Polyvinylpyrrolidone-Coated Catheters Decrease Astrocyte Adhesion and Improve Flow/Pressure Performance in an Invitro Model of Hydrocephalus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Adhesion to Catheters
2.2. Catheter Occlusion
2.3. 3D Brain Phantom
2.4. Assessment of Catheter Pressure and Flow
2.5. Immunocytochemistry
2.6. Image Analysis
2.7. Statistical Analysis
3. Results
3.1. Cellular Adhesion
3.2. Catheter Performance under Obstructive Conditions
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Isaacs, A.M.; Riva-Cambrin, J.; Yavin, D.; Hockley, A.; Pringsheim, T.M.; Jette, N.; Lethebe, B.C.; Lowerison, M.; Dronyk, J.; Hamilton, M.G. Age-specific global epidemiology of hydrocephalus: Systematic review, metanalysis and global birth surveillance. PloS ONE 2018, 13, e0204926. [Google Scholar] [CrossRef] [PubMed]
- Rekate, H.L. A contemporary definition and classification of hydrocephalus. Semin. Pediatr. Neurol. 2009, 16, 9–11. [Google Scholar] [CrossRef] [PubMed]
- Wright, Z.; Larrew, T.W.; Eskandari, R. Pediatric hydrocephalus: Current state of diagnosis and treatment. Pediatr. Rev. 2016, 37, 478–490. [Google Scholar] [CrossRef] [PubMed]
- Stone, J.J.; Walker, C.T.; Jacobson, M.; Phillips, V.; Silberstein, H.J. Revision rate of pediatric ventriculoperitoneal shunts after 15 years. J. Neurosurg. Pediatr. 2013, 11, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Aghayev, K.; Iqbal, S.M.; Asghar, W.; Shahmurzada, B.; Vrionis, F.D. Advances in CSF shunt devices and their assessment for the treatment of hydrocephalus. Expert Rev. Med. Devices 2021, 18, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, A.V.; Riva-Cambrin, J.; Butler, J.; Browd, S.R.; Drake, J.M.; Holubkov, R.; Kestle, J.R.; Limbrick, D.D.; Simon, T.D.; Tamber, M.S.; et al. Outcomes of CSF shunting in children: Comparison of Hydrocephalus Clinical Research Network cohort with historical controls. J. Neurosurg. Pediatr. 2013, 12, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Hanak, B.W.; Bonow, R.H.; Harris, C.A.; Browd, S.R. Cerebrospinal Fluid Shunting Complications in Children. Pediatr. Neurosurg. 2017, 52, 381–400. [Google Scholar] [CrossRef] [Green Version]
- Hanak, B.W.; Ross, E.F.; Harris, C.A.; Browd, S.R.; Shain, W. Toward a better understanding of the cellular basis for cerebrospinal fluid shunt obstruction: Report on the construction of a bank of explanted hydrocephalus devices. J. Neurosurg. Pediatr. 2016, 18, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Hariharan, P.; Sondheimer, J.; Petroj, A.; Gluski, J.; Jea, A.; Whitehead, W.E.; Sood, S.; Ham, S.D.; Rocque, B.G.; Marupudi, N.I.; et al. A multicenter retrospective study of heterogeneous tissue aggregates obstructing ventricular catheters explanted from patients with hydrocephalus. Fluids Barriers CNS 2021, 18, 33. [Google Scholar] [CrossRef]
- Khodadadei, F.; Arshad, R.; Morales, D.M.; Gluski, J.; Marupudi, N.I.; McAllister, J.P., II; Limbrick, D.D., Jr.; Harris, C.A. The effect of A1 and A2 reactive astrocyte expression on hydrocephalus shunt failure. Fluids Barriers CNS 2022, 19, 78. [Google Scholar] [CrossRef]
- Hanak, B.W.; Hsieh, C.Y.; Donaldson, W.; Browd, S.R.; Lau, K.K.; Shain, W. Reduced cell attachment to poly(2-hydroxyethyl methacrylate)-coated ventricular catheters in vitro. J. Biomed. Mater. Res. B. Appl. Biomater. 2018, 106, 1268–1279. [Google Scholar] [CrossRef] [PubMed]
