Role of Cytokines in Breast Cancer: A Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Overview of Included Studies
3.2. IL-6 (Interleukin-6)
3.3. TNF-α (Tumor Necrosis Factor-Alpha)
3.4. IL-1β (Interleukin-1 Beta)
3.5. IL-8 (CXCL8)
3.6. IL-10 (Interleukin-10)
3.7. Other Cytokines (IL-17, TGF-β, and Others)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Explanation |
IL-1β | Interleukin-1 beta |
IL-6 | Interleukin-6 |
IL-8 | Interleukin-8 (also known as CXCL8) |
IL-10 | Interleukin-10 |
IL-12 | Interleukin-12 |
IL-17 | Interleukin-17 |
IFN-γ | Interferon-gamma |
TNF-α | Tumor Necrosis Factor-alpha |
TGF-β | Transforming Growth Factor-beta |
CXCL8 | C-X-C motif chemokine ligand 8 (synonymous with IL-8) |
CXCR1/2 | C-X-C motif chemokine receptor 1 and 2 |
CCL2 | C-C motif chemokine ligand 2 |
CCL5 | C-C motif chemokine ligand 5 |
CXCL12 | C-X-C motif chemokine ligand 12 |
CXCR4 | C-X-C motif chemokine receptor 4 |
EMT | Epithelial–Mesenchymal Transition |
TAM | Tumor-Associated Macrophage |
MDSC | Myeloid-Derived Suppressor Cell |
NK cell | Natural Killer cell |
Treg | Regulatory T cell |
Th1 | T helper 1 (pro-inflammatory, cell-mediated immunity) |
Th2 | T helper 2 (anti-inflammatory, humoral immunity) |
Th17 | T helper 17 (subset producing IL-17) |
STAT3 | Signal Transducer and Activator of Transcription 3 |
NF-κB | Nuclear Factor kappa-light-chain-enhancer of activated B cells |
MAPK | Mitogen-Activated Protein Kinase |
JAK | Janus Kinase |
HR | Hazard Ratio |
OR | Odds Ratio |
CI | Confidence Interval |
OS | Overall Survival |
DFS | Disease-Free Survival |
ELISA | Enzyme-Linked Immunosorbent Assay |
IHC | Immunohistochemistry |
TCGA | The Cancer Genome Atlas |
TNBC | Triple-Negative Breast Cancer |
PD-L1 | Programmed Death-Ligand 1 |
PD-1 | Programmed Death-1 (immune checkpoint receptor) |
TAZ | Transcriptional co-activator with PDZ-binding motif (in Hippo signaling pathway) |
mRNA | Messenger Ribonucleic Acid |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, R.D.; Old, L.J.; Smyth, M.J. Cancer Immunoediting: Integrating Immunity’s Roles in Cancer Suppression and Promotion. Science 2011, 331, 1565–1570. [Google Scholar] [CrossRef]
- Kumar, M.; Dubey, R.; Kumar Shukla, P.; Dayal, D.; Kumar Chaubey, K.; Tsai, L.W.; Kumar, S. Identification of Small Molecule Inhibitors of RAD52 for Breast Cancer Therapy: In Silico Approach. J. Biomol. Struct. Dyn. 2024, 42, 4605–4618. [Google Scholar] [CrossRef]
- Sparano, J.A.; O’Neill, A.; Graham, N.; Northfelt, D.W.; Dang, C.T.; Wolff, A.C.; Sledge, G.W.; Miller, K.D. Inflammatory Cytokines and Distant Recurrence in HER2-Negative Early Breast Cancer. NPJ Breast Cancer 2022, 8, 16. [Google Scholar] [CrossRef]
- De La Cruz-Vargas, J.A.; Gómez, H.; Talavera, J.E.; Gonzales-Rospigliosi, C.; Córdova Salazar, A.A.; Pichardo-Rodriguez, R. Prognostic Relevance of Inflammatory Cytokines Il-6 and TNF-Alpha in Patients with Breast Cancer: A Systematic Review and Meta-Analysis. Curr. Oncol. 2025, 32, 344. [Google Scholar] [CrossRef]
- Qodir, N.; Pramudhito, D.; Legiran; Hafy, Z.; Iman, M.B.; Syafira, F.; Afladhanti, P.M.; Daenasa, R.S.; Indra, B. Tumor Necrosis Factor-Alpha and Its Association With Breast Cancer: A Systematic Review. World J. Oncol. 2025, 16, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Ciurescu, S. Systematic Data Extraction for a Review on the Role of Cytokines in Breast Cancer Progression and Therapeutic Targeting. Available online: https://slack.protocols.io:8443/view/systematic-data-extraction-for-a-review-on-the-rol-g5eeby3bf.html (accessed on 1 July 2025).
