Gut Microbiota Dysbiosis and Dietary Interventions in Non-Hodgkin B-Cell Lymphomas: Implications for Treatment Response
Abstract
1. General Background About Non-Hodgkin Lymphomas
2. Adverse Events Related to Treatments: What About Gastrointestinal Toxicity?
3. What Is Gut Microbiota?
4. Gut Microbiota Dysbiosis Due to Chemoimmunotherapy
5. Targeted Interventions for Dysbiosis and Influence on Chemoimmunotherapy Response
6. Clinical Trials
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Valvano, L.; Vilella, R.; D’Auria, F.; D’Arena, G.; Libonati, R.; Soda, M.; Telesca, A.; Pietrantuono, G.; Mansueto, G.R.; Villani, O.; et al. Prognostic relevance of bone marrow immune cell fractions in newly diagnosed B-cell non-Hodgkin lymphoma patients. Ann. Med. 2025, 57, 2490825. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Caserta, S.; Cancemi, G.; Loreta, S.; Allegra, A.; Stagno, F. Hematological Malignancies in Older Patients: Focus on the Potential Role of a Geriatric Assessment Management. Diagnostics 2024, 14, 1390. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, F.; Lu, L.; Zang, H.; Yue, Y.; Cao, Y.; Chen, M.; Weiying, G.; He, B. Malnutrition defined by Controlling Nutritional Status score was independently associated with prognosis of diffuse large B-cell lymphoma primarily on elderly patients. Hematology 2024, 30, 2434276. [Google Scholar] [CrossRef]
- Cancemi, G.; Campo, C.; Caserta, S.; Rizzotti, I.; Mannina, D. Single-Agent and Associated Therapies with Monoclonal Antibodies: What About Follicular Lymphoma? Cancers 2025, 17, 1602. [Google Scholar] [CrossRef]
- Patil, S.; Rajput, S.; Patil, S.; Mhaiskar, A. B-cell lymphoma: Advances in pathogenesis, diagnosis, and targeted therapies. Pathol. Res. Pract. 2025, 271, 156036. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yang, P.; Zhang, W.; Liu, H.; Sun, X.; Xiao, X.; Wang, J.; Li, Z.; Li, L.; Wang, S.; et al. Clinical outcomes and therapeutic modalities in older Chinese patients with MCL: A multi-center real-world retrospective study. Ann. Med. 2025, 57, 2482013. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Miao, M.; Chen, Y.; Wang, X.; Li, S.; Hu, R. The critical role of ferroptosis in virus-associated hematologic malignancies and its potential value in antiviral-antitumor therapy. Virulence 2025, 16, 2497908. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gao, D. The role of non-malignant B cells in malignant hematologic diseases. Hematology 2025, 30, 2466261. [Google Scholar] [CrossRef]
- Hough, B.; Albitar, M. mRNA Expression in DLBCL Patients who are CD20 Dim With an Eye Towards More Thoughtful Design of R/R Trials, Possibly Incorporating BCMA Bite Therapy. Clin. Lymphoma Myeloma Leuk. 2025, 25, 539–541. [Google Scholar] [CrossRef] [PubMed]
- Caserta, S.; Campo, C.; Cancemi, G.; Neri, S.; Stagno, F.; Mannina, D.; Allegra, A. Bispecific Antibodies and Antibody–Drug Conjugates in Relapsed/Refractory Aggressive non-Hodgkin Lymphoma, Focusing on Diffuse Large B-Cell Lymphoma. Cancers 2025, 17, 2479. [Google Scholar] [CrossRef]
- Guan, J.; Sun, F.; Wang, J.; Huang, J.; Lu, S.; Zhu, J.; Zhu, X.; Huang, H.; Xia, Z.; Que, Y.; et al. Efficacy and safety comparison between R-CHOP and modified NHL-BFM-90 regimens in children and adolescents with diffuse large B-cell lymphoma. Ann. Hematol. 2022, 101, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Pavlovsky, M.; Cubero, D.; Agreda-Vásquez, G.P.; Enrico, A.; Mela-Osorio, M.J.; Sebastián, J.A.S.; Fogliatto, L.; Ovilla, R.; Avendano, O.; Machnicki, G.; et al. Clinical Outcomes of Patients With B-Cell non-Hodgkin Lymphoma in Real-World Settings: Findings From the Hemato-Oncology Latin America Observational Registry Study. JCO Glob. Oncol. 2022, 8, e2100265. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Y.; Xu, J.; Li, J.; Wei, Z.; Shi, M.; Tao, R.; Chen, B.; Tian, Y.; Zhang, W.; Ma, Y.; et al. Rituximab plus cladribine versus R-CHOP in frontline management of marginal zone lymphoma in China: A propensity-score matched multicenter study. Ann. Hematol. 2022, 101, 2139–2148. [Google Scholar] [CrossRef] [PubMed]