- Harris, C.A.; McAllister, J.P., 2nd. What we should know about the cellular and tissue response causing catheter obstruction in the treatment of hydrocephalus. Neurosurgery 2012, 70, 1589–1601. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Vinzani, M.; Romero, B.; Chan, A.Y.; Castañeyra-Ruiz, L.; Muhonen, M. Partial Obstruction of Ventricular Catheters Affects Performance in a New Catheter Obstruction Model of Hydrocephalus. Children 2022, 9, 1453. [Google Scholar] [CrossRef]
- Lee, S.; Bristol, R.E.; Preul, M.C.; Chae, J. Three-Dimensionally Printed Microelectromechanical-System Hydrogel Valve for Communicating Hydrocephalus. ACS Sens. 2020, 5, 1398–1404. [Google Scholar] [CrossRef]
- Castaneyra-Ruiz, L.; McAllister, J.P.; Morales, D.M.; Brody, S.L.; Isaacs, A.M.; Limbrick, D.D. Preterm intraventricular hemorrhage in vitro: Modeling the cytopathology of the ventricular zone. Fluids Barriers CNS. 2020, 17, 46. [Google Scholar] [CrossRef] [PubMed]
- Castaneyra-Ruiz, L.; Morales, D.M.; McAllister, J.P.; Brody, S.L.; Isaacs, A.M.; Strahle, J.M.; Dahiya, S.M.; Limbrick, D.D. Blood Exposure Causes Ventricular Zone Disruption and Glial Activation In Vitro. J. Neuropathol. Exp. Neurol. 2018, 77, 803–813. [Google Scholar] [CrossRef] [Green Version]
- Cağavi, F.; Akalan, N.; Celik, H.; Gür, D.; Güçiz, B. Effect of hydrophilic coating on microorganism colonization in silicone tubing. Acta Neurochi. 2004, 146, 603–610. [Google Scholar] [CrossRef]
- Khodadadei, F.; Liu, A.P.; Harris, C.A. A high-resolution real-time quantification of astrocyte cytokine secretion under shear stress for investigating hydrocephalus shunt failure. Commun. Biol. 2021, 4, 1–10. [Google Scholar] [CrossRef]
- Harris, C.A.; Resau, J.H.; Hudson, E.A.; West, R.A.; Moon, C.; McAllister, J.P., 2nd. Mechanical contributions to astrocyte adhesion using a novel in vitro model of catheter obstruction. Exp. Neurol. 2010, 222, 204–210. [Google Scholar] [CrossRef]
- Harris, C.A.; Resau, J.H.; Hudson, E.A.; West, R.A.; Moon, C.; Black, A.D.; McAllister, J.P. Effects of surface wettability, flow, and protein concentration on macrophage and astrocyte adhesion in an in vitro model of central nervous system catheter obstruction. J. Biomed. Mater. Res. A 2011, 97, 433–440. [Google Scholar] [CrossRef]
- Harris, C.; Pearson, K.; Hadley, K.; Zhu, S.; Browd, S.; Hanak, B.W.; Shain, W. Fabrication of three-dimensional hydrogel scaffolds for modeling shunt failure by tissue obstruction in hydrocephalus. Fluids Barriers CNS 2015, 12, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Kwok, N.; Holsapple, J.; Heldt, T.; Bourouiba, L. Enhanced wall shear stress prevents obstruction by astrocytes in ventricular catheters. J. R. Soc. Interface 2020, 17, 20190884. [Google Scholar] [CrossRef] [PubMed]
- Devathasan, D.; Bentley, R.T.; Enriquez, A.; Yang, Q.; Thomovsky, S.A.; Thompson, C.; Lee, A.E.; Lee, H. Development of an In Vitro Hemorrhagic Hydrocephalus Model for Functional Evaluation of Magnetic Microactuators Against Shunt Obstructions. World Neurosurg. 2021, 155, e294–e300. [Google Scholar] [CrossRef] [PubMed]
- Castaneyra-Ruiz, L.; González-Marrero, I.; Hernández-Abad, L.G.; Carmona-Calero, E.M.; Pardo, M.R.; Baz-Davila, R.; Lee, S.; Muhonen, M.; Borges, R.; Castañeyra-Perdomo, A. AQP4 labels a subpopulation of white matter-dependent glial radial cells affected by pediatric hydrocephalus, and its expression increased in glial microvesicles released to the cerebrospinal fluid in obstructive hydrocephalus. Acta Neuropathol. Commun. 2022, 10, 41. [Google Scholar] [CrossRef]
