Green On-Site Diclofenac Extraction from Wastewater Matrices Using a 3D-Printed Device Followed by PTV-GC-MS Determination
Abstract
:1. Introduction
2. Experimental
2.1. Reagents, Materials, and Instrumentation
2.2. Three-Dimensional-Printed Device
2.3. Resin Selection for 3D Printing
2.4. SPE Resin Selection and Impregnation Technique
2.5. Variable Optimization
2.6. Analytical Procedure
- A 3D-printed device coated with Oasis® HLB resin was submerged in conditioning solution for 15 min (a plastic tube containing 20 mL of 50% v/v methanol). It is recommended that the time does not exceed 20 min to prolong the life of the device.
- Then, the device was placed in the 3D-printed container, which was connected on one end to the tube of the pump and on the other end to the sampling tube.
- The pump was set to a flow rate of 2.0 L min−1 for the required time (in this case, 120 s allowed for a 4 L sample of wastewater).
- The sampling tube was placed in the wastewater stream of the input or output of the WWTP treatments, and the pump was turned on.
- Once the sampling was finished, the 3D-printed device was rinsed with ultrapure water and placed in a hermetic bottle containing the eluent solution (85 mL of methanol), which was transported to the laboratory in an insulated plastic tube.
- Once in the laboratory, the 3D-printed device was immediately removed, and the eluate was treated in order to derivatize the diclofenac and subsequently analyze it by PTV-GC-MS.
2.7. Conditions of GC-MS
2.8. On-Site Extraction
2.9. Green Metrics Assessment
3. Results and Discussion
3.1. SPE Resin Selection
3.2. Coated 3D-Printed Device and 3D-Printed Container
- Caps: Two pieces that have a socket on one side to attach to a hose of 0.7 cm i.d., and on the other, an internal thread of 3.5 turns.
- A cube composed of a network of interconnected cubes: An internal device coated with the SPE resin, providing a greater area of contact with the analyte of interest.
- External 3D-printed container: This protects the internal coated 3D-printed device, with external threads to connect to the caps.
3.3. Coating Technique Selection
3.4. Optimized Variables
3.5. Analytical Parameters
3.6. Method Validation and Application to Environmental Samples
3.7. Green Metrics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Świacka, K.; Maculewicz, J.; Smolarz, K.; Caban, M. Long-term stability of diclofenac and 4-hydroxydiclofenac in the seawater and sediment microenvironments: Evaluation of biotic and abiotic factors. Environ. Pollut. 2022, 304, 119243. [Google Scholar] [CrossRef]
- Voilley, N.; De Weille, J.; Mamet, J.; Lazdunski, M. Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J. Neurosci. 2001, 21, 8026–8033. [Google Scholar] [CrossRef]
- Blair, B.D.; Crago, J.P.; Hedman, C.J.; Klaper, R.D. Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern. Chemosphere 2013, 93, 2116–2123. [Google Scholar] [CrossRef]
- Lee, H.J.; Lee, E.; Yoon, S.H.; Chang, H.R.; Kim, K.; Kwon, J.H. Enzymatic and microbial transformation assays for the evaluation of the environmental fate of diclofenac and its metabolites. Chemosphere 2012, 87, 969–974. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, Y.; Bian, Y.; Zhang, Y.; Du, R.; Li, M.; Tan, Y.; Feng, X. Non-steroidal anti-inflammatory drugs (NSAIDs) in the environment: Recent updates on the occurrence, fate, hazards and removal technologies. Sci. Total Environ. 2023, 904, 166897. [Google Scholar] [CrossRef]