- Karakatsanis, S.J.; Bouzani, M.; Symeonidis, A.; Angelopoulou, M.K.; Papageorgiou, S.G.; Michail, M.; Gainaru, G.; Kourti, G.; Sachanas, S.; Kalpadakis, C.; et al. Real-life Experience With Rituximab-CHOP Every 21 or 14 Days in Primary Mediastinal Large B-cell Lymphoma. In Vivo 2022, 36, 1302–1315. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alnassfan, T.; Cox-Pridmore, M.J.; Taktak, A.; Till, K.J. Mantle cell lymphoma treatment options for elderly/unfit patients: A systematic review. EJHaem 2021, 3, 276–290. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yannakou, C.K.; Wu, S.; Rajah, K.; Abeyakoon, C.; Nguyen-Ngo, C.; Yap, Y.Z.; Sheldon, J.; Blombery, P.; Prince, H.M. Circulating Tumour DNA Is a Biomarker of Response in Angioimmunoblastic T-Cell Lymphoma. Int. J. Mol. Sci. 2025, 26, 6719. [Google Scholar] [CrossRef] [PubMed]
- Allegra, A.; Caserta, S.; Mirabile, G.; Gangemi, S. Aging and Age-Related Epigenetic Drift in the Pathogenesis of Leukemia and Lymphomas: New Therapeutic Targets. Cells 2023, 12, 2392. [Google Scholar] [CrossRef]
- Belsky, J.A.; Smith, C.M.; Alexander, S. Current Treatment Strategies and Supportive Care Practices in the Care of Children and Adolescents With Mature B-Cell non-Hodgkin Lymphoma: A Survey of Children’s Oncology Group Institutions. Pediatr. Blood Cancer 2025, 72, e31687. [Google Scholar] [CrossRef]
- Algiraigri, A.H. Optimizing Outcomes in Childhood Mature B-cell non-Hodgkin Lymphoma: Insights Into Staging, Risk Stratification, and Response Evaluation. J. Pediatr. Hematol. 2025, 47, e138–e143. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Dahal, P.K.; Mosharaf, P.; Shahjalal, M.; Mahumud, R.A. Assessing the Clinical Effectiveness of Radioimmunotherapy with Combined Radionuclide/Monoclonal Antibody Conjugates in Cancer Treatment: Insights from Randomised Clinical Trials. Cancers 2025, 17, 1413. [Google Scholar] [CrossRef]
- Rao, U.K.; Majhail, N.S.; Blunk, B.; Abernathy, K.; Bachier, C.; Bhushan, V.; Cruz, J.C.; Elayan, M.; Gregory, T.; LeMaistre, C.F.; et al. Comparative Efficacy of Bendamustine Versus Fludarabine/Cyclophosphamide for Lymphodepletion Before Chimeric Antigen Receptor T-Cell Therapy in Lymphoma. Transplant. Cell Ther. 2025, 31, 549.e1–549.e11. [Google Scholar] [CrossRef] [PubMed]
- Jameel, M.; Wali, R.; Zaidi, S.M.J.; Shaheen, N.; Sindhu, I.I. Impact of Filgrastim on Mortality During Induction Chemotherapy in Childhood B-Cell non-Hodgkin Lymphoma. Cureus 2025, 17, e77320. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Łyko, M.; Maj, J.; Jankowska-Konsur, A. The Role of the Gut Microbiome in non-Hodgkin Lymphoma (NHL): A Focus on Diffuse Large B-Cell Lymphoma, Follicular Lymphoma, Cutaneous T-Cell Lymphoma, and NK/T-Cell Lymphoma. Cancers 2025, 17, 1709. [Google Scholar] [CrossRef]
- Fish, K.; Gao, D.; Raji, M.; Balducci, L.; Kuo, Y.-F. Trends in the use of granulocyte colony stimulating factors for older patients with cancer, 2010 to 2019. J. Geriatr. Oncol. 2024, 15, 102049. [Google Scholar] [CrossRef] [PubMed]
