Clinical Characteristics and Outcomes of Aortic Arch Emergencies: Takayasu Disease, Fibromuscular Dysplasia, and Aortic Arch Pathologies: A Retrospective Study and Review of the Literature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Definitions and Confirmation of the Diagnosis
2.3. Diagnostic Work-Ups
2.4. Patients Management and Procedures
2.5. Patient Follow-Up and Cardiovascular Outcomes
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Endovascular Procedure and Periprocedural Outcomes
3.3. Recurrent Stenosis and Cardiovascular Outcomes
3.4. Predictors of Restenosis and MACCE
4. Discussion
4.1. Cerebral Ischemia as a Result of the Delay in Established Diagnosis
4.2. Patients’ Management and EVT in Non-Atherosclerotic Aortic Arch Disease
4.3. Restenosis
4.4. Major Adverse Cardiac and Cerebral Events in Patients with AAPs
4.5. Novel Perspectives in NA-AAPs Management
4.5.1. Artificial Intelligence
4.5.2. Molecular and Cellular Biomarkers
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schmidt, J.; Kermani, T.A.; Bacani, A.K.; Crowson, C.S.; Cooper, L.T.; Matteson, E.L.; Warrington, K. Diagnostic features, treatment, and outcomes of Takayasu arteritis in a US cohort of 126 patients. Mayo Clin. Proc. 2013, 88, 822–830. [Google Scholar] [CrossRef] [PubMed]
- Yiek, S.H. Fibromuscular Dysplasia: A Rare Case with Multiple Vascular Beds Involvement. Asian J. Neurosurg. 2022, 17, 105–107. [Google Scholar] [CrossRef] [PubMed]
- Lunde, R.; Sanders, E.; Hoskam, J.A. Right aortic arch symptomatic in adulthood. Neth. J. Med. 2002, 60, 212–215. [Google Scholar] [PubMed]
- Markousis-Mavrogenis, G.; Giannakopoulou, A.; Belegrinos, A.; Pons, M.R.; Bonou, M.; Vartela, V.; Papavasiliou, A.; Christidi, A.; Kourtidou, S.; Kolovou, G.; et al. Cardiovascular Magnetic Resonance Imaging Patterns in Rare Cardiovascular Diseases. J. Clin. Med. 2022, 11, 6403. [Google Scholar] [CrossRef]
- Podolec, P. Classification of Rare Cardiovascular Diseases (RCD Classification), Krakow 2013. J. Rare Cardiovasc. Dis. 2013, 1, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Misra, D.P.; Rathore, U.; Patro, P.; Agarwal, V.; Sharma, A. Patient-Reported Outcome Measures in Takayasu Arteritis: A Systematic Review and Meta-Analysis. Rheumatol. Ther. 2021, 8, 1073–1093. [Google Scholar] [CrossRef]
- Reinhold-Keller, E.; Herlyn, K.; Wagner-Bastmeyer, R.; Gross, W.L. Stable incidence of primary systemic vasculitides over five years: Results from the German vasculitis register. Arthritis Rheum. 2005, 53, 93–99. [Google Scholar] [CrossRef]
- Saadoun, D.; Bura-Riviere, A.; Comarmond, C.; Lambert, M.; Redheuil, A.; Mirault, T.; Collaborators. French recommendations for the management of Takayasu’s arteritis. Orphanet, J. Rare Dis. 2021, 16 (Suppl. S3), 311. [Google Scholar] [CrossRef]
- Arnaud, L.; Haroche, J.; Limal, N.; Toledano, D.; Gambotti, L.; Chalumeau, N.C.; Boutin, D.; Cacoub, P.; Cluzel, P.; Koskas, F.; et al. Takayasu arteritis in France: A single-center retrospective study of 82 cases comparing white, North African, and black patients. Medicine 2010, 89, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Soto, M.E.; Espinola, N.; Flores-Suarez, L.F.; Reyes, P.A. Takayasu arteritis: Clinical features in 110 Mexican Mestizo patients and cardiovascular impact on survival and prognosis. Clin. Exp. Rheumatol. 2008, 26, S9–S15. [Google Scholar]
- Ekker, M.S.; Boot, E.M.; Singhal, A.B.; Tan, K.S.; Debette, S.; Tuladhar, A.M.; de Leeuw, F.E. Epidemiology, aetiology, and management of ischaemic stroke in young adults. Lancet Neurol. 2018, 17, 790–801. [Google Scholar] [CrossRef]
- Olin, J.W.; Gornik, H.L.; Bacharach, J.M.; Biller, J.; Fine, L.J.; Gray, B.H.; Gray, W.A.; Gupta, R.; Hamburg, N.M.; Katzen, B.T.; et al. Fibromuscular dysplasia: State of the science and critical unanswered questions: A scientific statement from the American Heart Association. Circulation 2014, 129, 1048–1078. [Google Scholar] [CrossRef] [Green Version]
- Gornik, H.L.; Persu, A.; Adlam, D.; Aparicio, L.S.; Azizi, M.; Boulanger, M.; Bruno, R.M.; De Leeuw, P.; Fendrikova-Mahlay, N.; Froehlich, J.; et al. First international consensus on the diagnosis and management of fibromuscular dysplasia. J. Hypertens. 2019, 37, 229–252. [Google Scholar] [CrossRef] [Green Version]
- Touzé, E.; Southerland, A.M.; Boulanger, M.; Labeyrie, P.E.; Azizi, M.; Bouatia-Naji, N.; Debette, S.; Gornik, H.L.; Hussain, S.M.; Jeunemaitre, X.; et al. Fibromuscular Dysplasia and Its Neurologic Manifestations: A Systematic Review. JAMA Neurol. 2019, 76, 217–226. [Google Scholar] [CrossRef]
- Olin, J.W.; Sealove, B.A. Diagnosis, management, and future developments of fibromuscular dysplasia. J. Vasc. Surg. 2011, 53, 826–836. [Google Scholar] [CrossRef] [Green Version]
- Rzepka, M.; Chmiela, T.; Bosowska, J.; Cebula, M.; Krzystanek, E. Fibromuscular Dysplasia/Carotid Web in Angio-CT Imaging: A Rare Cause of Ischemic Stroke. Medicina 2021, 57, 1112. [Google Scholar] [CrossRef]
- Raimundo, E.; Guedes, M.S.; Pereira, M.; Farias, L.; Pedri, A.F.; Sales, T.S.; Franca, A.H.; Queiroz, I.C.; Ferreira, R.H. Anomalies and anatomical variants of the aortic arch and origin of the neck vessels. In Proceedings of the European Congress of Radiology, Poster: ECR 2019/C-1656, Vienna, Austria, 27 February–3 March 2019. [Google Scholar] [CrossRef]