- Plaza, P.I.; Wiemeyer, G.M.; Lambertucci, S.A. Veterinary pharmaceuticals as a threat to endangered taxa: Mitigation action for vulture conservation. Sci. Total Environ. 2022, 817, 152884. [Google Scholar] [CrossRef]
- Dey, S.; Bano, F.; Malik, A. 1—Pharmaceuticals and personal care product (PPCP) contamination—a global discharge inventory. In Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology; Butterworth-Heinemann: Oxford, UK, 2019; pp. 1–26. ISBN 9780128161890. [Google Scholar] [CrossRef]
- Lonappan, L.; Brar, S.K.; Das, R.K.; Verma, M.; Surampalli, R.Y. Diclofenac and its transformation products: Environmental occurrence and toxicity—A review. Environ. Intern. 2016, 96, 127–138. [Google Scholar] [CrossRef]
- Hoeger, B.; Köllner, B.; Dietrich, D.R.; Hitzfeld, B. Water-borne diclofenac affects kidney and gill integrity and selected immune parameters in brown trout (Salmo trutta f. fario). Aquat. Toxicol. 2005, 75, 53–64. [Google Scholar] [CrossRef]
- Lolić, A.; Paíga, P.; Santos, L.H.; Ramos, S.; Correia, M.; Delerue-Matos, C. Assessment of non-steroidal anti-inflammatory and analgesic pharmaceuticals in seawaters of North of Portugal: Occurrence and environmental risk. Sci. Total Environ. 2015, 508, 240–250. [Google Scholar] [CrossRef]
- Reinholds, I.; Pugajeva, I.; Zacs, D.; Lundanes, E.; Rusko, J.; Perkons, I.; Bartkevics, V. Determination of acidic non-steroidal anti-inflammatory drugs in aquatic samples by liquid chromatography-triple quadrupole mass spectrometry combined with carbon nanotubes-based solid-phase extraction. Environ. Monit. Assess. 2017, 189, 568. [Google Scholar] [CrossRef]
- El-Sheikh, A.H.; Qawariq, R.F.; Abdelghani, J.I. Adsorption and magnetic solid-phase extraction of NSAIDs from pharmaceutical wastewater using magnetic carbon nanotubes: Effect of sorbent dimensions, magnetite loading and competitive adsorption study. Environ. Technol. Innov. 2019, 16, 100496. [Google Scholar] [CrossRef]
- Millership, J.; Hare, L.; Farry, M.; Collier, P.; McElnay, J.; Shields, M.; Carson, D. The use of hydrophilic lipophilic balanced (HLB) copolymer SPE cartridges for the extraction of diclofenac from small volume paediatric plasma samples. J. Pharm. Biomed. Anal. 2001, 25, 871–879. [Google Scholar] [CrossRef] [PubMed]
- Kumirska, J.; Migowska, N.; Caban, M.; Łukaszewicz, P.; Stepnowski, P. Simultaneous determination of non-steroidal anti-inflammatory drugs and oestrogenic hormones in environmental solid samples. Sci. Total Environ. 2015, 508, 498–505. [Google Scholar] [CrossRef]
- Zhou, J.; Broodbank, N. Sediment-water interactions of pharmaceutical residues in the river environment. Water Res. 2014, 48, 61–70. [Google Scholar] [CrossRef]
- Tartaglia, A.; Kabir, A.; D’Ambrosio, F.; Ramundo, P.; Ulusoy, S.; Ulusoy, H.; Merone, G.; Savini, F.; D’Ovidio, C.; Grazia, U.D.; et al. Fast off-line FPSE-HPLC-PDA determination of six NSAIDs in saliva samples. J. Chromatogr. B 2020, 1144, 122082. [Google Scholar] [CrossRef]
- Sandrin, V.S.S.; Oliveira, G.M.; Weckwerth, G.M.; Polanco, N.L.D.H.; Faria, F.A.C.; Santos, C.F.; Calvo, A.M. Analysis of different methods of extracting NSAIDs in biological fluid samples for LC-MS/MS assays: Scoping review. Metabolites 2022, 12, 751. [Google Scholar] [CrossRef]
