Integrated Virtual Screening for Anti-Caries Compounds from Neem: Dual-Target Inhibition of Biofilm Formation and Bacterial DNA Replication
Abstract
1. Introduction
2. Materials and Methods
2.1. Computing Resources and Software
2.2. Receptor Preparation
2.3. Ligand Preparation
2.4. Molecular Docking Studies
2.5. Binding Energy Analysis
2.6. Molecular Property Calculation and Analysis
2.7. In Silico ADMET Profiling
2.8. Principal Component Analysis and Hierarchical Clustering
2.9. Interaction Pattern Analysis
2.10. Statistical Analysis
3. Results and Discussion
3.1. Connection to Disease Context
3.2. Lead Compound Molecular Properties and Binding Affinities
3.3. Multivariate Analysis of Compound Structural Features
3.4. Receptor-Specific Binding Profiles
3.5. Structure-Activity Relationship Analysis
3.6. Binding Energy Profile Analysis
3.7. Analysis of 3AIC and 3U2D Patterns of Interaction
3.8. Structural Analysis of Key Binding Residues
3.9. Implications for Therapeutic Development
3.10. Molecular Docking and RMSD Validations
Limitations and Future Directions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kara, E.; İpek, B. Dental caries from the past to the future: Is it possible to reduce caries prevalence? Anatol. Curr. Med. J. 2024, 6, 240–247. [Google Scholar] [CrossRef]
- Campos, J.; Pires, M.F.; Sousa, M.; Campos, C.; da Costa, C.F.; Sampaio-Maia, B. Unveiling the relevance of the oral cavity as a Staphylococcus aureus colonization site and potential source of antimicrobial resistance. Pathogens 2023, 12, 765. [Google Scholar] [CrossRef] [PubMed]
- Parastan, R.; Kargar, M.; Solhjoo, K.; Kafilzadeh, F. Staphylococcus aureus biofilms: Structures, antibiotic resistance, inhibition, and vaccines. Gene Rep. 2020, 20, 100739. [Google Scholar] [CrossRef]
- Idrees, M.; Sawant, S.; Karodia, N.; Rahman, A. Staphylococcus aureus biofilm: Morphology, genetics, pathogenesis and treatment strategies. Int. J. Environ. Res. Public Health 2021, 18, 7602. [Google Scholar] [CrossRef]
- Almatroudi, A. Biofilm resilience: Molecular mechanisms driving antibiotic resistance in clinical contexts. Biology 2025, 14, 165. [Google Scholar] [CrossRef]
- Belibasakis, G.N.; Lund, B.K.; Krüger Weiner, C.; Johannsen, B.; Baumgartner, D.; Manoil, D.; Hultin, M.; Mitsakakis, K. Healthcare challenges and future solutions in dental practice: Assessing oral antibiotic resistances by contemporary point-of-care approaches. Antibiotics 2020, 9, 810. [Google Scholar] [CrossRef]
- Ito, K.; Ito, S.; Shimamura, T.; Weyand, S.; Kawarasaki, Y.; Misaka, T.; Abe, K.; Kobayashi, T.; Cameron, A.D.; Iwata, S. Crystal structure of glucansucrase from the dental caries pathogen Streptococcus mutans. J. Mol. Biol. 2011, 408, 177–186. [Google Scholar] [CrossRef]
- Eakin, A.E.; Green, O.; Hales, N.; Walkup, G.K.; Bist, S.; Singh, A.; Mullen, G.; Bryant, J.; Embrey, K.; Gao, N.; et al. Pyrrolamide DNA Gyrase Inhibitors: Fragment-Based Nuclear Magnetic Resonance Screening to Identify Antibacterial Agents. Antimicrob. Agents Chemother. 2012, 56, 1240–1246. [Google Scholar] [CrossRef]
- Ha, K.P.; Edwards, A.M. DNA Repair in Staphylococcus aureus. Microbiol. Mol. Biol. Rev. 2021, 85, e00091-21. [Google Scholar] [CrossRef]