- Samadhiya, S.; Sardana, V.; Bhushan, B.; Maheshwari, D.; Yadav, S.R.; Goyal, R. Propensity of Stroke in Standard versus Various Aortic Arch. Variants: A 200 Patients Study. Ann. Indian Acad. Neurol. 2022, 25, 634–639. [Google Scholar] [CrossRef]
- Cheng, S.W. Aortic arch pathologies—Incidence and natural history. Gefasschirurgie 2016, 21, 212–216. [Google Scholar] [CrossRef] [Green Version]
- Parapia, L.A.; Jackson, C. Ehlers-Danlos syndrome—A historical review. Br. J. Haematol. 2008, 141, 32–35. [Google Scholar] [CrossRef]
- Hanneman, K.; Newman, B.; Chan, F. Congenital variants and anomalies of the aortic arch. Radiographics 2017, 37, 32–51. [Google Scholar] [CrossRef]
- Açar, G.; Çiçekcibaşı, A.E.; Uysal, U.; Koplay, M. Anatomical variations of the aortic arch branching pattern using CT angiography: A proposal for a different morphological classification with clinical relevance. Anat. Sci. Intern. 2022, 97, 65–78. [Google Scholar] [CrossRef]
- Psychogios, K.; Magoufis, G.; Kargiotis, O.; Safouris, A.; Bakola, E.; Chondrogianni, M.; Zis, P.; Stamboulis, E.; Tsivgoulis, G. Ultrasound Assessment of Extracranial Carotids and Vertebral Arteries in Acute Cerebral Ischemia. Medicina 2020, 56, 711. [Google Scholar] [CrossRef]
- Mavrogeni, S.; Pepe, A.; Nijveldt, R.; Ntusi, N.; Sierra-Galan, L.M.; Bratis, K.; Wei, J.; Mukherjee, M.; Markousis-Mavrogenis, G.; Gargani, L.; et al. Cardiovascular magnetic resonance in autoimmune rheumatic diseases: A clinical consensus document by the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2022, 23, e308–e322. [Google Scholar] [CrossRef]
- Moula, A.I.; Romeo, J.L.R.; Parise, G.; Parise, O.; Maessen, J.G.; Natour, E.; Bidar, E.; Gelsomino, S. The evolution of arch surgery: Frozen elephant trunk or conventional elephant trunk? Front. Cardiovasc. Med. 2022, 9, 999314. [Google Scholar] [CrossRef]
- Haussen, D.C.; Grossberg, J.A.; Bouslama, M.; Pradilla, G.; Belagaje, S.; Bianchi, N.; Allen, J.W.; Frankel, M.; Nogueira, R.G. Carotid web (intimal Fibromuscular Dysplasia) has high stroke recurrence risk and is amenable to stenting. Stroke 2017, 48, 3134–3137. [Google Scholar] [CrossRef]
- Lu, Y.-T.; Zhou, Z.-M.; Zhang, D.; Sun, L.; Liu, X.-C.; Yang, Y.-K.; Jiang, X.-J.; Zhou, X.-L. Percutaneous Transluminal Renal Angioplasty for Fibromuscular Dysplasia and Prognostic Risk Factors: A Retrospective Chinese Cohort Study. J. Clin. Med. 2023, 12, 23. [Google Scholar] [CrossRef]
- Joseph, G.; Thomson, V.S.; Attumalil, T.V.; Mathen, P.G.; Anandaraj, A.M.; George, O.K.; George, P.V.; Goel, R.; Kumar, S.; Mathew, J.; et al. Outcomes of Percutaneous Intervention in Patients with Takayasu Arteritis. J. Am. Coll. Cardiol. 2023, 81, 49–64. [Google Scholar] [CrossRef]
- Grayson, P.C.; Ponte, C.; Suppiah, R.; Robson, J.C.; Gribbons, K.B.; Judge, A.; Craven, A.; Khalid, S.; Hutchings, A.; Danda, D.; et al. 2022 American College of Rheumatology/EULAR classification criteria for Takayasu arteritis. Ann. Rheum. Dis. 2022, 81, 1654–1660. [Google Scholar] [CrossRef]
- Tekieli, Ł.M.; Maciejewski, D.R.; Dzierwa, K.; Kabłak-Ziembicka, A.; Michalski, M.; Wójcik-Pędziwiatr, M.; Brzychczy, A.; Moczulski, Z.; Żmudka, K.; Pieniążek, P. Invasive treatment for carotid fibromuscular dysplasia. Adv. Interv. Cardiol. 2015, 11, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Hata, A.; Noda, M.; Moriwaki, R.; Numano, F. Angiographic findings of Takayasu arteritis: New classification. Int. J. Cardiol. 1996, 54 (Suppl. S2), S155–S163. [Google Scholar] [CrossRef]
- Joseph, G.; Goel, R.; Thomson, V.S.; Joseph, E.; Danda, D. Takayasu Arteritis: JACC Focus Seminar 3/4. J. Am. Coll. Cardiol. 2023, 81, 172–186. [Google Scholar] [CrossRef]
- Przewłocki, T.; Kabłak-Ziembicka, A.; Kozanecki, A.; Rzeźnik, D.; Pieniążek, P.; Musiałek, P.; Piskorz, A.; Sokołowski, A.; Rosławiecka, A.; Tracz, W. Polyvascular extracoronary atherosclerotic disease in patients with coronary artery disease. Kardiol. Pol. 2009, 67, 978–984. [Google Scholar]
- Bucek, R.A.; Puchner, S.; Haumer, M.; Rand, T.; Sabeti, S.; Minar, E.; Lammer, J. Grading of internal carotid artery stenosis: Comparative analysis of different flow velocity criteria and multidetector computed tomographic angiography. J. Endovasc. Ther. 2008, 13, 182–189. [Google Scholar] [CrossRef]
- Tekieli, L.; Mazurek, A.; Dzierwa, K.; Stefaniak, J.; Kablak-Ziembicka, A.; Knapik, M.; Moczulski, Z.; Banys, R.P.; Urbanczyk-Zawadzka, M.; Dabrowski, W.; et al. Misclassification of carotid stenosis severity with area-based evaluation by computed tomography angiography: Impact on erroneous indication to revascularization or patient (lesion) migration to a higher guideline recommendation class as per ESC/ESVS/ESO/SVS and CMS-FDA thresholds. Adv. Interv. Cardiol. 2022, 18, 500–513. [Google Scholar] [CrossRef]