- Kretschmer, A.; Giera, M.; Wijtmans, M.; de Vries, L.; Lingeman, H.; Irth, H.; Niessen, W. Derivatization of carboxylic acids with 4-APEBA for detection by positive-ion LC-ESI–MS(/MS) applied for the analysis of prostanoids and NSAID in urine. J. Chromatogr. B 2011, 879, 1393–1401. [Google Scholar] [CrossRef]
- Krokos, A.; Tsakelidou, E.; Michopoulou, E.; Raikos, N.; Theodoridis, G.; Gika, H. NSAIDs determination in human serum by GC-MS. Separations 2018, 5, 37. [Google Scholar] [CrossRef]
- Gross, B.; Lockwood, S.Y.; Spence, D.M. Recent advances in analytical chemistry by 3D printing. Anal. Chem. 2017, 89, 57–70. [Google Scholar] [CrossRef]
- Agrawaal, H.; Thompson, J.E. Additive manufacturing (3D printing) for analytical chemistry. Talanta Open 2021, 3, 100036. [Google Scholar] [CrossRef]
- Belka, M.; Baczek, T. Additive manufacturing and related technologies—The source of chemically active materials in separation science. Trends Anal. Chem. 2021, 142, 116322. [Google Scholar] [CrossRef]
- Quan, H.; Zhang, T.; Xu, H.; Luo, S.; Nie, J.; Zhu, X. Photo-curing 3D printing technique and its challenges. Bioact. Mater. 2020, 5, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE—Analytical GREEnness metric approach and software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef] [PubMed]
- Wojnowski, W.; Tobiszewski, M.; Pena-Pereira, F.; Psillakis, E. AGREEprep—Analytical greenness metric for sample preparation. Trends Anal. Chem—TRAC 2022, 149, 116553. [Google Scholar] [CrossRef]
- Barzallo, D.; Palacio, E.; March, J.; Ferrer, L. 3D printed device coated with solid-phase extraction resin for the on-site extraction of seven sulfonamides from environmental water simples preceding HPLC-DAD analysis. Microchem. J. 2023, 190, 108609. [Google Scholar] [CrossRef]
- Hanafiah, Z.M.; Mohtar, W.H.; Manan, T.S.; Bachi, N.A.; Abdullah, N.A.; Hamid, H.H.; Beddu, S.; Kamal, N.L.; Ahmad, A.; Rasdi, N.W. The occurrence of non-steroidal anti-inflammatory drugs (NSAIDs) in Malaysian urban domestic wastewater. Chemosphere 2022, 287, 132134. [Google Scholar] [CrossRef]
- Lavén, M.; Alsberg, T.; Yu, Y.; Adolfsson-Erici, M.; Sun, H. Serial mixed-mode cation- and anion-exchange solid-phase extraction for separation of basic, neutral and acidic pharmaceuticals in wastewater and analysis by high-performance liquid chromatography–quadrupole time-of-flight mass spectrometry. J. Chromatogr. A 2009, 216, 49–62. [Google Scholar] [CrossRef]
- Gold, V. Limit of detection in analysis. In The IUPAC Compendium of Chemical Terminology; International Union of Pure and Applied Chemistry (IUPAC): Research Triangle Park, NC, USA, 2014. [Google Scholar] [CrossRef]
- Pavón, J.L.P.; Ferreira, A.M.C.; Laespada, M.E.F.; Cordero, B.M. In situ derivatization reaction and determination of ibuprofen in water samples using headspace generation-programmed temperature vaporization-gas chromatography-mass spectrometry. J. Chromatogr. A 2009, 1216, 6728–6734. [Google Scholar] [CrossRef]
- Godlewska, K.; Lis, H.; Caban, M.; Paszkiewicz, M. Advances in monitoring pharmaceuticals in an aquatic environment: Greenness assessment of analytical procedures. TrAC Trends Anal. Chem. 2024, 180, 117921. [Google Scholar] [CrossRef]