- Moszak, M.; Szulińska, M.; Bogdański, P. You Are What You Eat-The Relationship between Diet, Microbiota, and Metabolic Disorders—A Review. Nutrients 2020, 12, 1096. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Y.; Zhang, B.; Jiang, L.; Cheng, T.; Cheng, H.; Qian, P. Gut microbiota plays pivotal roles in benign and malignant hematopoiesis. Blood Sci. 2024, 6, e00200. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, Q.; Yang, Q.; He, Y.; Zhou, W. Intestinal Microbes and Hematological Malignancies. Cancers 2023, 15, 2284. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yamamoto, M.L.; Maier, I.; Dang, A.T.; Berry, D.; Liu, J.; Ruegger, P.M.; Yang, J.-I.; Soto, P.A.; Presley, L.L.; Reliene, R.; et al. Intestinal bacteria modify lymphoma incidence and latency by affecting systemic inflammatory state, oxidative stress, and leukocyte genotoxicity. Cancer Res. 2013, 73, 4222–4232. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Breczko, W.J.; Bubak, J.; Miszczak, M. The Importance of Intestinal Microbiota and Dysbiosis in the Context of the Development of Intestinal Lymphoma in Dogs and Cats. Cancers 2024, 16, 2255. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- López-Gómez, L.; Alcorta, A.; Abalo, R. Probiotics and Probiotic-like Agents against Chemotherapy-Induced Intestinal Mucositis: A Narrative Review. J. Pers. Med. 2023, 13, 1487. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bäckhed, F.; Roswall, J.; Peng, Y.; Feng, Q.; Jia, H.; Kovatcheva-Datchary, P.; Li, Y.; Xia, Y.; Xie, H.; Zhong, H.; et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe 2015, 17, 690–703. [Google Scholar] [CrossRef] [PubMed]
- Goodrich, J.K.; Waters, J.L.; Poole, A.C.; Sutter, J.L.; Koren, O.; Blekhman, R.; Beaumont, M.; Van Treuren, W.; Knight, R.; Bell, J.T.; et al. Human genetics shape the gut microbiome. Cell 2014, 159, 789–799. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, S.; Charbonnier, L.-M.; Noval Rivas, M.; Georgiev, P.; Li, N.; Gerber, G.; Bry, L.; Chatila, T.A. MyD88 Adaptor-Dependent Microbial Sensing by Regulatory T Cells Promotes Mucosal Tolerance and Enforces Commensalism. Immunity 2015, 43, 289–303. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dahl, W.J.; Mendoza, D.R.; Lambert, J.M. Diet, nutrients and the microbiome. Prog. Mol. Biol. Transl. Sci. 2020, 171, 237–263. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Akira, S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011, 34, 637–650. [Google Scholar] [CrossRef] [PubMed]
- Thakur, A.; Mikkelsen, H.; Jungersen, G. Intracellular Pathogens: Host Immunity and Microbial Persistence Strategies. J. Immunol. Res. 2019, 2019, 1356540. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, J.; Wang, K.; Wang, X.; Pang, Y.; Jiang, C. The role of the gut microbiome and its metabolites in metabolic diseases. Protein Cell 2021, 12, 360–373. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Toffoli, E.C.; van Vliet, A.A.; Forbes, C.; Arns, A.J.; Verheul, H.W.M.; Tuynman, J.; van der Vliet, H.J.; Spanholtz, J.; de Gruijl, T.D. Allogeneic NK cells induce the in vitro activation of monocyte-derived and conventional type-2 dendritic cells and trigger an inflammatory response under cancer-associated conditions. Clin. Exp. Immunol. 2024, 216, 159–171. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Platnich, J.M.; Muruve, D.A. NOD-like receptors and inflammasomes: A review of their canonical and non-canonical signaling pathways. Arch. Biochem. Biophys. 2019, 670, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Santomasso, B.; Bachier, C.; Westin, J.; Rezvani, K.; Shpall, E.J. The Other Side of CAR T-Cell Therapy: Cytokine Release Syndrome, Neurologic Toxicity, and Financial Burden. In American Society of Clinical Oncology Educational Book; American Society of Clinical Oncology: Alexandria, VA, USA, 2019; pp. 433–444. [Google Scholar]