- Liao, H.; Li, H.; Song, J.; Chen, H.; Si, H.; Dong, J.; Wang, J.; Bai, X. Expression of the Prognostic Marker IL-8 Correlates with the Immune Signature and Epithelial-Mesenchymal Transition in Breast Cancer. J. Clin. Lab. Anal. 2023, 37, e24797. [Google Scholar] [CrossRef]
- Garrone, O.; Michelotti, A.; Paccagnella, M.; Montemurro, F.; Vandone, A.M.; Abbona, A.; Geuna, E.; Vanella, P.; De Angelis, C.; Lo Nigro, C.; et al. Exploratory Analysis of Circulating Cytokines in Patients with Metastatic Breast Cancer Treated with Eribulin: The TRANSERI-GONO (Gruppo Oncologico Del Nord Ovest) Study. ESMO Open 2020, 5, e000876. [Google Scholar] [CrossRef]
- Chen, K.Y.; Chien, W.C.; Liao, J.M.; Tsai, C.W.; Chang, W.S.; Su, C.H.; Hsu, S.W.; Wang, H.C.; Bau, D.T. Contribution of Interleukin-10 Genotype to Triple Negative Breast Cancer Risk. Anticancer Res. 2021, 41, 2451–2457. [Google Scholar] [CrossRef]
- Wilson, B.E.; Shen, Q.; Cescon, D.W.; Reedijk, M. Exploring Immune Interactions in Triple Negative Breast Cancer: IL-1β Inhibition and Its Therapeutic Potential. Front. Genet. 2023, 14, 1086163. [Google Scholar] [CrossRef]
- Chen, J.; Wei, Y.; Yang, W.; Huang, Q.; Chen, Y.; Zeng, K.; Chen, J. IL-6: The Link Between Inflammation, Immunity and Breast Cancer. Front. Oncol. 2022, 12, 903800. [Google Scholar] [CrossRef] [PubMed]
- Paccagnella, M.; Abbona, A.; Michelotti, A.; Geuna, E.; Ruatta, F.; Landucci, E.; Denaro, N.; Vanella, P.; Lo Nigro, C.; Galizia, D.; et al. Circulating Cytokines in Metastatic Breast Cancer Patients Select Different Prognostic Groups and Patients Who Might Benefit from Treatment beyond Progression. Vaccines 2022, 10, 78. [Google Scholar] [CrossRef] [PubMed]
- Fontvieille, E.; His, M.; Biessy, C.; Navionis, A.S.; Torres-Mejía, G.; Ángeles-Llerenas, A.; Alvarado-Cabrero, I.; Sánchez, G.I.; Navarro, E.; Cortes, Y.R.; et al. Inflammatory Biomarkers and Risk of Breast Cancer among Young Women in Latin America: A Case-Control Study. BMC Cancer 2022, 22, 877. [Google Scholar] [CrossRef]
- Ma, Y.; Ren, Y.; Dai, Z.J.; Wu, C.J.; Ji, Y.H.; Xu, J. IL-6, IL-8 and TNF-α Levels Correlate with Disease Stage in Breast Cancer Patients. Adv. Clin. Exp. Med. 2017, 26, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Al-Tweigeri, T.; Alraouji, N.; Tulbah, A.; Akhtar, S.; Alzahrani, M.; Najjar, S.; Ajarim, D.; Suleman, K.; Al Sayed, A.; Aboussekhra, A. Abstract PO3-25-11: Unprecedented Responses to Neoadjuvant Sequential Administration of Tocilizumab Followed by Cisplatin/Docetaxel for Locally Advanced Triple Negative Breast Cancer Patients. Cancer Res. 2024, 84, PO3-25-11. [Google Scholar] [CrossRef]
- Oh, K.; Lee, O.Y.; Park, Y.; Seo, M.W.; Lee, D.S. IL-1β Induces IL-6 Production and Increases Invasiveness and Estrogen-Independent Growth in a TG2-Dependent Manner in Human Breast Cancer Cells. BMC Cancer 2016, 16, 724. [Google Scholar] [CrossRef]
