Advances in Cancer Biology and Experimental Anticancer Therapies (2nd Edition)
Author Contributions
Funding
Conflicts of Interest
References
- Lim, J.Y.; Bhatia, S.; Robison, L.L.; Yang, J.J. Genomics of racial and ethnic disparities in childhood acute lymphoblastic leukemia. Cancer 2014, 120, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Mathew, S.; George, R.J.; Garcia, A.; Powers, S.; Aryal, S.; Bowman, W.P. Altered Expression of NK Receptors in Racially/Ethnically Diverse and Risk-of-Relapse Pediatric Acute Lymphoblastic Leukemia Patients. Biomedicines 2025, 13, 1412. [Google Scholar] [CrossRef] [PubMed]
- Yadav, R.; Chaudary, J.K.; Bisht, K.; Dhamija, P.; Chaudhary, P.K.; Nath, U.K.; Jain, N. Multiple myeloma: Insights into underlying mechanisms, advances in diagnostic and therapeutic modalities. Semin. Oncol. 2025, 52, 152390. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Fan, F.; Li, Q.; Zuo, L.; Xu, A.; Sun, C. Therapeutic Target Discovery for Multiple Myeloma: Identifying Druggable Genes via Mendelian Randomization. Biomedicines 2025, 13, 885. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Su, H.; Lv, Z.; Zhu, C.; Huang, J. Identifying MTHFD1 and LGALS4 as Potential Therapeutic Targets in Prostate Cancer Through Multi-Omics Mendelian Randomization Analysis. Biomedicines 2025, 13, 185. [Google Scholar] [CrossRef] [PubMed]
- Jia, Q.; Chu, H.; Jin, Z.; Long, H.; Zhu, B. High-throughput single-cell sequencing in cancer research. Signal Transduct. Target. Ther. 2022, 7, 145. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; McQuay, C.; Talburt, J.; Tiwari, A.K.; Yang, M.Q. Single-Cell Transcriptomic Analysis Unveils Key Regulators and Signaling Pathways in Lung Adenocarcinoma Progression. Biomedicines 2025, 13, 1606. [Google Scholar] [CrossRef] [PubMed]
- Wrighting, D.M.; Andrews, N.C. Interleukin-6 induces hepcidin expression through STAT3. Blood 2006, 108, 3204–3209. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Rui, Y.X.; Guo, S.D.; Luan, F.; Liu, R.; Zeng, N. Ferulic acid: A review of its pharmacology, pharmacokinetics and derivatives. Life Sci. 2021, 284, 119921. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Azzini, E.; Zucca, P.; Maria Varoni, E.; V Anil Kumar, N.; Dini, L.; Panzarini, E.; Rajkovic, J.; Valere Tsouh Fokou, P.; Peluso, I.; et al. Plant-Derived Bioactives and Oxidative Stress-Related Disorders: A Key Trend towards Healthy Aging and Longevity Promotion. Appl. Sci. 2020, 10, 947. [Google Scholar] [CrossRef]
- Al-Sanabra, O.M.; Abu-Qatouseh, L.F.; Ahmad, M.I.A.; Al-Khreisat, M.J.; Alsaleh, M.M. Diminishing Hepcidin via Reducing IL-6/STAT3 Pathway by Utilizing Ferulic Acid: An In Vitro Study. Biomedicines 2025, 13, 923. [Google Scholar] [CrossRef] [PubMed]
- Mu, D.; Gao, Z.; Guo, H.; Zhou, G.; Sun, B. Sodium butyrate induces growth inhibition and apoptosis in human prostate cancer DU145 cells by up-regulation of the expression of annexin A1. PLoS ONE 2013, 8, e74922. [Google Scholar] [CrossRef] [PubMed]
- Satari, A.; Ghasemi, S.; Habtemariam, S.; Asgharian, S.; Lorigooini, Z. Rutin: A Flavonoid as an Effective Sensitizer for Anticancer Therapy; Insights into Multifaceted Mechanisms and Applicability for Combination Therapy. Evid. Based Complement. Altern. Med. 2021, 2021, 9913179. [Google Scholar] [CrossRef] [PubMed]
- Alimudin, J.; Betts, Z.; Ozkan, A.D. Natural Compounds and Histone Deacetylase Inhibitors: A Combined Approach Against mCRPC Cells. Biomedicines 2025, 13, 296. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.-I.; Lee, Y.-C.; Chen, I.-H.; Chung, H.-H. Pharmacological Modulation of Mutant TP53 with Oncotargets Against Esophageal Cancer and Therapy Resistance. Biomedicines 2025, 13, 450. [Google Scholar] [CrossRef] [PubMed]
- Tojjari, A.; Razi, S.; Younis, O.M.; Odat, R.M.; Sahin, I.H.; Saeed, A. Chemoimmunotherapy in Advanced Biliary Tract Cancers: A Meta-Analysis of Clinical Outcomes. Biomedicines 2025, 13, 2099. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polito, L.; Gajda, E. Advances in Cancer Biology and Experimental Anticancer Therapies (2nd Edition). Biomedicines 2025, 13, 3055. https://doi.org/10.3390/biomedicines13123055
Polito L, Gajda E. Advances in Cancer Biology and Experimental Anticancer Therapies (2nd Edition). Biomedicines. 2025; 13(12):3055. https://doi.org/10.3390/biomedicines13123055
Chicago/Turabian StylePolito, Letizia, and Ewa Gajda. 2025. "Advances in Cancer Biology and Experimental Anticancer Therapies (2nd Edition)" Biomedicines 13, no. 12: 3055. https://doi.org/10.3390/biomedicines13123055
APA StylePolito, L., & Gajda, E. (2025). Advances in Cancer Biology and Experimental Anticancer Therapies (2nd Edition). Biomedicines, 13(12), 3055. https://doi.org/10.3390/biomedicines13123055