- Birebent, R.; Drubay, D.; Alves Costa Silva, C.; Marmorino, F.; Vitali, G.; Piccinno, G.; Hurtado, Y.; Bonato, A.; Belluomini, L.; Messaoudene, M.; et al. Surrogate markers of intestinal dysfunction associated with survival in advanced cancers. OncoImmunology 2025, 14, 2484880. [Google Scholar] [CrossRef]
- Tian, M.; Fan, D.; Liu, Z.; Mu, X.; Tao, Q.; Yu, C.; Zhang, S. Oral Supramolecular Adsorbent for Preventing Chemo-Induced Gastrointestinal Mucositis and Microbial Dysbiosis and for Enhancing Chemoimmunotherapy. Adv. Mater. 2022, 34, e2205299. [Google Scholar] [CrossRef] [PubMed]
- Schmiester, M.; Maier, R.; Riedel, R.; Durek, P.; Frentsch, M.; Kolling, S.; Mashreghi, M.-F.; Jenq, R.; Zhang, L.; Peterson, C.B.; et al. Flow cytometry can reliably capture gut microbial composition in healthy adults as well as dysbiosis dynamics in patients with aggressive B-cell non-Hodgkin lymphoma. Gut Microbes 2022, 14, 2081475. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef] [PubMed]
- Malard, F.; Dore, J.; Gaugler, B.; Mohty, M. Introduction to host microbiome symbiosis in health and disease. Mucosal Immunol. 2020, 14, 547–554. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Diefenbach, C.S.; Peters, B.A.; Li, H.; Raphael, B.; Moskovits, T.; Hymes, K.; Schluter, J.; Chen, J.; Bennani, N.N.; Witzig, T.E.; et al. Microbial dysbiosis is associated with aggressive histology and adverse clinical outcome in B-cell non-Hodgkin lymphoma. Blood Adv. 2021, 5, 1194–1198. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liang, J.; Liu, G.; Wang, W.; Xue, H. Causal relationships between gut microbiota and lymphoma: A bidirectional Mendelian randomization study. Front. Cell. Infect. Microbiol. 2024, 14, 1374775. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bigenwald, C.; Zitvogel, L. Light shed from the gut in large B-cell lymphoma. Blood 2023, 141, 2165–2166. [Google Scholar] [CrossRef] [PubMed]
- Peled, J.U.; Gomes, A.L.; Devlin, S.M.; Littmann, E.R.; Taur, Y.; Sung, A.D.; Weber, D.; Hashimoto, D.; Slingerland, A.E.; Slingerland, J.B.; et al. Microbiota as Predictor of Mortality in Allogeneic Hematopoietic-Cell Transplantation. N. Engl. J. Med. 2020, 382, 822–834. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aarnoutse, R.; Ziemons, J.; Penders, J.; Rensen, S.S.; de Vos-Geelen, J.; Smidt, M.L. The Clinical Link between Human Intestinal Microbiota and Systemic Cancer Therapy. Int. J. Mol. Sci. 2019, 20, 4145. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Smith, M.; Dai, A.; Ghilardi, G.; Amelsberg, K.V.; Devlin, S.M.; Pajarillo, R.; Slingerland, J.B.; Beghi, S.; Herrera, P.S.; Giardina, P.; et al. Gut microbiome correlates of response and toxicity following anti-CD19 CAR T cell therapy. Nat. Med. 2022, 28, 713–723. [Google Scholar] [CrossRef]
- Madhavan, S.; Nagarajan, S. GRP78 and next generation cancer hallmarks: An underexplored molecular target in cancer chemoprevention research. Biochimie 2020, 175, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Dumitru, I.G.; Todor, S.B.; Ichim, C.; Helgiu, C.; Helgiu, A. A Literature Review on the Impact of the Gut Microbiome on Cancer Treatment Efficacy, Disease Evolution and Toxicity: The Implications for Hematological Malignancies. J. Clin. Med. 2025, 14, 2982. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oliver, A.; Chase, A.B.; Weihe, C.; Orchanian, S.B.; Riedel, S.F.; Hendrickson, C.L.; Lay, M.; Sewall, J.M.; Martiny, J.B.H.; Whiteson, K. High-Fiber, Whole-Food Dietary Intervention Alters the Human Gut Microbiome but Not Fecal Short-Chain Fatty Acids. mSystems 2021, 6, e00115–e00121. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hayase, E.; Hayase, T.; Jamal, M.A.; Miyama, T.; Chang, C.-C.; Ortega, M.R.; Ahmed, S.S.; Karmouch, J.L.; Sanchez, C.A.; Brown, A.N.; et al. Mucus-degrading Bacteroides link carbapenems to aggravated graft-versus-host disease. Cell 2022, 185, 3705–3719.e14. [Google Scholar] [CrossRef]