- Nutter, F.; Holen, I.; Brown, H.K.; Cross, S.S.; Alyson Evans, C.; Walker, M.; Coleman, R.E.; Westbrook, J.A.; Selby, P.J.; Brown, J.E.; et al. Different Molecular Profiles Are Associated with Breast Cancer Cell Homing Compared with Colonisation of Bone: Evidence Using a Novel Bone-Seeking Cell Line. Endocr. Relat. Cancer 2014, 21, 327–341. [Google Scholar] [CrossRef]
- Panis, C.; Pavanelli, W.R. Cytokines as Mediators of Pain-Related Process in Breast Cancer. Mediat. Inflamm. 2015, 2015, 129034. [Google Scholar] [CrossRef]
- Soria, G.; Ofri-Shahak, M.; Haas, I.; Yaal-Hahoshen, N.; Leider-Trejo, L.; Leibovich-Rivkin, T.; Weitzenfeld, P.; Meshel, T.; Shabtai, E.; Gutman, M.; et al. Inflammatory Mediators in Breast Cancer: Coordinated Expression of TNFα & IL-1β with CCL2 & CCL5 and Effects on Epithelial-to-Mesenchymal Transition. BMC Cancer 2011, 11, 130. [Google Scholar] [CrossRef]
- Tang, S.; Zhang, Y.; Song, L.; Hui, K.; Jiang, X. High CXCL8 Expression Predicting Poor Prognosis in Triple-Negative Breast Cancer. Anticancer Drugs 2025, 36, 246. [Google Scholar] [CrossRef]
- Holen, I.; Lefley, D.V.; Francis, S.E.; Rennicks, S.; Bradbury, S.; Coleman, R.E.; Ottewell, P. IL-1 Drives Breast Cancer Growth and Bone Metastasis in Vivo. Oncotarget 2016, 7, 75571–75584. [Google Scholar] [CrossRef]
- Kaplanov, I.; Carmi, Y.; Kornetsky, R.; Shemesh, A.; Shurin, G.V.; Shurin, M.R.; Dinarello, C.A.; Voronov, E.; Apte, R.N. Blocking IL-1β Reverses the Immunosuppression in Mouse Breast Cancer and Synergizes with Anti-PD-1 for Tumor Abrogation. Proc. Natl. Acad. Sci. USA 2019, 116, 1361–1369. [Google Scholar] [CrossRef]
- O’Shaughnessy, J.; Young, R.R.; Levin, M.K.; Baisch, J.; Timis, R.; Muniz, L.S.; Turner, J.; Pascual, V.; Palucka, K. Safety and Immunologic Activity of Anakinra in HER2-Negative Metastatic Breast Cancer (MBC). J. Clin. Oncol. 2016, 34, e14565. [Google Scholar] [CrossRef]
- Ridker, P.M.; MacFadyen, J.G.; Thuren, T.; Everett, B.; Libby, P.; Glynn, R.J.; Lorenzatti, A.; Krum, H.; Varigos, J.; Siostrzonek, P.; et al. Effect of Interleukin-1β Inhibition with Canakinumab on Incident Lung Cancer in Patients with Atherosclerosis: Exploratory Results from a Randomised, Double-Blind, Placebo-Controlled Trial. Lancet 2017, 390, 1833–1842. [Google Scholar] [CrossRef]
- Jeong, Y.; Yoon, S.Y.; Jung, S.P.; Nam, S.J.; Lee, J.E.; Kim, S. Inhibition of Interleukin-8/C-X-C Chemokine Receptor 2 Signaling Axis Prevents Tumor Growth and Metastasis in Triple-Negative Breast Cancer Cells. Pharmacology 2025, 110, 178. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Wang, Z.; Hong, J.; Wu, J.; Huang, O.; He, J.; Chen, W.; Li, Y.; Chen, X.; Shen, K. Targeting Cancer-Associated Adipocyte-Derived CXCL8 Inhibits Triple-Negative Breast Cancer Progression and Enhances the Efficacy of Anti-PD-1 Immunotherapy. Cell Death Dis. 2023, 14, 703. [Google Scholar] [CrossRef] [PubMed]
- Meier, C.; Brieger, A. The Role of IL-8 in Cancer Development and Its Impact on Immunotherapy Resistance. Eur. J. Cancer 2025, 218, 115267. [Google Scholar] [CrossRef]