- Badacz, R.; Kabłak-Ziembicka, A.; Urbańczyk-Zawadzka, M.; Banyś, R.P.; Musiałek, P.; Odrowąż-Pieniążek, P.; Trystuła, M.; Ścigalski, J.; Żmudka, K.; Przewłocki, T. Magnetic resonance imaging and clinical outcome in patients with symptomatic carotid artery stenosis after carotid artery revascularization. Adv. Interv. Cardiol. 2017, 13, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Przewlocki, T.; Wrotniak, L.; Kablak-Ziembicka, A.; Pieniazek, P.; Roslawiecka, A.; Rzeznik, D.; Misztal, M.; Zajdel, W.; Badacz, R.; Sokolowski, A.; et al. Determinants of long-term outcome in patients after percutaneous stent-assisted management of symptomatic subclavian or innominate artery stenosis or occlusion. EuroIntervention 2017, 13, 1355–1364. [Google Scholar] [CrossRef]
- Pieniążek, P.; Tekieli, L.; Musiałek, P.; Kabłak Ziembicka, A.; Przewłocki, T.; Motyl, R.; Dzierwa, K.; Paluszek, P.; Hlawaty, M.; Żmudka, K.; et al. Carotid artery stenting according to the tailored-CAS algorithm is associated with a low complication rate at 30 days: Data from the TARGET-CAS study. Kardiol. Pol. 2012, 70, 378–386. [Google Scholar]
- Musiałek, P.; Pieniążek, P.; Tracz, W.; Tekieli, L.; Przewłocki, T.; Kabłak-Ziembicka, A.; Motyl, R.; Moczulski, Z.; Stepniewski, J.; Trystula, M.; et al. Safety of embolic protection device-assisted and unprotected intravascular ultrasound in evaluating carotid artery atherosclerotic lesions. Med. Sci. Monit. 2012, 18, MT7–MT18. [Google Scholar] [CrossRef] [Green Version]
- European Stroke Organisation; Tendera, M.; Aboyans, V.; Bartelink, M.L.; Baumgartner, I.; Clément, D.; Collet, J.P.; Cremonesi, A.; De Carlo, M.; Erbel, R.; et al. ESC Guidelines on the diagnosis and treatment of peripheral artery diseases. Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries: The Task Force on the Diagnosis and Treatment of Peripheral Artery Diseases of the European Society of Cardiology (ESC). Eur. Heart J. 2011, 32, 2851–2906. [Google Scholar]
- Bonati, L.H.; Kakkos, S.; Berkefeld, J.; de Borst, G.J.; Bulbulia, R.; Halliday, A.; van Herzeele, I.; Koncar, I.; McCabe, D.J.; Lal, A.; et al. European Stroke Organisation guideline on endarterectomy and stenting for carotid artery stenosis. Eur. Stroke J. 2021, 6, I-XLVII. [Google Scholar] [CrossRef]
- George, M.G. Risk Factors for Ischemic Stroke in Younger Adults. A Focused Update. Stroke 2020, 51, 729–735. [Google Scholar] [CrossRef]
- Ohya, Y.; Matsuo, R.; Sato, N.; Irie, F.; Nakamura, K.; Wakisaka, Y.; Ago, T.; Kamouchi, M.; Kitazono, T.; Investigators for Fukuoka Stroke Registry. Causes of ischemic stroke in young adults versus non-young adults: A multicenter hospital-based observational study. PLoS ONE 2022, 17, e0268481. [Google Scholar] [CrossRef]
- Putaala, J.; Metso, A.J.; Metso, T.M.; Konkola, N.; Kraemer, Y.; Haapaniemi, E.; Kaste, M.; Tatlisumak, T. Analysis of 1008 consecutive patients aged 15 to 49 with first-ever ischemic stroke: The Helsinki young stroke registry. Stroke 2009, 40, 1195–1203. [Google Scholar] [CrossRef] [Green Version]
- Swartz, R.H.; Cayley, M.L.; Foley, N.; Ladhani, N.N.; Leffert, L.; Bushnell, C.; McClure, J.A.; Lindsay, M.P. The incidence of pregnancy-related stroke: A systematic review and meta-analysis. Int. J. Stroke 2017, 12, 687–697. [Google Scholar] [CrossRef] [Green Version]
- Braverman, A.C.; Mittauer, E.; Harris, K.M.; Evangelista, A.; Pyeritz, R.E.; Brinster, D.; Conklin, L.; Suzuki, T.; Fanola, C.; Ouzounian, M.; et al. Clinical Features and Outcomes of Pregnancy-Related Acute Aortic Dissection. JAMA Cardiol. 2021, 6, 58–66. [Google Scholar] [CrossRef]
- Zacharias, M.; Rosengren, A.; Lappas, G.; Eriksson, P.; Hansson, P.O.; Dellborg, M. Ischemic stroke in children and young adults with congenital heart disease. J. Am. Heart Assoc. 2016, 5, e003071. [Google Scholar]
- van Alebeek, M.E.; Arntz, R.M.; Ekker, M.S.; Synhaeve, N.E.; Maaijwee, N.A.; Schoonderwaldt, H.; van der Vlugt, M.J.; van Dijk, E.J.; Rutten-Jacobs, L.C.; de Leeuw, F.E. Risk factors and mechanisms of stroke in young adults: The FUTURE study. J. Cereb. Blood Flow. Metab. 2018, 38, 1631–1641. [Google Scholar] [CrossRef] [Green Version]
- Ferro, J.M.; Massaro, A.R.; Mas, J.L. Aetiological diagnosis of ischaemic stroke in young adults. Lancet Neurol. 2010, 9, 1085–1096. [Google Scholar] [CrossRef]
- Chiang, K.-L.; Cheng, C.-Y. Epidemiology, risk factors and characteristics of pediatric stroke: A nationwide population-based study. QJM Int. J. Med. 2018, 111, 445–454. [Google Scholar] [CrossRef] [Green Version]
- Chatzikonstantinou, A.; Wolf, M.E.; Hennerici, M.G. Ischemic stroke in young adults: Classification and risk factors. J. Neurol. 2011, 259, 653–659. [Google Scholar] [CrossRef]
- Duarte, M.M.; Geraldes, R.; Sousa, R.; Alarcão, J.; Costa, J. Stroke and Transient Ischemic Attack in Takayasu’s Arteritis: A Systematic Review and Meta-analysis. J. Stroke Cerebrovasc. Dis. 2016, 25, 781–791. [Google Scholar] [CrossRef]
- Olin, J.W.; Froehlich, J.; Gu, X.; Bacharach, J.M.; Eagle, K.; Gray, B.H.; Jaff, M.R.; Kim, E.S.; Mace, P.; Matsumoto, A.H.; et al. The UnitedStates Registry for Fibromuscular Dysplasia: Results in the first 447 patients. Circulation 2012, 125, 3182–3190. [Google Scholar] [CrossRef] [Green Version]