- Liu, Y.C.; Wu, C.R.; Huang, T.W. Preventive Effect of Probiotics on Oral Mucositis Induced by Cancer Treatment: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2022, 23, 13268. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mucositis Study Group of the Multinational Association of Supportive Care in Cancer/International Society of Oral Oncology (MASCC/ISOO); Bowen, J.M.; Gibson, R.J.; Coller, J.K.; Blijlevens, N.; Bossi, P.; Al-Dasooqi, N.; Bateman, E.H.; Chiang, K.; de Mooij, C.; et al. Systematic review of agents for the management of cancer treatment-related gastrointestinal mucositis and clinical practice guidelines. Support. Care Cancer 2019, 27, 4011–4022. [Google Scholar] [CrossRef]
- Mizuno, S.; Masaoka, T.; Naganuma, M.; Kishimoto, T.; Kitazawa, M.; Kurokawa, S.; Nakashima, M.; Takeshita, K.; Suda, W.; Mimura, M.; et al. Bifidobacterium-Rich Fecal Donor May Be a Positive Predictor for Successful Fecal Microbiota Transplantation in Patients with Irritable Bowel Syndrome. Digestion 2017, 96, 29–38. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Todor, S.B.; Ichim, C. Microbiome Modulation in Pediatric Leukemia: Impact on Graft-Versus-Host Disease and Treatment Outcomes: A Narrative Review. Children 2025, 12, 166. [Google Scholar] [CrossRef]
- Kakihana, K.; Fujioka, Y.; Suda, W.; Najima, Y.; Kuwata, G.; Sasajima, S.; Mimura, I.; Morita, H.; Sugiyama, D.; Nishikawa, H.; et al. Fecal microbiota transplantation for patients with steroid-resistant acute graft-versus-host disease of the gut. Blood 2016, 128, 2083–2088. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shi, Z.; Hu, G.; Li, M.W.; Zhang, L.; Li, X.; Li, L.; Wang, X.; Fu, X.; Sun, Z.; Zhang, X.; et al. Gut microbiota as non-invasive diagnostic and prognostic biomarkers for natural killer/T-cell lymphoma. Gut 2023, 72, 1999–2002. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lin, A.; Jiang, A.; Huang, L.; Li, Y.; Zhang, C.; Zhu, L.; Mou, W.; Liu, Z.; Zhang, J.; Cheng, Q.; et al. From chaos to order: Optimizing fecal microbiota transplantation for enhanced immune checkpoint inhibitors efficacy. Gut Microbes 2025, 17, 2452277. [Google Scholar] [CrossRef] [PubMed]
- Allegra, A.; Musolino, C.; Tonacci, A.; Pioggia, G.; Gangemi, S. Interactions between the MicroRNAs and Microbiota in Cancer Development: Roles and Therapeutic Opportunities. Cancers 2020, 12, 805. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Therapy Regimen | Patient Population | Reported Microbiome Changes | Clinical Implications |
---|---|---|---|
Cyclophosphamide-based chemotherapy | Hematologic malignancies, incl. B-NHL | ↓ Bifidobacterium, Lactobacillus, ↓ diversity | Increased infection risk; poorer survival |
Multi-agent chemotherapy | NHL and other hematologic cancers | ↓ Faecalibacterium prausnitzii; ↑ Enterococcus, E. coli | Correlation with mucosal injury and bacteremia |
Chemotherapy ± antibiotics | Lymphoma and HSCT patients | Loss of commensals; ↑ Clostridioides difficile | Higher GI toxicity; GvHD exacerbation |
Rituximab-containing chemoimmunotherapy | B-cell NHL | Depletion of IgA-producing Bifidobacterium spp. | Impaired mucosal immunity; dysbiosis persistence |