- Peña-Velasco, G.; Hinojosa-Reyes, L.; Escamilla-Coronado, M.; Turnes-Palomino, G.; Palomino-Cabello, C.; Guzmán-Mar, J.L. Iron metal-organic framework supported in a polymeric membrane for solid-phase extraction of anti-inflammatory drugs. Anal. Chim. Acta 2020, 1136, 157–167. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, J.; Lu, N.; Wu, X.; Zhang, Y.; Hou, X. Development and application of metal-organic framework@GA based on solid-phase extraction coupling with UPLC-MS/MS for the determination of five NSAIDs in water. Talanta 2021, 225, 121846. [Google Scholar] [CrossRef]
- Mejías, C.; Santos, J.L.; Martín, J.; Aparicio, I.; Alonso, E. Automatised on-line SPE-chiral LC-MS/MS method for the enantiomeric determination of main fluoroquinolones and their metabolites in environmental water samples. Microchem. J. 2023, 185, 108217. [Google Scholar] [CrossRef]
Extraction Resin | Added (mg L−1) | Found (mg L−1) | Extraction Efficiency (%) |
---|---|---|---|
tC18 | 5.0 | 4.05 ± 0.11 | 81.3 ± 0.7 |
MCX | 5.0 | 4.25 ± 0.14 | 85.1 ± 0.6 |
HLB | 5.0 | 4.85 ± 0.10 | 97.2 ± 0.4 |
Coating Technique | Resin | Added (mg L−1) | Found (mg L−1) | Extraction Efficiency (%) |
---|---|---|---|---|
Stick and cure | tC18 | 25 | 17.70 ± 0.03 | 71.7 ± 0.7 |
MCX | 25 | 18.58 ± 0.03 | 74.5 ± 0.8 | |
HLB | 25 | 22.12 ± 0.02 | 88.3 ± 0.5 | |
PVDF | tC18 | 25 | <LOD | -- |
MCX | 25 | <LOD | -- | |
HLB | 25 | <LOD | -- | |
Combination coating | tC18 | 25 | 0.58 ±0.02 | 2.3 ± 0.2 |
MCX | 25 | <LOD | -- | |
HLB | 25 | <LOD | -- |
Parameter | Value |
---|---|
Retention time, tR (min) | 12.3 |
Linear working range (μg L−1) | 0.06 to 45 |
Limit of detection (μg L−1) | 0.019 |
Limit of quantification (μg L−1) | 0.056 |
Interday precision (% RSD) | 0.4 |
Preconcentration factor | 46.2 |
Sample | Aliquot | Added (μg L−1) | Found (μg L−1) | Recovery (%) |
---|---|---|---|---|
Deionized water | 1 | 4.1 | 3.77 ± 0.03 | 92.6 ± 0.5 |
2 | 4.1 | 3.71 ± 0.02 | 91.8 ± 0.6 | |
3 | 4.1 | 3.74 ± 0.02 | 92.4 ± 0.7 | |
Tap water | 1 | 4.1 | 3.64 ± 0.01 | 89.8 ± 0.5 |
2 | 4.1 | 3.63 ± 0.02 | 89.7 ± 0.6 | |
3 | 4.1 | 3.66 ± 0.03 | 90.3 ± 0.4 |
Sample | Added (μg L−10) | Found (μg L−10) | Recovery (%) |
---|---|---|---|
Primary decantation input | 0 | 15.39 ± 0.07 | -- |
20 | 33.38 ± 0.09 | 90.7 ± 0.8 | |
Secondary decantation output | 0 | 4.48 ± 0.03 | -- |
20 | 22.60 ± 0.05 | 91.1 ± 0.8 | |
Tertiary treatment output | 0 | 0.099 ± 0.001 | -- |
20 | 18.14 ± 0.08 | 90.5 ± 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro-García, C.; Palacio, E.; Rodríguez-Maese, R.; Leal, L.O.; Ferrer, L. Green On-Site Diclofenac Extraction from Wastewater Matrices Using a 3D-Printed Device Followed by PTV-GC-MS Determination. Chemosensors 2025, 13, 212. https://doi.org/10.3390/chemosensors13060212
Castro-García C, Palacio E, Rodríguez-Maese R, Leal LO, Ferrer L. Green On-Site Diclofenac Extraction from Wastewater Matrices Using a 3D-Printed Device Followed by PTV-GC-MS Determination. Chemosensors. 2025; 13(6):212. https://doi.org/10.3390/chemosensors13060212
Chicago/Turabian StyleCastro-García, César, Edwin Palacio, Rogelio Rodríguez-Maese, Luz O. Leal, and Laura Ferrer. 2025. "Green On-Site Diclofenac Extraction from Wastewater Matrices Using a 3D-Printed Device Followed by PTV-GC-MS Determination" Chemosensors 13, no. 6: 212. https://doi.org/10.3390/chemosensors13060212
APA StyleCastro-García, C., Palacio, E., Rodríguez-Maese, R., Leal, L. O., & Ferrer, L. (2025). Green On-Site Diclofenac Extraction from Wastewater Matrices Using a 3D-Printed Device Followed by PTV-GC-MS Determination. Chemosensors, 13(6), 212. https://doi.org/10.3390/chemosensors13060212