- Atalay, Y.B.; Piran, P.; Chatterjee, A.; Murthy, S.; Navi, B.B.; Liberman, A.L.; Dardick, J.; Zhang, C.; Kamel, H.; Merkler, A.E. Prevalence of Cervical Artery Dissection Among Hospitalized Patients with Stroke by Age in a Nationally Representative Sample from the United States. Neurology 2021, 96, e1005–e1011.80. [Google Scholar] [CrossRef]
- Nedeltchev, K.; der Maur, T.A.; Georgiadis, D.; Arnold, M.; Caso, V.; Mattle, H.P.; Schroth, G.; Remonda, L.; Sturzenegger, M.; Fischer, U.; et al. Ischaemic stroke in young adults: Predictors of outcome and recurrence. J. Neurol. Neurosurg. Psychiatry 2005, 76, 191–195. [Google Scholar] [CrossRef]
- Bonfioli, G.B.; Rodella, L.; Rosati, R.; Carrozza, A.; Metra, M.; Vizzardi, E. Aortopathies: From Etiology to the Role of Arterial Stiffness. J. Clin. Med. 2023, 12, 3949. [Google Scholar] [CrossRef]
- Tasdemir, R.; Cihan, Ö.F.; Ince, R.; Sevmez, F. Anatomical Variations in Aortic Arch Branching Pattern: A Computed Tomography Angiography Study. Cureus 2023, 15, e36731. [Google Scholar] [CrossRef]
- Triposkiadis, F.; Xanthopoulos, A.; Lampropoulos, K.; Briasoulis, A.; Sarafidis, P.; Skoularigis, J.; Boudoulas, H. Aortic Stiffness: A Major Risk Factor for Multimorbidity in the Elderly. J. Clin. Med. 2023, 12, 2321. [Google Scholar] [CrossRef]
- Baran, J.; Kleczyński, P.; Niewiara, Ł.; Podolec, J.; Badacz, R.; Gackowski, A.; Pieniążek, P.; Legutko, J.; Żmudka, K.; Przewłocki, T.; et al. Importance of Increased Arterial Resistance in Risk Prediction in Patients with Cardiovascular Risk Factors and Degenerative Aortic Stenosis. J. Clin. Med. 2021, 10, 2109. [Google Scholar] [CrossRef]
- Predoiu, A.; Pamfil, C.; Felea, I.; Muntean, L.; Damian, L.; Tamas, M.M.; Filipescu, I.; Simon, S.P.; Rednic, S. AB0609 Gaps in the diagnosis of Takayasu Arteritis: A Romanian cohort. Ann. Rheumat Dis. 2022, 81 (Suppl. S1), 1430. [Google Scholar] [CrossRef]
- Syperek, A.; Angermaier, A.; Kromrey, M.; Hosten, N.; Kirsch, M. The so called “bovine aortic arch”: A possible biomarker for embolic strokes? Neuroradiology 2019, 61, 1165–1172. [Google Scholar] [CrossRef]
- Samadhiya, S.; Maheshwari, D.; Sardana, V.; Bhushan, B. Stroke and the Bovine Aortic Arch: Incidental or Deliberate? A Comparative Study and our Experience. Neurol. India 2022, 70, 638–642. [Google Scholar] [CrossRef]
- Mirouse, A.; Deltour, S.; Leclercq, D.; Squara, P.A.; Pouchelon, C.; Comarmond, C.; Kahn, J.E.; Benhamou, Y.; Mirault, T.; Mekinian, A.; et al. Cerebrovascular Ischemic Events in Patients with Takayasu Arteritis. Stroke 2022, 53, 1550–1557. [Google Scholar] [CrossRef]
- Couture, P.; Chazal, T.; Rosso, C.; Haroche, J.; Léger, A.; Hervier, B.; Deltour, S.; Amoura, Z.; Cohen Aubart, F. Cerebrovascular events in Takayasu arteritis: A multicenter case-controlled study. J. Neurol. 2018, 265, 757–763. [Google Scholar] [CrossRef] [Green Version]
- Badacz, R.; Przewłocki, T.; Karch, I.; Pieniążek, P.; Rosławiecka, A.; Mleczko, S.; Brzychczy, A.; Trystuła, M.; Żmudka, K.; Kabłak-Ziembicka, A. Low prevalence of collateral cerebral circulation in the circle of Willis in patients with severe carotid artery stenosis and recent ischemic stroke. Postep. Kardiol. Inter. 2015, 11, 312–317. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Shi, D.; Wei, Y.; Xiao, J.; Zhang, K.; Wang, M. Blood flow in the internal carotid artery with common carotid artery-occluding lesions in Takayasu arteritis. J. Ultrasound Med. Off. J. Am. Inst. Ultrasound Med. 2010, 29, 1547–1553. [Google Scholar] [CrossRef]
- Muniz Castrillo, S.; Oyanguren Rodeno, B.; de Antonio Sanz, E.; González Salaices, M. Ictus isquémico secundario a disección aórtica: Un reto diagnostic (Ischaemic stroke secondary to aortic dissection: A diagnostic challenge). Neurología 2018, 33, 192–209. [Google Scholar] [CrossRef]
- Kowalska-Brozda, O.; Brozda, M. A patient with acute aortic dissection presenting with bilateral stroke, a rare experience. Neurol. Neurochir. Pol. 2015, 49, 197–202. [Google Scholar] [CrossRef]
- Gaul, C.; Diestrich, W.; Erbguth, F.J. Neurologic symptoms in aortic dissection: A challenge for neurologists. Cerebrovasc. Dis. 2008, 26, 1–8. [Google Scholar] [CrossRef]
- Kamouchi, M. Aortic dissection as a possible underlying cause of acute ischemic stroke. Circ. J. 2015, 79, 1697–1708. [Google Scholar] [CrossRef] [Green Version]
- Mirande, M.H.; Durhman, M.R.; Smith, H.F. Anatomic Investigation of Two Cases of Aberrant Right Subclavian Artery Syndrome, Including the Effects on External Vascular Dimensions. Diagnostics 2020, 10, 592. [Google Scholar] [CrossRef]
- Godlewski, J.; Widawski, T.; Michalak, M.; Kmieć, Z. Aneurysm of the aberrant right subclavian artery—A case report. Pol. J. Radiol. 2010, 75, 47–50. [Google Scholar]
- Natsis, K.I.; Tsitouridis, I.A.; Didagelos, M.V.; Fillipidis, A.A.; Vlasis, K.G.; Tsikaras, P.D. Anatomical variations in the branches of the human aortic arch in 633 angiographies: Clinical significance and literature review. Surg. Radiol. Anat. 2009, 31, 319–323. [Google Scholar] [CrossRef]
- Khan, I.A.; Nair, C.K. Clinical, diagnostic and management perspectives of aortic dissection. Chest 2006, 122, 311–328. [Google Scholar] [CrossRef] [Green Version]