R-CHOP regimens | Diffuse large B-cell lymphoma | ↓ diversity; depletion of butyrate-producing bacteria | Reduced therapy response; higher relapse risk |
Step | Mechanism/Effect | Examples |
---|---|---|
Therapy effects on gut barrier | Disruption of mucosal barrier homeostasis and translocation of microbial components → local inflammation | Chemotherapy, radiotherapy, rituximab (B-cell depletion → ↓ secretory IgA) |
Impact on gut microbiota | Depletion of beneficial microbes and expansion of pro-inflammatory species | ↓ Faecalibacterium prausnitzii (anti-inflammatory) ↑ Enterococcus faecalis (pro-inflammatory) |
Consequences of dysbiosis | Impaired immune responses, increased GI complications and heightened susceptibility to systemic infections | Loss of colonization resistance, overgrowth of Clostridioides difficile |
Microbial metabolites and immune tone | Dysbiosis alters production of short-chain fatty acids, bile acid derivatives and tryptophan metabolites | SCFAs support Treg differentiation; secondary bile acids regulate inflammation; indoles strengthen epithelial barrier |
Outcome | Altered systemic immune tone, changes in tumor microenvironment, therapy response or toxicity | Reduced immunotherapy efficacy and increased GI toxicity |
Trial Identifier | NCT06161896 | NCT05135351 (PRIMAL Trial) |
---|---|---|
Study Design | Prospective, observational, single-center cohort study | Pilot, randomized, double-blind, placebo-controlled trial |
Population | ~200 newly diagnosed Diffuse Large B Cell Lymphoma (DLBCL) patients | 30 adult patients undergoing autologous stem cell transplantation (ASCT) for multiple myeloma or lymphoma |
Study Aim | Characterize baseline gut microbiota in DLBCL patients and assess associations with clinical outcomes | Assess feasibility and impact of prebiotic supplementation (resistant starch vs. placebo) on gut microbiota in ASCT patients |
Sample Collection | Stool and blood samples; body composition via bioelectrical impedance; lifestyle and dietary questionnaires | Stool and blood samples around engraftment; ASA24 dietary survey; gut permeability biomarkers |
Primary Outcomes | Gut microbiota composition, diversity, and abundance; association with treatment response, toxicity, prognosis | Feasibility of intervention, through the measurement of the percentage of subjects who adhere to >70% of scheduled doses |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caserta, S.; Alvaro, M.E.; Penna, G.; Fazio, M.; Stagno, F.; Allegra, A. Gut Microbiota Dysbiosis and Dietary Interventions in Non-Hodgkin B-Cell Lymphomas: Implications for Treatment Response. Biomedicines 2025, 13, 2141. https://doi.org/10.3390/biomedicines13092141
Caserta S, Alvaro ME, Penna G, Fazio M, Stagno F, Allegra A. Gut Microbiota Dysbiosis and Dietary Interventions in Non-Hodgkin B-Cell Lymphomas: Implications for Treatment Response. Biomedicines. 2025; 13(9):2141. https://doi.org/10.3390/biomedicines13092141
Chicago/Turabian StyleCaserta, Santino, Maria Eugenia Alvaro, Giuseppa Penna, Manlio Fazio, Fabio Stagno, and Alessandro Allegra. 2025. "Gut Microbiota Dysbiosis and Dietary Interventions in Non-Hodgkin B-Cell Lymphomas: Implications for Treatment Response" Biomedicines 13, no. 9: 2141. https://doi.org/10.3390/biomedicines13092141
APA StyleCaserta, S., Alvaro, M. E., Penna, G., Fazio, M., Stagno, F., & Allegra, A. (2025). Gut Microbiota Dysbiosis and Dietary Interventions in Non-Hodgkin B-Cell Lymphomas: Implications for Treatment Response. Biomedicines, 13(9), 2141. https://doi.org/10.3390/biomedicines13092141