A Long-Wavelength Fluorescent Probe for Efficient Dual-Color Imaging of Boronic-Acid-Containing Agents in Living Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Instruments
2.2. Synthesis of BTTQ
2.3. Fluorescence Properties
2.4. Reactivity Assay with Other Boronic-Acid-Containing Compounds
2.5. Temporal Changes in Fluorescence Intensity
2.6. Detection and Quantification Limits
2.7. Selectivity Assay
2.8. Fluorescence Microscopy Study
3. Results and Discussion
3.1. Fluorescence Properties of BTTQ
3.2. Selectivity Assay
3.3. Fluorescence Microscopy Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BNCT | Boron neutron capture therapy |
BPA | 4-borono-L-phenylalanine |
DAPI | 4′,6-diamidino-2-phenylindole |
HBT | 2-(2-hydroxyphenyl) benzothiazole |
MS | Mass spectra |
HRMS | High-resolution mass spectra |
References
- Suzuki, M. Boron neutron capture therapy (BNCT): A unique role in radiotherapy with a view to entering the accelerator-based BNCT era. Int. J. Clin. Oncol. 2020, 25, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Hattori, Y.; Andoh, T.; Kawabata, S.; Hu, N.; Michiue, H.; Nakamura, H.; Nomoto, T.; Suzuki, M.; Takata, T.; Tanaka, H.; et al. Proposal of recommended experimental protocols for in vitro and in vivo evaluation methods of boron agents for neutron capture therapy. J. Radiat. Res. 2023, 64, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Barth, R.; Mi, P.; Yang, W. Boron delivery agents for neutron capture therapy of cancer. Cancer Commun. 2018, 38, 35. [Google Scholar] [CrossRef]
- Hughes, A.; Hu, N. Optimizing Boron Neutron Capture Therapy (BNCT) to Treat Cancer: An Updated Review on the Latest Developments on Boron Compounds and Strategies. Cancers 2023, 15, 4091. [Google Scholar] [CrossRef]
- Fukuda, H. Boron Neutron Capture Therapy (BNCT) for Cutaneous Malignant Melanoma Using 10B-p-Boronophenylalanine (BPA) with Special Reference to the Radiobiological Basis and Clinical Results. Cells 2021, 10, 2881. [Google Scholar] [CrossRef]
- Sato, M.; Hirose, K.; Takeno, S.; Aihara, T.; Nihei, K.; Takai, Y.; Hayashi, T.; Bando, K.; Kimura, H.; Tsurumi, K.; et al. Safety of Boron Neutron Capture Therapy with Borofalan(10B) and Its Efficacy on Recurrent Head and Neck Cancer: Real-World Outcomes from Nationwide Post-Marketing Surveillance. Cancers 2024, 16, 869. [Google Scholar] [CrossRef]
- Seneviratne, D.; Advani, P.; Trifiletti, D.; Chumsri, S.; Beltran, C.; Bush, A.; Vallow, L. Exploring the Biological and Physical Basis of Boron Neutron Capture Therapy (BNCT) as a Promising Treatment Frontier in Breast Cancer. Cancers 2022, 14, 3009. [Google Scholar] [CrossRef]
- Detta, A.; Cruickshank, G. L-Amino Acid Transporter-1 and Boronophenylalanine-Based Boron Neutron Capture Therapy of Human Brain Tumors. Cancer Res. 2009, 69, 2126–2132. [Google Scholar] [CrossRef]
- Sato, M.; Hirose, K. Efficacy and safety of boron neutron capture therapy for Hypopharyngeal/ Laryngeal cancer patients with previous head and neck irradiation in Japan. Radiother. Oncol. 2024, 198, 110382. [Google Scholar] [CrossRef]
- Hirano, F.; Kondo, N.; Murata, Y.; Sudani, A.; Temma, T. Assessing the effectiveness of fluorinated and α-methylated 3-boronophe-nylalanine for improved tumor-specific boron delivery in boron neutron capture therapy. Bioorg. Chem. 2024, 142, 106940. [Google Scholar] [CrossRef] [PubMed]
- Halbert, G.; Elliott, M.; Ford, S.; Dick, L.; Schmidt, E. Improved pharmaceutical stability of a boronphenylalanine mannitol formulation for boron neutron capture therapy. Eur. J. Pharm. Sci. 2013, 48, 735–739. [Google Scholar] [CrossRef]
- Kondo, N.; Hirano, F.; Temma, T. Evaluation of 3-Borono-l-Phenylalanine as a Water-Soluble Boron Neutron Capture Therapy Agent. Pharmaceutics 2022, 14, 1106. [Google Scholar] [CrossRef]