- Tsivgoulis, G.; Apostolos, S.; Alexandrov, A. Safety of intravenous thrombolysis for acute ischemic stroke in specific conditions. Expert. Opin. Drug Saf. 2015, 14, 845–864. [Google Scholar] [CrossRef]
- Kablak-Ziembicka, A.; Przewlocki, T.; Pieniazek, P.; Musialek, P.; Tekieli, L.; Rosławiecka, A.; Motyl, R.; Zmudka, K.; Tracz, W.; Podolec, P. Predictors of cerebral reperfusion injury after carotid stenting: The role of transcranial color-coded Doppler ultrasonography. J. Endovasc. Ther. 2010, 17, 556–563. [Google Scholar] [CrossRef]
- Kablak-Ziembicka, A.; Przewlocki, T.; Pieniazek, P.; Musialek, P.; Motyl, R.; Moczulski, Z.; Tracz, W. Assessment of flow changes in the circle of Willis after stenting for severe internal carotid artery stenosis. J. Endovasc. Ther. 2006, 13, 205–213. [Google Scholar] [CrossRef]
- Lee, V.H.; Brown, R.D.; Mandrekar, J.N.; Mokri, B. Incidence and outcome of cervical artery dissection: A population-based study. Neurology 2006, 67, 1809–1812. [Google Scholar] [CrossRef]
- Engelter, S.T.; Traenka, C.; Gensicke, H.; Schaedelin, S.A.; Luft, A.R.; Simonetti, B.G.; Fischer, U.; Michel, P.; Sirimarco, G.; Kägi, G.; et al. Aspirin versus anticoagulation in cervical artery dissection (TREAT-CAD): An open-label, randomised, non-inferiority trial. Lancet Neurol. 2021, 20, 341–350. [Google Scholar] [CrossRef]
- Markus, H.S.; Levi, C.; King, A.; Madigan, J.; Norris, J. Antiplatelet Therapy vs Anticoagulation Therapy in Cervical Artery Dissection: The Cervical Artery Dissection in Stroke Study (CADISS) Randomized Clinical Trial Final Results. JAMA Neurol. 2019, 76, 657–664. [Google Scholar] [CrossRef]
- Keser, Z.; Chiang, C.C.; Benson, J.C.; Pezzini, A.; Lanzino, G. Cervical Artery Dissections: Etiopathogenesis and Management. Vasc. Health Risk Manag. 2022, 18, 685–700. [Google Scholar] [CrossRef]
- Traenka, C.; Jung, S.; Gralla, J.; Kurmann, R.; Stippich, C.; Simonetti, B.G.; Gensicke, H.; Mueller, H.; Lovblad, K.; Eskandari, A.; et al. Endovascular therapy versus intravenous thrombolysis in cervical artery dissection ischemic stroke—Results from the SWISS registry. Eur. Stroke, J. 2018, 3, 47–56. [Google Scholar] [CrossRef]
- Labarca, C.; Makol, A.; Crowson, C.S.; Kermani, T.A.; Matteson, E.L.; Warrington, K.J. Retrospective comparison of open versus endovascular procedures for Takayasu arteritis. J. Rheumatol. 2016, 43, 427–432. [Google Scholar] [CrossRef]
- Sharma, S.; Gupta, A. Visceral artery interventions in takayasu’s arteritis. Semin. Interv. Radiol. 2009, 26, 233–244. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Lee, C.-S.; Kim, J.S.; Know, S.U.; Kim, J.L.; Park, J.W.; Hyun, D.H.; Suh, D.C. Outcomes after Endovascular Treatment of Symptomatic Patients with Takayasu’s Arteritis. Interv. Neuroradiol. 2011, 17, 252–260. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Bérczi, Á.; Nyárády, B.B.; Szonyi, Á.; Philippovich, M.; Dósa, E. Short- and Mid-Term. Outcomes of Stenting in Patients with Isolated Distal Internal Carotid Artery Stenosis or Post-Surgical Restenosis. J. Clin. Med. 2022, 11, 5640. [Google Scholar] [CrossRef]
- Tekieli, Ł.; Musiałek, P.; Kablak-Ziembicka, A.; Trystuła, M.; Przewłocki, T.; Legutko, J.; Dzierwa, K.; Maciejewski, D.; Michalski, M.; Pieniążek, P. Severe, recurrent in-stent carotid restenosis: Endovascular approach, risk factors. Results from a prospective academic registry of 2637 consecutive carotid artery stenting procedures (TARGET-CAS). Adv. Interv. Cardiol. 2019, 15, 465–471. [Google Scholar]
- Van der Niepen, P.; Robberechts, T.; Devos, H.; van Tussenbroek, F.; Januszewicz, A.; Persu, A. Fibromuscular dysplasia: Its various phenotypes in everyday practice in 2021. Kardiol. Pol. 2021, 79, 733–744. [Google Scholar] [CrossRef]
- Kadian-Dodov, D.; Goldfinger, J.Z.; Gustavson, S.; Olin, J.W. Natural history of cervical artery fibromuscular dysplasia and associated neurovascular events. Cerebrovasc. Dis. 2018, 46, 33–39. [Google Scholar] [CrossRef]
- O’Connor, T.E.; Carpenter, H.E.; Bidari, S.; Waters, M.F.; Hedna, V.S. Role of inflammatory markers in Takayasu arteritis disease monitoring. BMC Neurol. 2014, 14, 62. [Google Scholar] [CrossRef] [Green Version]
- Mukhtyar, C.; Guillevin, L.; Cid, M.C.; Dasgupta, B.; de Groot, K.; Gross, W.; Hauser, T.; Hellmich, B.; Jayne, D.; Kallenberg, C.G.; et al. EULAR recommendations for the management of large vessel vasculitis. Ann. Rheumatic. Dis. 2009, 68, 318–323. [Google Scholar] [CrossRef]
- Misra, D.P.; Jain, N.; Ora, M.; Singh, K.; Agarwal, V.; Sharma, A. Outcome Measures and Biomarkers for Disease Assessment in Takayasu Arteritis. Diagnostics 2022, 12, 2565. [Google Scholar] [CrossRef]
- Saadoun, D.; Lambert, M.; Mirault, T.; Resche-Rigon, M.; Koskas, F.; Cluzel, P.; Mignot, C.; Schoindre, Y.; Chiche, L.; Hatron, P.Y.; et al. Retrospective analysis of surgery versus endovascular intervention in Takayasu arteritis a multicenter experience. Circulation 2012, 125, 813–819. [Google Scholar] [CrossRef] [Green Version]
- Maffei, S.; Di Renzo, M.; Bova, G.; Auteri, A.; Pasqui, A.L. Takayasu’s Arteritis: A review of the literature. Intern. Emerg. Med. 2006, 1, 105–125. [Google Scholar] [CrossRef]