- Debroy, R.; Ramaiah, S. Consolidated knowledge-guided computational pipeline for therapeutic intervention against bacterial biofilms—A review. Biofouling 2023, 39, 928–947. [Google Scholar] [CrossRef]
- Agboola, O.E.; Ayinla, Z.A.; Agboola, S.S.; Adegbuyi, T.A.; Akinseye, J.F.; Sijuade, A.; Egbebi, A.H.; Ilesanmi, O.S.; Agboola, A.A.; Ibrahim, O.K. Molecular mechanisms underlying the erectogenic effects of nutraceutical lunamarine, a novel PDE5 inhibitor derived from watermelon (Citrullus lanatus). Discov. Food 2024, 4, 153. [Google Scholar] [CrossRef]
- Agboola, O.E.; Ayinla, Z.A.; Agboola, S.S.; Omolayo, E.Y.; Fadugba, A.E.; Odeghe, O.B.; Olaiya, O.E.; Oyinloye, B.E. In silico profiling of neem limonoids and gut microbiome metabolites for Alzheimer’s therapeutics: Targeted inhibition of BACE1 and elucidation of intricate molecular crosstalk with tau oligomers, and bacterial gingipains. Discov. Appl. Sci. 2025, 7, 312. [Google Scholar] [CrossRef]
- Agboola, O.E.; Agboola, S.S.; Oyinloye, O.M.; Fadugba, A.E.; Omolayo, E.Y.; Ayinla, Z.A.; Osunsanmi, F.O.; Olaiya, O.E.; Olojo, F.O.; Ajiboye, B.O.; et al. Integrative Genomic and in Silico Analysis Reveals Mitochondrially Encoded Cytochrome C Oxidase III (MT—CO3) Overexpression and Potential Neem-Derived Inhibitors in Breast Cancer. Genoa 2025, 16, 546. [Google Scholar] [CrossRef]
- Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chao, H.; Chen, L.; Craig, P.A.; Crichlow, G.V.; Dalenberg, K.; Duarte, J.M.; et al. RCSB Protein Data Bank (RCSB. org): Delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning. Nucleic Acids Res. 2023, 51, D488–D508. [Google Scholar] [CrossRef]
- Dalton, J.A.; Lans, I.; Giraldo, J. Quantifying conformational changes in GPCRs: Glimpse of a common functional mechanism. BMC Bioinform. 2015, 16, 124. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Ide, K.; Ishida, M.; Shapiro, S. Classification of environmental estrogens by physicochemical properties using principal component analysis and hierarchical cluster analysis. J. Chem. Inf. Comput. Sci. 2001, 41, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Gupta, M.; Sharma, A.; Agarwal, S.M. Oral bioavailability of naturally occurring anticancer phytomolecules. Lett. Drug Des. Discov. 2018, 15, 1180–1188. [Google Scholar] [CrossRef]
- Cheng, L.; Zhang, L.; Yue, L.; Ling, J.; Fan, M.; Yang, D.; Huang, Z.; Niu, Y.; Liu, J.; Zhao, J.; et al. Expert consensus on dental caries management. Int. J. Oral Sci. 2022, 14, 17. [Google Scholar] [CrossRef]
- Ehmki, E.S.; Rarey, M. Exploring Structure–Activity Relationships with Three-Dimensional Matched Molecular Pairs—A Review. ChemMedChem 2018, 13, 482–489. [Google Scholar] [CrossRef]
- Nguyen, S.; Hiorth, M. Advanced drug delivery systems for local treatment of the oral cavity. Ther. Deliv. 2015, 6, 595–608. [Google Scholar] [CrossRef]
- Yang, T.; Sui, X.; Yu, B.; Shen, Y.; Cong, H. Recent advances in the rational drug design based on multi-target ligands. Curr. Med. Chem. 2020, 27, 4720–4740. [Google Scholar] [CrossRef] [PubMed]
- Gabor, F.; Fillafer, C.; Neutsch, L.; Ratzinger, G.; Wirth, M. Improving oral delivery. Drug Deliv. 2010, 345–398. [Google Scholar]