- Chang, C.M.; Lam, H.Y.P.; Hsu, H.J.; Jiang, S.J. Interleukin-10: A Double-Edged Sword in Breast Cancer. Tzu-Chi Med. J. 2021, 33, 203. [Google Scholar] [CrossRef]
- Ma, T.; Kong, M. Interleukin-18 and −10 May Be Associated with Lymph Node Metastasis in Breast Cancer. Oncol. Lett. 2021, 21, 253. [Google Scholar] [CrossRef]
- Zhao, S.; Wu, D.; Wu, P.; Wang, Z.; Huang, J.; Gao, J.X. Serum IL-10 Predicts Worse Outcome in Cancer Patients: A Meta-Analysis. PLoS ONE 2015, 10, e0139598. [Google Scholar] [CrossRef]
- Zhou, L.; Tang, C.; Li, X.; Feng, F. IL-6/IL-10 MRNA Expression Ratio in Tumor Tissues Predicts Prognosis in Gastric Cancer Patients without Distant Metastasis. Sci. Rep. 2022, 12, 19427. [Google Scholar] [CrossRef]
- Song, X.; Wei, C.; Li, X. The Potential Role and Status of IL-17 Family Cytokines in Breast Cancer. Int. Immunopharmacol. 2021, 95, 107544. [Google Scholar] [CrossRef]
- Shibabaw, T.; Teferi, B.; Ayelign, B. The Role of Th-17 Cells and IL-17 in the Metastatic Spread of Breast Cancer: As a Means of Prognosis and Therapeutic Target. Front. Immunol. 2023, 14, 1094823. [Google Scholar] [CrossRef]
- Kalfeist, L.; Ledys, F.; Petit, S.; Poirrier, C.; Mohammed, S.K.; Galland, L.; Derangère, V.; Ilie, A.; Rageot, D.; Aucagne, R.; et al. Co-Targeting TGF-β and PD-L1 Sensitizes Triple-Negative Breast Cancer to Experimental Immunogenic Cisplatin-Eribulin Chemotherapy Doublet. J. Clin. Investig. 2025, 135, e184422. [Google Scholar] [CrossRef] [PubMed]
- Bettariga, F.; Taaffe, D.R.; Borsati, A.; Avancini, A.; Pilotto, S.; Lazzarini, S.G.; Lopez, P.; Maestroni, L.; Crainich, U.; Campbell, J.P.; et al. Effects of Exercise on Inflammation in Female Survivors of Nonmetastatic Breast Cancer: A Systematic Review and Meta-Analysis. JNCI J. Natl. Cancer Inst. 2025. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kang, J.W.; Song, X.; Kim, B.K.; Yoo, Y.D.; Kwon, Y.T.; Lee, Y.J. Role of the IL-6-JAK1-STAT3-Oct-4 Pathway in the Conversion of Non-Stem Cancer Cells into Cancer Stem-like Cells. Cell. Signal. 2013, 25, 961–969. [Google Scholar] [CrossRef] [PubMed]
- Balamurugan, K.; Mendoza-Villanueva, D.; Sharan, S.; Summers, G.H.; Dobrolecki, L.E.; Lewis, M.T.; Sterneck, E. C/EBPδ Links IL-6 and HIF-1 Signaling to Promote Breast Cancer Stem Cell-Associated Phenotypes. Oncogene 2019, 38, 3765–3780. [Google Scholar] [CrossRef] [PubMed]
- Brady, J.J.; Li, M.; Suthram, S.; Jiang, H.; Wong, W.H.; Blau, H.M. Early Role for IL-6 Signalling during Generation of Induced Pluripotent Stem Cells Revealed by Heterokaryon RNA-Seq. Nat. Cell Biol. 2013, 15, 1244–1252. [Google Scholar] [CrossRef]
- Pruneri, G.; Vingiani, A.; Denkert, C. Tumor Infiltrating Lymphocytes in Early Breast Cancer. Breast 2018, 37, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Stanton, S.E.; Adams, S.; Disis, M.L. Variation in the Incidence and Magnitude of Tumor-Infiltrating Lymphocytes in Breast Cancer Subtypes: A Systematic Review. JAMA Oncol. 2016, 2, 1354–1360. [Google Scholar] [CrossRef]