- Park, S.J.; Kim, H.J.; Park, H.; Hann, H.J.; Kim, K.H.; Han, S.; Kim, Y.; Ahn, H.S. Incidence, prevalence, mortality and causes of death in Takayasu Arteritis in Korea—A nationwide, population-based study. Int. J. Cardiol. 2017, 235, 100–104. [Google Scholar] [CrossRef]
- Mirouse, A.; Biard, L.; Comarmond, C.; Lambert, M.; Mekinian, A.; Ferfar, Y.; Kahn, J.E.; Benhamou, Y.; Chiche, L.; Koskas, F.; et al. Overall survival and mortality risk factors in Takayasu’s arteritis: A multicenter study of 318 patients. J. Autoimmun. 2019, 96, 35–39. [Google Scholar] [CrossRef]
- Misra, D.P.; Rathore, U.; Mishra, P.; Singh, K.; Thakare, D.R.; Behera, M.R.; Jain, N.; Ora, M.; Bhadauria, D.S.; Gambhir, S.; et al. Comparison of Presentation and Prognosis of Takayasu Arteritis with or without Stroke or Transient Ischemic Attack—A Retrospective Cohort Study. Life 2022, 12, 1904. [Google Scholar] [CrossRef]
- Saglam, B.; Kaymaz-Tahra, S.; Kenar, G.; Kocaer, S.; Omma, A.; Erden, A.; Kara, M.; Yazıcı, A.; Cefle, A.; Gerçik, Ö.; et al. Metabolic syndrome is associated with increased cardiovascular risk and disease damage in patients with Takayasu arteritis. Int. J. Rheum. Dis. 2022, 25, 775–780. [Google Scholar] [CrossRef]
- Danda, D.; Manikuppam, P.; Tian, X.; Harigai, M. Advances in Takayasu arteritis: An Asia Pacific perspective. Front. Med. 2022, 9, 952972. [Google Scholar] [CrossRef]
- Fields, C.E.; Bower, T.C.; Cooper, L.T.; Hoskin, T.; Noel, A.A.; Panneton, J.M.; Sullivan, T.M.; Gloviczki, P.; Cherry, K.J., Jr. Takayasu’s arteritis: Operative results and influence of disease activity. J. Vasc. Surg. 2006, 43, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Rosa Neto, N.S.; Shinjo, S.K.; Levy-Neto, M.; Pereira, R.M.R. Vascular surgery: The main risk factor for mortality in 146 Takayasu arteritis patients. Rheumatol. Int. 2017, 37, 1065–1073. [Google Scholar] [CrossRef]
- Edwards, J.D.; Kapral, M.K.; Lindsay, M.P.; Fang, J.; Swartz, R.H. Young stroke survivors with no early recurrence at high long-term risk of adverse outcomes. J. Am. Heart Assoc. 2019, 8, e010370. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.; Huang, S.; Li, Q.; Liu, C.; Li, L.; Tan, J.; Zou, K.; Sun, X. Prognostic factors and prediction models for acute aortic dissection: A systematic review. BMJ Open. 2021, 11, e042435. [Google Scholar] [CrossRef]
- Reddy, R.; Lucke-Wold, B. Primer of vein of galen malformation management. J. Pediatr. Heath Care Med. 2022, 5, 30–34. [Google Scholar]
- Krittanawong, C.; Johnson, K.W.; Rosenson, R.S.; Wang, Z.; Aydar, M.; Baber, U.; Min, J.K.; Tang, W.H.W.; Halperin, J.L.; Narayan, S.M. Deep learning for cardiovascular medicine: A practical primer. Eur. Heart J. 2019, 40, 2058–2073. [Google Scholar] [CrossRef]
- Ledziński, Ł.; Grześk, G. Artificial Intelligence Technologies in Cardiology. J. Cardiovasc. Dev. Dis. 2023, 10, 202. [Google Scholar] [CrossRef]
- Cau, R.; Flanders, A.; Mannelli, L.; Politi, C.; Faa, G.; Suri, J.S.; Saba, L. Artificial intelligence in computed tomography plaque characterization: A review. Eur. J. Radiol. 2021, 140, 109767. [Google Scholar] [CrossRef]
- Hahn, L.D.; Baeumler, K.; Hsiao, A. Artificial intelligence and machine learning in aortic disease. Curr. Opin. Cardiol. 2021, 36, 695–703. [Google Scholar] [CrossRef]
- Hayıroğlu, M.İ.; Altay, S. The Role of Artificial Intelligence in Coronary Artery Disease and Atrial Fibrillation. Balkan Med. J. 2023, 40, 151–152. [Google Scholar] [CrossRef]
- Artzner, C.; Bongers, M.N.; Kärgel, R.; Faby, S.; Hefferman, G.; Herrmann, J.; Nopper, S.L.; Perl, R.M.; Walter, S.S. Assessing the Accuracy of an Artificial Intelligence-Based Segmentation Algorithm for the Thoracic Aorta in Computed Tomography Applications. Diagnostics 2022, 12, 1790. [Google Scholar] [CrossRef]
- Mason, J.C. Takayasu arteritis—Advances in diagnosis and management. Nat. Rev. Rheumatol. 2010, 6, 406–415. [Google Scholar] [CrossRef]
- Isobe, M. Takayasu arteritis revisited: Current diagnosis and treatment. Int. J. Cardiol. 2013, 168, 3–10. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Wang, Y.; Wang, Y.; Yang, Y.; Zhao, J.; Li, M.; Tian, X.; Zeng, X. Association between acute phase reactants, interleukin-6, tumor necrosis factor-α, and disease activity in Takayasu’s arteritis patients. Arthritis Res. Ther. 2020, 22, 285. [Google Scholar] [CrossRef]
- Ishihara, T.; Haraguchi, G.; Kamiishi, T.; Tezuka, D.; Inagaki, H.; Isobe, M. Sensitive assessment of activity of Takayasu’s arteritis by pentraxin3, a new biomarker. J. Am. Coll. Cardiol. 2011, 57, 1712–1723. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Qin, F.; Song, L.; Wang, T.; Geng, B.; Zhang, W.; Jin, L.; Wang, W.; Li, S.; Tian, X.; et al. Novel Biomarkers for the Precisive Diagnosis and Activity Classification of Takayasu Arteritis. Circ. Genom. Precis. Med. 2019, 12, e002080. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Zhang, Y.; Zou, Y.; Chen, Y.; Yue, J.; Liu, H.; Jiang, X. Elevated chemokines concentration is associated with disease activity in Takayasu arteritis. Cytokine 2021, 143, 155515. [Google Scholar] [CrossRef]
- Savioli, B.; Abdulahad, W.H.; Brouwer, E.; Kallenberg, C.G.M.; de Souza, A.W.S. Are cytokines and chemokines suitable biomarkers for Takayasu arteritis? Autoimmun. Rev. 2017, 16, 1071–1078. [Google Scholar] [CrossRef]