- Li, C.; Wang, X.; Deng, M.; Luo, Q.; Yang, C.; Gu, Z.; Lin, S.; Luo, Y.; Chen, L.; Li, Y.; et al. Antiepileptic Drug Combinations for Epilepsy: Mechanisms, Clinical Strategies, and Future Prospects. Int. J. Mol. Sci. 2025, 26, 4035. [Google Scholar] [CrossRef]
- Peterson, B.; Weyers, M.; Steenekamp, J.H.; Steyn, J.D.; Gouws, C.; Hamman, J.H. Drug bioavailability enhancing agents of natural origin (bioenhancers) that modulate drug membrane permeation and pre-systemic metabolism. Pharmaceutics 2019, 11, 33. [Google Scholar] [CrossRef]
- Chittrarasu, M.; Ahamed, A.S.; Sivakumar, A.A. In silico identification of potential inhibitor targeting Streptococcus mutans and Lactobacillus acidophilus for the treatment of dental caries. J. Pharm. Res. Int. 2021, 33, 148–160. [Google Scholar] [CrossRef]
- Ndagi, U. Insight into Cancer Targets and Ligand Binding Landscape Using Bioinformatics and Integrated Molecular Modeling Tools. Ph.D. Dissertation, University of KwaZulu-Natal, Durban, South Africa, 2017. [Google Scholar]
- Gebauer, M.; Skerra, A. Engineered protein scaffolds as next-generation therapeutics. Annu. Rev. Pharmacol. Toxicol. 2020, 60, 391–415. [Google Scholar] [CrossRef]
- Atta, L.; Mushtaq, M.; Raza, A.; Khalid, A.; Ul-Haq, Z. Targeting glucosyltransferases to combat dental caries: Current perspectives and future prospects. Int. J. Biol. Macromol. 2024, 278, 134645. [Google Scholar] [CrossRef]
- Carbone, J. Integrated Computational Approaches: Elucidating Molecular Mechanisms of Pathogenic Proteins and Designing Novel Inhibitors Against Mycobacterium tuberculosis and SARS-CoV-2. Master’s Thesis, Rowan University, Glassboro, NJ, USA, 2024. [Google Scholar]
- Boldyrev, A.A.; Aldini, G.; Derave, W. Physiology and pathophysiology of carnosine. Physiol. Rev. 2013, 93, 1803–1845. [Google Scholar] [CrossRef]
- Horst, J.A.; Pieper, U.; Sali, A.; Zhan, L.; Chopra, G.; Samudrala, R.; Featherstone, J.D. Strategic protein target analysis for developing drugs to stop dental caries. Adv. Dent. Res. 2012, 24, 86–93. [Google Scholar] [CrossRef]
- Tasanarong, T.; Patntirapong, S.; Aupaphong, V. The inhibitory effect of a novel neem paste against cariogenic bacteria. J. Clin. Exp. Dent. 2021, 13, e1083. [Google Scholar] [CrossRef]
- Akomolafe, S.F.; Agboola, O.E.; Ajayi, O.O.; Oyetayo, F.L.; Ajayi, O.B. Elucidating the antidiabetic potential of Chrysophyllum albidum: An integrative approach combining in vitro and in silico studies on dipeptidyl peptidase IV and adenosine deaminase inhibition. Next Res. 2024, 1, 100010. [Google Scholar] [CrossRef]
- Agboola, O.E.; Oluwatobi, F.B.; Tugbobo, O.S.; Ayinla, Z.A.; Agboola, S.S.; Solomon, I.K.; Akinseye, J.F.; Ilesanmi, O.S.; Adeboye, T.O.; Akindojutimi, D.B. Purified Azadirachta indica leaf arginase exhibits properties with potential tumor therapeutics: An Invitro Study. J. Pharm. Sci. Res. 2023, 15, 1168–1171. [Google Scholar]
- Agboola, O.E.; Agboola, S.S.; Fadugba, A.E.; Adegbuyi, A.T.; Odeghe, O.B. Computational analysis of Curcuma longa L compounds: Unraveling molecular interactions and drug-like properties for novel therapeutic applications. Next Res. 2025, 2, 100283. [Google Scholar] [CrossRef]