- Nomoto, T.; Inoue, Y.; Yao, Y.; Suzuki, M.; Kanamori, K.; Takemoto, H.; Matsui, M.; Tomoda, K.; Nishiyama, N. Poly(vinyl alcohol) boosting therapeutic potential of p-boronophenylalanine in neutron capture therapy by modulating metabolism. Sci. Adv. 2020, 6, eaaz1722. [Google Scholar] [CrossRef]
- Konarita, K.; Kanamori, K.; Suzuki, M.; Tokura, D.; Tanaka, S.; Honda, Y.; Nishiyama, N.; Nomoto, T. Poly(vinyl alcohol) potentiating an inert D-amino acid-based drug for boron neutron capture therapy. J. Control. Release 2025, 377, 385–396. [Google Scholar] [CrossRef]
- Toumia, Y.; Lunetta, E.; Carr, M.; Borgia, S.; Tortorella, E.; Domenici, F.; d’Agostino, E.; Telling, M.; di Fulvio, A.; Paradossi, G. Potential of BPA functionalized poly(vinylalcohol)-shelled perfluorobutane nanodroplets towards enhanced boron neutron capture therapy and in-situ dosimetry. Appl. Mater. Today 2024, 36, 102052. [Google Scholar] [CrossRef]
- Mechetin, G.; Zharkov, D. DNA Damage Response and Repair in Boron Neutron Capture Therapy. Genes 2023, 14, 127. [Google Scholar] [CrossRef] [PubMed]
- Seneviratne, D.; Saifi, O.; Mackeyev, Y.; Malouff, T.; Krishnan, S. Next-Generation Boron Drugs and Rational Translational Studies Driving the Revival of BNCT. Cells 2023, 12, 1398. [Google Scholar] [CrossRef]
- Jaervinen, J.; Pulkkinen, H.; Rautio, J.; Timonen, J. Amino Acid-Based Boron Carriers in Boron Neutron Capture Therapy (BNCT). Pharmaceutics 2023, 15, 2663. [Google Scholar] [CrossRef]
- Skwierawska, D.; López-Valverde, J.; Balcerzyk, M.; Leal, A. Clinical Viability of Boron Neutron Capture Therapy for Personalized Radiation Treatment. Cancers 2022, 14, 2865. [Google Scholar] [CrossRef]
- Reifschneider, O.; Schütz, C.; Brochhausen, C.; Hampel, G.; Ross, T.; Sperling, M.; Karst, U. Quantitative bioimaging of p-boronophenylalanine in thin liver tissue sections as a tool for treatment planning in boron neutron capture therapy. Anal. Bioanal. Chem. 2015, 407, 2365–2371. [Google Scholar] [CrossRef]
- Chandra, S.; Ahmad, T.; Barth, R.; Kabalka, G. Quantitative evaluation of boron neutron capture therapy (BNCT) drugs for boron delivery and retention at subcellular-scale resolution in human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS). J. Microsc. 2014, 254, 146–156. [Google Scholar] [CrossRef]
- Aldossari, S.; McMahon, G.; Lockyer, N.; Moore, K. Microdistribution and quantification of the boron neutron capture therapy drug BPA in primary cell cultures of human glioblastoma tumour by NanoSIMS. Analyst 2019, 144, 6214–6224. [Google Scholar] [CrossRef]
- Ahmed, N.; Liu, J.; Xu, X.; Hussain, A.; Mustafai, A.; Yar, M.; Ayub, K.; Alothman, A.; Mohammad, S.; Ye, Y.; et al. An activatable NIR turn-on fluorescent probe for copper (II) ion and live cell imaging. Sci. Rep. 2024, 14, 19068. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zhu, H.; Chen, Y.; Wu, Y.; Zhang, D.; Zhu, B.; Huang, S. A novel fluorescent probe for detecting hydrogen sulfide in osteoblasts during lipopolysaccharide-mediated inflammation under periodontitis. Sci. Rep. 2021, 11, 20156. [Google Scholar] [CrossRef]
- Hagimori, M.; Karimine, Y.; Mizuyama, N.; Hara, F.; Fujino, T.; Saji, H.; Mukai, T. Selective Cadmium Fluorescence Probe Based on Bis-heterocyclic Molecule and its Imaging in Cells. J. Fluoresc. 2021, 31, 1161–1167. [Google Scholar] [CrossRef]
- Kondo, N.; Takada, S.; Hagimori, M.; Temma, T. Development of a 2-(2-Hydroxyphenyl)-1H-benzimidazole-Based Fluorescence Sensor Targeting Boronic Acids for Versatile Application in Boron Neutron Capture Therapy. Cancers 2023, 15, 1862. [Google Scholar] [CrossRef] [PubMed]
- Kondo, N.; Aoki, E.; Takada, S.; Temma, T. A Red-Emitting Fluorescence Sensor for Detecting Boronic Acid-Containing Agents in Cells. Sensors 2022, 22, 7671. [Google Scholar] [CrossRef]
- Jie, O.; Chenguang, O.; Fujii, Y.; Nakano, Y.; Shoda, T.; Nagano, T. Synthesis and fluorescent properties of 2-(1H-benzimidazol-2-yl)-phenol derivatives. J. Heterocycl. Chem. 2004, 41, 359–365. [Google Scholar]