- Savas, P.; Salgado, R.; Denkert, C.; Sotiriou, C.; Darcy, P.K.; Smyth, M.J.; Loi, S. Clinical Relevance of Host Immunity in Breast Cancer: From TILs to the Clinic. Nat. Rev. Clin. Oncol. 2016, 13, 228–241. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, L.J.; Perez, R.P.; Yardley, D.; Han, L.K.; Reuben, J.M.; Gao, H.; McCanna, S.; Butler, B.; Ruffini, P.A.; Liu, Y.; et al. A Window-of-Opportunity Trial of the CXCR1/2 Inhibitor Reparixin in Operable HER-2-Negative Breast Cancer. Breast Cancer Res. 2020, 22, 4. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wei, L.; Li, S.; Liu, J.; Li, F.; Wei, L.; Li, S.; Liu, J. Indoleamine-2,3-Dioxygenase and Interleukin-6 Associated with Tumor Response to Neoadjuvant Chemotherapy in Breast Cancer. Oncotarget 2017, 8, 107844–107858. [Google Scholar] [CrossRef]
- Noman, A.S.; Uddin, M.; Chowdhury, A.A.; Nayeem, M.J.; Raihan, Z.; Rashid, M.I.; Azad, A.K.; Rahman, M.L.; Barua, D.; Sultana, A.; et al. Serum Sonic Hedgehog (SHH) and Interleukin-(IL-6) as Dual Prognostic Biomarkers in Progressive Metastatic Breast Cancer. Sci. Rep. 2017, 7, 1796. [Google Scholar] [CrossRef]
Study (Year) | Population/Design | Cytokines Evaluated | Key Findings |
---|---|---|---|
De La Cruz-Vargas et al. (2025) [7] | Systematic review and meta-analysis (19 studies, n = 2505 breast cancer patients) | IL-6, TNF-α | High IL-6 was associated with significantly poorer survival: pooled HR = 2.25 (95% CI: 1.83, 2.76) for overall survival. High TNF-α showed no significant effect on survival (pooled HR = 2.06, 95% CI: 0.98, 4.31). Concludes that IL-6 is a robust prognostic marker of worse outcome, whereas evidence for TNF-α is inconclusive. |
Sparano et al. (2022) [6] | Nested case–control analysis from a phase III trial (E5103, n = 532 HER2-negative early BC patients) | Panel of 36 cytokines (including IL-6, IL-17A, etc.) | Among many cytokines measured at diagnosis, IL-6 was the only cytokine significantly associated with increased distant recurrence risk after multivariate adjustment (HR ≈ 1.37 per unit, p = 0.0006). IL-17A also showed a trend toward higher recurrence risk (HR ≈ 1.36, p = 0.005) but did not meet the multiple-testing threshold. Indicates systemic inflammation (especially IL-6) at diagnosis predicts recurrence in early breast cancer. |
Qodir et al. (2025) [8] | Systematic review (9 studies on TNF-α) | TNF-α | Concludes that elevated TNF-α levels are associated with breast cancer progression, metastasis, and poorer treatment outcomes, highlighting TNF-α’s potential as a prognostic biomarker. Mechanistic analysis notes that TNF-α can increase breast cancer stem-like cells via NF-κB/TAZ signaling, promoting therapy resistance. |
Liao et al. (2023) [11] | Bioinformatics analysis of TCGA data; in vitro validation | IL-8 (CXCL8) | High IL-8 expression in breast tumors correlated with significantly worse patient outcomes (shorter OS and relapse-free survival) and was linked to an immune-suppressive, pro-angiogenic tumor microenvironment. IL-8 was associated with markers of epithelial–mesenchymal transition (EMT) and poor response to immunotherapy. In vitro, IL-8 induced EMT in breast cancer cells. Suggests IL-8 as an unfavorable prognostic marker and potential therapeutic target. |