- Pereira-Rojas, J.; Perez, V.; Parra, J.G.; Barrios, N.; Munoz, A.; Castillo, J.; Pal, L.; Pereira, J. Interfacial behavior of neem oil (Azadirachta indica): Experimental and computational insights. Colloids Surf. A Physicochem. Eng. Asp. 2025, 707, 135944. [Google Scholar] [CrossRef]
- Simeon, J.O.; Tosin, J.O.; Agboola, S.S.; Adekunle, A.T.; Emmanuel, A.O.; John, O.A.; Patrick, A.A. Investigating Clinical potential of Moringa oleifera on the cholesterol, BMI and blood triglyceride level in HIV/AIDs patient on Antiretroviral Combination Regimen. J. Pharm. Sci. Res. 2023, 15, 1101–1108. [Google Scholar]
- Oyinloye, B.E.; Agboola, O.E.; Ayeni, A.M.; Oyinloye, O.M.; Agboola, S.S.; Idowu, O.T.; Mathenjwa-Goqo, M.S.; Owolabi, O.V.; Ogunyinka, B.I.; Osunsanmi, F.O.; et al. Computational analysis of Annona muricata phytochemicals for targeted modulation of endocrine networks in polycystic ovary syndrome. Discov. Food 2025, 5, 145. [Google Scholar] [CrossRef]
- Akawa, A.B.; Adu, I.A.; Agboola, O.E.; Idowu, O.T.; Osunsanmi, F.O.; Ajiboye, B.O.; Oyinloye, B.E. Antidiabetic and tissue-protective effects of Brachystegia eurycoma leaf extract in alloxan-induced diabetic rat model. Phytomedicine Plus 2025, 5, 100774. [Google Scholar] [CrossRef]
- Agboola, O.E.; Agboola, S.S.; Agboinghale, P.E.; Ayinla, Z.A.; Oyebamiji, A.K.; Olaiya, O.E.; Fajana, O.M.; Oyinloye, O.M.; Adewale, A.I.; Idowu, O.T.; et al. Selective modulation of orexinergic receptors by neem-derived phytochemicals: Computational analysis of structure-activity relationships. Toxicol. Rep. 2025, 15, 102104. [Google Scholar] [CrossRef]
- Thompson, T.N. Early ADME in support of drug discovery: The role of metabolic stability studies. Curr. Drug Metab. 2000, 1, 215–241. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agboola, O.E.; Agboola, O.; Ayinla, Z.A.; Agboola, S.S.; Olaiya, O.E.; Oyinloye, O.M.; Fajana, O.M.; Idowu, O.T.; Omotuyi, O.I.; Ilesanmi, O.S.; et al. Integrated Virtual Screening for Anti-Caries Compounds from Neem: Dual-Target Inhibition of Biofilm Formation and Bacterial DNA Replication. Biomedicines 2025, 13, 2202. https://doi.org/10.3390/biomedicines13092202
Agboola OE, Agboola O, Ayinla ZA, Agboola SS, Olaiya OE, Oyinloye OM, Fajana OM, Idowu OT, Omotuyi OI, Ilesanmi OS, et al. Integrated Virtual Screening for Anti-Caries Compounds from Neem: Dual-Target Inhibition of Biofilm Formation and Bacterial DNA Replication. Biomedicines. 2025; 13(9):2202. https://doi.org/10.3390/biomedicines13092202
Chicago/Turabian StyleAgboola, Oluwaseun E., Oluwatimileyin Agboola, Zainab A. Ayinla, Samuel S. Agboola, Oluranti E. Olaiya, Oluwatoyin M. Oyinloye, Omotola M. Fajana, Olajumoke Tolulope Idowu, Olaposi I. Omotuyi, Olutosin S. Ilesanmi, and et al. 2025. "Integrated Virtual Screening for Anti-Caries Compounds from Neem: Dual-Target Inhibition of Biofilm Formation and Bacterial DNA Replication" Biomedicines 13, no. 9: 2202. https://doi.org/10.3390/biomedicines13092202
APA StyleAgboola, O. E., Agboola, O., Ayinla, Z. A., Agboola, S. S., Olaiya, O. E., Oyinloye, O. M., Fajana, O. M., Idowu, O. T., Omotuyi, O. I., Ilesanmi, O. S., & Oyinloye, B. E. (2025). Integrated Virtual Screening for Anti-Caries Compounds from Neem: Dual-Target Inhibition of Biofilm Formation and Bacterial DNA Replication. Biomedicines, 13(9), 2202. https://doi.org/10.3390/biomedicines13092202