- Wen, X.; Song, G.; Hu, C.; Pan, J.; Wu, Z.; Li, L.; Liu, C.; Tian, X.; Zhang, F.; Qian, J.; et al. Identification of Novel Serological Autoantibodies in Takayasu Arteritis Patients Using HuProt Arrays. Mol. Cell Proteomics 2021, 20, 100036. [Google Scholar] [CrossRef]
- Kong, X.; Xu, M.; Cui, X.; Ma, L.; Cheng, H.; Hou, J.; Sun, X.; Ma, L.; Jiang, L. Potential Role of Macrophage Phenotypes and CCL2 in the Pathogenesis of Takayasu Arteritis. Front. Immunol. 2021, 12, 646516. [Google Scholar] [CrossRef]
- de Aguiar, M.F.; Torquato, H.; Salu, B.R.; Oliveira, A.C.D.; Oliva, M.L.V.; Paredes-Gamero, E.J.; Abdulahad, W.H.; Brouwer, E.; de Souza, A.W.S. Monocyte subsets and monocyte-related chemokines in Takayasu arteritis. Sci. Rep. 2023, 13, 2092. [Google Scholar] [CrossRef]
- Sarejloo, S.; Shahri, M.M.; Azami, P.; Clark, A.; Hass, E.; Salimi, M.; Lucke-Wold, B.; Sadeghvand, S.; Khanzadeh, S. Neutrophil to Lymphocyte Ratio as a Biomarker for Predicting the Coronary Artery Abnormality in Kawasaki Disease: A Meta-Analysis. Dis. Markers 2022, 2022, 6421543. [Google Scholar] [CrossRef]
- Kim, J.; Shimizu, C.; He, M.; Wang, H.; Hoffman, H.M.; Tremoulet, A.H.; Shyy, J.Y.-J.; Burns, J.C. Endothelial Cell Response in Kawasaki Disease and Multisystem Inflammatory Syndrome in Children. Int. J. Mol. Sci. 2023, 24, 12318. [Google Scholar] [CrossRef]
Aortic Arch Pathology | Takayasu Arteritis N = 38 | Fibromuscular Dysplasia N = 26 | Other AAP N = 18 | p-Level (ANOVA) |
---|---|---|---|---|
Demographic data | ||||
Age, mean (SD) | 43.2 (13.5) | 50.1 (15.3) | 46.4 (25.7) | 0.187 |
Female gender, n (%) | 35 (91.9) | 17 (65.3) | 13 (72.2) | 0.024 |
In post- or peri-partum period, n (%) | 0 (0) | 1 (3.8) | 4 (22.2) | 0.028 |
Emergency hospital admission, n (%) | 11 (28.9) | 16 (61.5) | 12 (66.6) | 0.006 |
Recent ischemic stroke, n (%) | 23 (60.5) | 20 (76.9) | 13 (72.2) | 0.362 |
Cervical artery dissection, n (%) | 1 (2.6%) | 14 (53.8) | 3 (16.7) | <0.001 |
Body mass index, kg/m2 (SD) | 24.0 (3.1) | 24.5 (2.8) | 25.1 (1.38) | 0.396 |
Hypertension, n (%) | 28 (73.6) | 20 (76.9) | 13 (72.2) | 0.931 |
Hyperlipidemia, n (%) | 23 (60.5) | 12 (46.1) | 9 (50) | 0.504 |
Diabetes mellitus type 2, n (%) | 11 (28.9) | 3 (11.5) | 3 (16.6) | 0.220 |
Past or present smoking, n (%) | 14 (36.8) | 2 (7.6) | 4 (22.2) | 0.026 |
Chronic kidney disease *, n (%) | 9 (23.6) | 7 (26.9) | 5 (27.7) | 0.139 |
Systemic inflammation, n (%) | 38 (100) | 1 (3.8) | 0 (0) | n/a |
Other immune-mediated disease, n (%) | 11 (28.9) | 1 (3.8) | 0 (0) | 0.012 |
Ehlers–Danlos syndrome | 0 (0) | 0 (0) | 1 (5.5) | 0.789 |
Cardiac valve involvement, n (%) | 9 (3.6) | 0 (0) | 1 (5.5) | 0.011 |
Pericardial effusion, n (%) | 4 (10.5) | 0 (0) | 0 (0) | 0.333 |
Myocarditis, n (%) | 5 (13.1) | 0 (0) | 0 (0) | 0.189 |
Coronary involvement, n (%) | 15 (39.4) | 3 (11.5) | 3 (16.6) | 0.025 |
Pulmonary involvement, n (%) | 1 (2.6) | 0 (0) | 1 (5.5) | 0.789 |
Abdominal involvements #, n (%) | 30 (78.9) | 16 (61.5) | 6 (33.3) | 0.004 |
Coarctation of the aorta, n (%) | 4 (10.5) | 0 (0) | 3 (16.6) | 0.343 |
Hypoplasia of the aortic arch, n (%) | 0 (0) | 0 (0) | 1 (5.5) | 0.789 |
Intracranial aneurysm, n (%) | 2 (5.2) | 2 (7.6) | 1 (5.5) | 0.918 |
Biochemical data | ||||
C-Reactive protein, (mg/L), mean (SD) | 14.38 (15.6) | 1.41 (1.12) | 25.8 (36.3) | 0.003 |
White blood count, mean (SD) | 10.1 (3.62) | 6.86 (1.91) | 7.38 (2.45) | <0.001 |
Hemoglobin (g/L), mean (SD) | 12.6 (2.1) | 13.7 (1.33) | 12.2 (1.87) | 0.029 |
Serum creatinine (µmol/L), mean (SD) | 78.3 (22.8) | 79.8 (23.7) | 78.9 (29.6) | 0.962 |
D-dimers (g/L), mean (SD) | 387 (56) | 102 (11.1) | 2159 (1642) | 0.010 |
Triglycerides (mmol/L), mean (SD) | 1.53 (0.6) | 0.97 (0.37) | 1.46 (0.62) | 0.001 |
LDL-C (mmol/L), mean (SD) | 3.04 (1.1) | 2.22 (0.73) | 3.13 (0.90) | 0.007 |
HDL-C (mmol/L), mean (SD) | 1.47 (0.51) | 1.52 (0.33) | 1.29 (0.32) | 0.303 |
Diagnostic imaging work-ups | ||||
Brain CT/MRI, n (%) | 38 (100) | 26 (100) | 18 (100) | n/a |
CDUS, n (%) | 38 (100) | 26 (100) | 18 (100) | n/a |
Angio-CT, n (%) | 36 (94.7) | 23 (88.5) | 17 (94.4) | n/a |
Angio-MRI, n (%) | 2 (5.2) | 3 (11.5) | 1 (5.5) | n/a |
Angiography, n (%) | 38 (100) | 26 (100) | 18 (100) | n/a |
Applied treatment for the aortic arch and branches | ||||
Endovascular treatment, n (%) | 33 (86.8) | 13 (50) | 13 (72.2) | 0.006 |
Carotid artery, n (%) | 20 (52.6) | 15 (57.7) | 2 (11.1) | 0.004 |
Innominate or subclavian artery, n (%) | 21 (50) | 0 (0) | 5 (27.8) | <0.001 |
Procedure for more than one vessel, n (%) | 8 (21.1) | 2 (7.6) | 1 (5.5) | 0.165 |
Balloon angioplasty alone, n (%) | 0 (0) | 1 (3.8) | 0 (0) | n/a |
Stent implantation (per procedures), n (%) | 41 | 14 | 7 | n/a |
Stent graft, n (%) | 0 (0) | 0 (0) | 7 (38.9) | n/a |
Periprocedural CVD | 0 (0) | 0 (0) | 1 (5.5) | 0.791 |
Periprocedural HPS | 1 (2.6) | 0 (0) | 0 (0) | 0.463 |
No revascularization, n (%) | 5 (13.2) | 13 (50) | 5 (27.8) | 0.003 |
Steroids, n (%) | 38 (100) | 1 (3.8) | 0 (0) | <0.001 |
Other anti-inflammatory drugs, n (%) | 17 (44.7) | 0 (0) | 0 (0) | <0.001 |