Garrone et al. (2020) [12] | Prospective translational study in metastatic BC (TRANSERI trial, n = 41) | IL-6, IL-8, IL-10, TGF-β, others (serial plasma levels measured during chemotherapy) | High baseline IL-6 and IL-8 (plasma levels above median before treatment) were significantly associated with worse overall survival in patients receiving eribulin for metastatic breast cancer. Dynamic changes in TGF-β and IL-21 during therapy also correlated with progression-free survival. Indicates baseline pro-inflammatory cytokines (IL-6, IL-8) predict poor prognosis in advanced disease. |
Chen et al. (2021) [13] | Case–control study (104 breast tumors vs. 31 benign) | IL-10, IL-18 (tissue expression by IHC) | IL-10 was overexpressed in breast cancer tissues: 78.8% of breast cancers had IL-10-positivity vs. 22.6% of benign breast samples (p < 0.001). High IL-10 (and IL-18) expression correlated with lymph node metastasis (positivity rates in node-positive cases were significantly higher). Suggests IL-10 contributes to nodal metastatic spread. |
Wilson et al. (2023) [14] | Mini-review of IL-1β in triple-negative breast cancer (TNBC), summarizing preclinical and early clinical data | IL-1β | Reports that high IL-1β in primary tumors is associated with early recurrence and bone metastasis in breast cancer. Preclinical models show IL-1β drives metastasis and that IL-1 blockade (anakinra) can reduce bone metastases. An early-phase trial in metastatic BC (11 patients) found that adding anakinra to chemotherapy yielded a 36% response rate, supporting further exploration of IL-1β, targeted therapy in TNBC. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciurescu, S.; Buciu, V.; Șerban, D.; Borozan, F.; Tomescu, L.; Cobec, I.M.; Ilaș, D.G.; Sas, I. Role of Cytokines in Breast Cancer: A Systematic Review and Meta-Analysis. Biomedicines 2025, 13, 2203. https://doi.org/10.3390/biomedicines13092203
Ciurescu S, Buciu V, Șerban D, Borozan F, Tomescu L, Cobec IM, Ilaș DG, Sas I. Role of Cytokines in Breast Cancer: A Systematic Review and Meta-Analysis. Biomedicines. 2025; 13(9):2203. https://doi.org/10.3390/biomedicines13092203
Chicago/Turabian StyleCiurescu, Sebastian, Victor Buciu, Denis Șerban, Florina Borozan, Larisa Tomescu, Ionuț Marcel Cobec, Diana Gabriela Ilaș, and Ioan Sas. 2025. "Role of Cytokines in Breast Cancer: A Systematic Review and Meta-Analysis" Biomedicines 13, no. 9: 2203. https://doi.org/10.3390/biomedicines13092203
APA StyleCiurescu, S., Buciu, V., Șerban, D., Borozan, F., Tomescu, L., Cobec, I. M., Ilaș, D. G., & Sas, I. (2025). Role of Cytokines in Breast Cancer: A Systematic Review and Meta-Analysis. Biomedicines, 13(9), 2203. https://doi.org/10.3390/biomedicines13092203