
Koumpagioti D, Dimitroglou M, Mpoutopoulou B, Moriki D, Douros K. The Role of Oxidative Stress in the Pathogenesis of Childhood Asthma: A Comprehensive Review. Children. 2025; 12(9):1110. https://doi.org/10.3390/children12091110
Chicago/Turabian StyleKoumpagioti, Despoina, Margarita Dimitroglou, Barbara Mpoutopoulou, Dafni Moriki, and Konstantinos Douros. 2025. "The Role of Oxidative Stress in the Pathogenesis of Childhood Asthma: A Comprehensive Review" Children 12, no. 9: 1110. https://doi.org/10.3390/children12091110
APA StyleKoumpagioti, D., Dimitroglou, M., Mpoutopoulou, B., Moriki, D., & Douros, K. (2025). The Role of Oxidative Stress in the Pathogenesis of Childhood Asthma: A Comprehensive Review. Children, 12(9), 1110. https://doi.org/10.3390/children12091110