Biological treatment (tocilizumab), n (%) | 4 (10.5) | 0 (0) | 0 (0) | 0.333 |
Antiplatelet(s) therapy, n (%) | 38 (100) | 24 (92.3) | 14 (77.8) | 0.012 |
Vitamin K antagonists, n(%) | 3 (7.8) | 2 (7.6) | 2 (11.1) | 0.906 |
New oral anticoagulants, n (%) | 0 (0) | 0 (0) | 0 (0) | n/a |
Actylise, n (%) | 0 (0) | 3 (23.1) | 0 (0) | n/a |
Outcomes, N * | 38 | 26 | 17 | |
Follow-up, mean, months (SD) | 76 (37) | 79 (45) | 53 (35) | 0.043 |
Restenosis, n (%) ** | 19/33 (57.6) | 2/13 (15.4) | 0 (0) | 0.019 |
Re-PTA, n (%) | 16/17 (94.1) | 2 (7.6) | 0 (0) | 0.417 |
MACCE, n (%) | 15 (39.5) | 4 (15.4) | 5 (29.4) | 0.113 |
CVD, n (%) | 3 (7.8) | 0 (0) | 2 (11.7) | 0.260 |
Non-fatal MI, n (%) | 3 (7.8) | 2 (7.6) | 1 (5.8) | 0.948 |
Non-fatal IS, n (%) | 9 (23.6) | 2 (7.6) | 2 (11.7) | 0.187 |
Univariate Cox Proportional Hazard Analysis | Multivariate Cox Proportional Hazard Analysis | |||||
---|---|---|---|---|---|---|
Clinical Parameter | Hazard Ratio | 95% Confidence Interval | p-Value | Hazard Ratio | 95% Confidence Interval | p-Value |
Age | 1.03 | 1.01–1.07 | 0.019 | 1.03 | 0.99–1.06 | 0.080 |
Female gender | 1.22 | 0.45–3.32 | 0.696 | |||
Emergency admission | 0.61 | 0.26–1.44 | 0.261 | |||
Recent cerebral ischemia | 1.09 | 0.44–2.70 | 0.845 | |||
Etiology | 1.11 | 0.39–3.12 | 0.182 | |||
Hypertension | 1.12 | 0.38–3.36 | 0.833 | |||
Diabetes mellitus type 2 | 1.37 | 0.55–3.41 | 0.493 | |||
Hyperlipidemia | 1.29 | 0.54–3.07 | 0.561 | |||
Smoking | 1.94 | 0.84–4.50 | 0.122 | |||
Body mass index | 1.06 | 0.92–1.21 | 0.426 | |||
Coronary artery involvement | 2.31 | 1.03–5.22 | 0.042 | 4.11 | 1.74–9.71 | 0.001 |
Peripheral arterial disease | 1.92 | 0.85–4.36 | 0.114 | |||
Renal artery involvement | 1.12 | 0.48–2.62 | 0.790 | |||
Baseline creatinine | 1.00 | 0.99–1.02 | 0.620 | |||
Baseline Hemoglobin level | 0.78 | 0.64–0.96 | 0.019 | 0.73 | 0.59–0.89 | 0.002 |
Baseline hs-CRP | 1.00 | 0.99–1.02 | 0.610 | |||
Baseline white blood count | 1.10 | 1.01–1.21 | 0.045 | 1.01 | 0.91–1.11 | 0.955 |
Baseline LDL-cholesterol | 1.21 | 0.86–1.72 | 0.273 | |||
Baseline HDL-cholesterol | 0.47 | 0.15–1.42 | 0.179 | |||
Tryglicerydes | 1.11 | 0.58–2.12 | 0.758 | |||
In-stent restenosis | 1.42 | 0.58–3.51 | 0.444 |
Univariate Cox Proportional Hazard Analysis | Multivariate Cox Proportional Hazard Analysis | |||||
---|---|---|---|---|---|---|
Clinical Parameter | Hazard Ratio | 95% Confidence Interval | p-Value | Hazard Ratio | 95% Confidence Interval | p-Value |
Age | 1.01 | 0.99–1.04 | 0.356 | |||
Female gender | 0.84 | 0.24–2.99 | 0.798 | |||
Emergency admission | 2.39 | 0.88–6.47 | 0.086 | 2.39 | 0.87–6.58 | 0.091 |
Recent cerebral ischemia | 1.15 | 0.46–2.89 | 0.756 | |||
Etiology | 3.94 | 0.21–76.8 | 0.365 | |||
Hypertension | 1.35 | 0.46–4.01 | 0.583 | |||
Diabetes mellitus type 2 | 0.73 | 0.24–2.15 | 0.564 | |||
Hyperlipidemia | 1.35 | 0.55–3.31 | 0.514 | |||
Smoking | 0.96 | 0.40–2.29 | 0.929 | |||
Body mass index | 0.98 | 0.81–1.18 | 0.836 | |||
Coronary artery involvement | 1.11 | 0.38–3.15 | 0.857 | |||
Peripheral arterial disease | 1.19 | 0.50–2.84 | 0.694 | |||
Renal artery involvement | 0.61 | 0.25–1.45 | 0.262 | |||
Baseline creatinine | 0.99 | 0.97–1.01 | 0.330 | |||
Baseline hemoglobin level | 1.03 | 0.82–1.29 | 0.819 | |||
Baseline hs-CRP level | 1.02 | 0.98–1.05 | 0.232 | |||
Baseline white blood count | 1.24 | 1.12–1.38 | <0.001 | 1.25 | 1.12–1.39 | <0.001 |
Baseline LDL-cholesterol | 1.11 | 0.79–1.57 | 0.548 | |||
Baseline HDL-cholesterol | 1.51 | 0.53–4.34 | 0.440 | |||
Tryglicerydes | 0.90 | 0.42–1.90 | 0.782 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wawak, M.; Tekieli, Ł.; Badacz, R.; Pieniążek, P.; Maciejewski, D.; Trystuła, M.; Przewłocki, T.; Kabłak-Ziembicka, A. Clinical Characteristics and Outcomes of Aortic Arch Emergencies: Takayasu Disease, Fibromuscular Dysplasia, and Aortic Arch Pathologies: A Retrospective Study and Review of the Literature. Biomedicines 2023, 11, 2207. https://doi.org/10.3390/biomedicines11082207
Wawak M, Tekieli Ł, Badacz R, Pieniążek P, Maciejewski D, Trystuła M, Przewłocki T, Kabłak-Ziembicka A. Clinical Characteristics and Outcomes of Aortic Arch Emergencies: Takayasu Disease, Fibromuscular Dysplasia, and Aortic Arch Pathologies: A Retrospective Study and Review of the Literature. Biomedicines. 2023; 11(8):2207. https://doi.org/10.3390/biomedicines11082207
Chicago/Turabian StyleWawak, Magdalena, Łukasz Tekieli, Rafał Badacz, Piotr Pieniążek, Damian Maciejewski, Mariusz Trystuła, Tadeusz Przewłocki, and Anna Kabłak-Ziembicka. 2023. "Clinical Characteristics and Outcomes of Aortic Arch Emergencies: Takayasu Disease, Fibromuscular Dysplasia, and Aortic Arch Pathologies: A Retrospective Study and Review of the Literature" Biomedicines 11, no. 8: 2207. https://doi.org/10.3390/biomedicines11082207
APA StyleWawak, M., Tekieli, Ł., Badacz, R., Pieniążek, P., Maciejewski, D., Trystuła, M., Przewłocki, T., & Kabłak-Ziembicka, A. (2023). Clinical Characteristics and Outcomes of Aortic Arch Emergencies: Takayasu Disease, Fibromuscular Dysplasia, and Aortic Arch Pathologies: A Retrospective Study and Review of the Literature. Biomedicines, 11(8), 2207. https://doi.org/10.3390/biomedicines11082207