- Arachchige, K.; Corbin, B.; Ediriweera, P.; Vrionides, M.; Salmon, C.; Pang, Y.; Mani, T.; Sameera, W.; Abeywickrama, C. Deprotonation-Induced Large Fluorescence Turn ON in a 2,4-Bis(benzo[d]thiazol-2-yl)phenol (HBT-BT) Derivative. J. Phys. Chem. A 2025, 129, 4189–4203. [Google Scholar] [CrossRef]
- Kwak, M.; Kim, Y. Photostable BF2-Chelated Fluorophores Based on 2-(2′-Hydroxyphenyl)benzoxazole and 2-(2′-Hydroxyphenyl)benzothiazole. Bull. Korean Chem. Soc. 2009, 30, 2865–2866. [Google Scholar] [CrossRef]
- Ren, T.; Xu, W.; Zhang, W.; Zhang, X.; Wang, Z.; Xiang, Z.; Yuan, L.; Zhang, X. A General Method To Increase Stokes Shift by Introducing Alternating Vibronic Structures. J. Am. Chem. Soc. 2018, 140, 7716–7722. [Google Scholar] [CrossRef] [PubMed]
- Mao, Z.; Rha, H.; Kim, J.; You, X.; Zhang, F.; Tao, W.; Kim, J. THQ-Xanthene: An Emerging Strategy to Create Next-Generation NIR-I/II Fluorophores. Adv. Sci. 2023, 10, 2301177. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, A.; Hinkeldey, B.; Wild, M.; Jung, G. Synthesis of the Core Compound of the BODIPY Dye Class: 4,4′-Difluoro-4-bora-(3a,4a)-diaza-s-indacene. J. Fluoresc. 2009, 19, 755–758. [Google Scholar] [CrossRef]
- Patterson, K.; Romero-Reyes, M.; Heemstra, J. Fluorescence Quenching of Xanthene Dyes during Amide Bond Formation Using DMTMM. ACS Omega 2022, 7, 33046–33053. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Qi, Y.; Wang, L.; Tan, Y.; Zhang, X.; Wang, J.; Li, Y. Synthesis and mechanistic investigation of BPA fluorescent probes targeting BPA for potential application in Boron Neutron Capture Therapy (BNCT). Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2025, 327, 125318. [Google Scholar] [CrossRef]
- Hara, F.; Mizuyama, N.; Fujino, T.; Takada, S.; Temma, T.; Saji, H.; Mukai, T.; Hagimori, M. Development of a Pyrone-Fused Tricyclic Scaffold-based Ratiometric Fluorescent Probe for Al3+ Detection. J. Fluoresc. 2024, 35, 4559–4568. [Google Scholar] [CrossRef]
- Boonkitpatarakul, K.; Wang, J.; Niamnont, N.; Liu, B.; Mcdonald, L.; Pang, Y.; Sukwattanasinitt, M. Novel Turn-On Fluorescent Sensors with Mega Stokes Shifts for Dual Detection of Al3+ and Zn2+. ACS Sens. 2016, 1, 144–150. [Google Scholar] [CrossRef]
- Kondo, N.; Nishikubo, T.; Wakamatsu, T.; Ishikawa, H.; Nakagawa, N.; Kuramitsu, S.; Masui, R. Insights into different dependence of dNTP triphosphohydrolase on metal ion species from intracellular ion concentrations in Thermus thermophilus. Extremophiles 2008, 12, 217–223. [Google Scholar] [CrossRef]
Compound | λex-max | λem-max | Stokes Shift | φboron | φboron/φFree |
---|---|---|---|---|---|
BTTQ | 430 nm | 567 nm | 137 nm | 19% | 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takada, S.; Du, H.; Kondo, N.; Miyazaki, A.; Hara, F.; Horiyama, S.; Temma, T.; Hagimori, M. A Long-Wavelength Fluorescent Probe for Efficient Dual-Color Imaging of Boronic-Acid-Containing Agents in Living Cells. Chemosensors 2025, 13, 283. https://doi.org/10.3390/chemosensors13080283
Takada S, Du H, Kondo N, Miyazaki A, Hara F, Horiyama S, Temma T, Hagimori M. A Long-Wavelength Fluorescent Probe for Efficient Dual-Color Imaging of Boronic-Acid-Containing Agents in Living Cells. Chemosensors. 2025; 13(8):283. https://doi.org/10.3390/chemosensors13080283
Chicago/Turabian StyleTakada, Shinya, Honghuo Du, Naoya Kondo, Anna Miyazaki, Fumiko Hara, Shizuyo Horiyama, Takashi Temma, and Masayori Hagimori. 2025. "A Long-Wavelength Fluorescent Probe for Efficient Dual-Color Imaging of Boronic-Acid-Containing Agents in Living Cells" Chemosensors 13, no. 8: 283. https://doi.org/10.3390/chemosensors13080283
APA StyleTakada, S., Du, H., Kondo, N., Miyazaki, A., Hara, F., Horiyama, S., Temma, T., & Hagimori, M. (2025). A Long-Wavelength Fluorescent Probe for Efficient Dual-Color Imaging of Boronic-Acid-Containing Agents in Living Cells. Chemosensors, 13(8), 283. https://doi.org/10.3390/chemosensors13080283