- Castañeyra-Ruiz, L.; González-Marrero, I.; Hernández-Abad, L.G.; Lee, S.; Castañeyra-Perdomo, A.; Muhonen, M. AQP4, Astrogenesis, and Hydrocephalus: A New Neurological Perspective. Int. J. Mol. Sci. 2022, 23, 10438. [Google Scholar] [CrossRef]
- Garcia-Bonilla, M.; Castaneyra-Ruiz, L.; Zwick, S.; Talcott, M.; Otun, A.; Isaacs, A.M.; Morales, D.M.; Limbrick, D.D.; McAllister, J.P. Acquired hydrocephalus is associated with neuroinflammation, progenitor loss, and cellular changes in the subventricular zone and periventricular white matter. Fluids Barriers CNS 2022, 19, 1–18. [Google Scholar] [CrossRef]
- McAllister, J.P.; Guerra, M.M.; Ruiz, L.C.; Jimenez, A.J.; Dominguez-Pinos, D.; Sival, D.; den Dunnen, W.; Morales, D.M.; Schmidt, R.E.; Rodriguez, E.M.; et al. Ventricular zone disruption in human neonates with intraventricular hemorrhage. J. Neuropathol. Exp. Neurol. 2017, 76, 358–375. [Google Scholar] [CrossRef] [Green Version]
- Isaacs, A.M.; Neil, J.J.; McAllister, J.P.; Dahiya, S.; Castaneyra-Ruiz, L.; Merisaari, H.; Botteron, H.E.; Alexopoulos, D.; George, A.; Sun, P.; et al. Microstructural periventricular white matter injury in post-hemorrhagic ventricular dilatation. Neurology 2022, 98, e364–e375. [Google Scholar] [CrossRef]
- Browd, S.R.; Ragel, B.T.; Gottfried, O.N.; Kestle, J.R. Failure of cerebrospinal fluid shunts: Part I: Obstruction and mechanical failure. Pediatr. Neurol. 2006, 34, 83–92. [Google Scholar] [CrossRef]
- Chen, H.H.; Riva-Cambrin, J.; Brockmeyer, D.L.; Walker, M.L.; Kestle, J.R. Shunt failure due to intracranial migration of BioGlide ventricular catheters. J. Neurosurg. Pediatr. 2011, 7, 408–412. [Google Scholar] [CrossRef]
- Hariharan, P.; Harris, C.A. Shunts and Shunt Malfunction. In Cerebrospinal Fluid Disorders: Lifelong Implications; Limbrick, D.D., Jr., Leonard, J.R., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 297–316. [Google Scholar]
Product Description | Medtronic Catalog Number | Quantity |
---|---|---|
Ares, antibiotic- and barium-impregnated | 91,101 | 5 |
Bioglide (polyvinylpyrrolidone) | 91,503 | 5 |
Barium-striped | 24,154 | 5 |
Barium-impregnated | 41,101 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castañeyra-Ruiz, L.; Lee, S.; Chan, A.Y.; Shah, V.; Romero, B.; Ledbetter, J.; Muhonen, M. Polyvinylpyrrolidone-Coated Catheters Decrease Astrocyte Adhesion and Improve Flow/Pressure Performance in an Invitro Model of Hydrocephalus. Children 2023, 10, 18. https://doi.org/10.3390/children10010018
Castañeyra-Ruiz L, Lee S, Chan AY, Shah V, Romero B, Ledbetter J, Muhonen M. Polyvinylpyrrolidone-Coated Catheters Decrease Astrocyte Adhesion and Improve Flow/Pressure Performance in an Invitro Model of Hydrocephalus. Children. 2023; 10(1):18. https://doi.org/10.3390/children10010018
Chicago/Turabian StyleCastañeyra-Ruiz, Leandro, Seunghyun Lee, Alvin Y. Chan, Vaibhavi Shah, Bianca Romero, Jenna Ledbetter, and Michael Muhonen. 2023. "Polyvinylpyrrolidone-Coated Catheters Decrease Astrocyte Adhesion and Improve Flow/Pressure Performance in an Invitro Model of Hydrocephalus" Children 10, no. 1: 18. https://doi.org/10.3390/children10010018
APA StyleCastañeyra-Ruiz, L., Lee, S., Chan, A. Y., Shah, V., Romero, B., Ledbetter, J., & Muhonen, M. (2023). Polyvinylpyrrolidone-Coated Catheters Decrease Astrocyte Adhesion and Improve Flow/Pressure Performance in an Invitro Model of Hydrocephalus. Children, 10(1), 18. https://doi.org/10.3390/children10010018