Recognition of Tea Infusions by Optical “Smart-Tongue” Based on Microparticles Incorporated with Metalloporphyrins
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Tested Tea Samples
2.2. Preparation and Measurements of NPs/MPs Optodes
2.3. Data Analysis
3. Results and Discussion
3.1. Optical Response of Microparticles Incorporated with Gallium and Indium Tetraphenylporphyrin Chloride
3.2. Optical Response of Microparticles Incorporated with Gallium and Indium Octaethylporphyrin Chloride
3.3. Effect of Analyte Type on Optical Response
3.4. Comparison of Optical Responses of MPs in Spectrophotometric and Spectrofluorimetric Detection Modes
3.5. Discrimination of Different Varieties of Tea Infusions Based on “Smart Tongue” Sensing
- Independent variables:
- 40 UV-Vis and 40 fluorescence spectra for all seven types of MPs (eight types of infusions × five replicates)
- Data vectors:
- Absorbance data: 40 samples × 1407 data points
- Fluorescence data: 40 samples × 943 data points
- Data fusion: 40 samples × 2350 data points
- Target matrix: eight sample types, 0–1 coding
- Absorbance data: 40 × 8
- Fluorescence data: 40 × 8
- Data fusion: 40 × 8
- Data split: 24 samples for train set, 16 samples for test/validation (three replicates for training. and two replicates for validation in each class)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Q.; Liu, A.; Zhao, J.; Ouyang, Q. Classification of Tea Category Using a Portable Electronic Nose Based on an Odor Imaging Sensor Array. J. Pharm. Biomed. Anal. 2013, 84, 77–83. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Li, X.; Deng, X. Discrimination of Varieties of Tea Using near Infrared Spectroscopy by Principal Component Analysis and BP Model. J. Food Eng. 2007, 79, 1238–1242. [Google Scholar] [CrossRef]
- Pattaravisitsate, N.; Phetrak, A.; Denpetkul, T.; Kittipongvises, S.; Kuroda, K. Effects of Brewing Conditions on Infusible Fluoride Levels in Tea and Herbal Products and Probabilistic Health Risk Assessment. Sci. Rep. 2021, 11, 14115. [Google Scholar] [CrossRef]
- Tang, G.-Y.; Meng, X.; Gan, R.-Y.; Zhao, C.-N.; Liu, Q.; Feng, Y.-B.; Li, S.; Wei, X.-L.; Atanasov, A.G.; Corke, H.; et al. Health Functions and Related Molecular Mechanisms of Tea Components: An Update Review. Int. J. Mol. Sci. 2019, 20, 6196. [Google Scholar] [CrossRef] [PubMed]
- Chandrajith, R.; Abeypala, U.; Dissanayake, C.B.; Tobschall, H.J. Fluoride in Ceylon Tea and Its Implications to Dental Health. Environ. Geochem. Health 2007, 29, 429–434. [Google Scholar] [CrossRef]
- Szmagara, A.; Krzyszczak, A.; Stefaniak, E.A. Determination of Fluoride Content in Teas and Herbal Products Popular in Poland. J. Environ. Health Sci. Eng. 2022, 20, 717–727. [Google Scholar] [CrossRef]
- Malinowska, E.; Inkielewicz, I.; Czarnowski, W.; Szefer, P. Assessment of Fluoride Concentration and Daily Intake by Human from Tea and Herbal Infusions. Food Chem. Toxicol. 2008, 46, 1055–1061. [Google Scholar] [CrossRef]
- Mazurek, A.; Kowalska, G.; Włodarczyk-Stasiak, M.; Wyrostek, J.; Kowalski, R. The Influence of the Preparation of Tea Infusion on the Content of Fluoride and the Assessment of Health Risk for the Consumer in Poland. Appl. Sci. 2023, 13, 5075. [Google Scholar] [CrossRef]
- Pehrsson, P.R.; Patterson, K.Y.; Perry, C.R. The Fluoride Content of Select Brewed and Microwave-Brewed Black Teas in the United States. J. Food Compos. Anal. 2011, 24, 971–975. [Google Scholar] [CrossRef]
- Dippong, T.; Cadar, O.; Kovacs, M.H.; Dan, M.; Senila, L. Chemical Analysis of Various Tea Samples Concerning Volatile Compounds, Fatty Acids, Minerals and Assessment of Their Thermal Behavior. Foods 2023, 12, 3063. [Google Scholar] [CrossRef]
- Fernández, P.L.; Martin, M.J.; González, A.G.; Pablos, F. HPLC Determination of Catechins and Caffeine in Tea. Differentiation of Green, Black and Instant Teas. Analyst 2000, 125, 421–425. [Google Scholar] [CrossRef]
- Wangkarn, S.; Grudpan, K.; Khanongnuch, C.; Pattananandecha, T.; Apichai, S.; Saenjum, C. Development of HPLC Method for Catechins and Related Compounds Determination and Standardization in Miang (Traditional Lanna Fermented Tea Leaf in Northern Thailand). Molecules 2021, 26, 6052. [Google Scholar] [CrossRef]
- Wang, Q.; Shi, D.; Hu, J.; Tang, J.; Zhou, X.; Wang, L.; Xie, J.; Jiang, Y.; Yuan, H.; Yang, Y. Unraveling the Dynamic Changes of Volatile Compounds during the Rolling Process of Congou Black Tea via GC-E-Nose and GC–MS. Front. Sustain. Food Syst. 2024, 8, 1436542. [Google Scholar] [CrossRef]
- Niu, X.; Ao, C.; Yu, J.; Zhao, Y.; Huang, H. GC-MS Combined with Proteomic Analysis of Volatile Compounds and Formation Mechanisms in Green Teas with Different Aroma Types. Foods 2024, 13, 1848. [Google Scholar] [CrossRef]
- Ciosek, P.; Wróblewski, W. Sensor Arrays for Liquid Sensing—Electronic Tongue Systems. Analyst 2007, 132, 963–978. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Liu, C.; Wang, Z.; Ma, J.; Bai, X.; Wang, Z.; Lan, Y.; Yuan, W. Rapid Identification of Oolong Tea Category by Synergetic Application of E-Nose and E-Tongue Combined with a Modified GAN—TCN Composite Model. J. Food Meas. Charact. 2024, 5903, 5887–5903. [Google Scholar] [CrossRef]
- Ren, G.; Zhang, X.; Wu, R.; Yin, L.; Hu, W.; Zhang, Z. Rapid Characterization of Black Tea Taste Quality Using Miniature NIR Spectroscopy and Electronic Tongue Sensors. Biosensors 2023, 13, 92. [Google Scholar] [CrossRef]
- Wang, P.; Liu, Q.; Wu, C.; Hsia, K.J. (Eds.) Bioinspired Smell and Taste Sensors; Springer: Dordrecht, The Netherlands, 2015; ISBN 9789401773324. [Google Scholar]
- Chen, Q.; Zhao, J.; Vittayapadung, S. Identification of the Green Tea Grade Level Using Electronic Tongue and Pattern Recognition. Food Res. Int. 2008, 41, 500–504. [Google Scholar] [CrossRef]
- Di Rosa, A.R.; Leone, F.; Cheli, F.; Chiofalo, V. Fusion of Electronic Nose, Electronic Tongue and Computer Vision for Animal Source Food Authentication and Quality Assessment—A Review. J. Food Eng. 2017, 210, 62–75. [Google Scholar] [CrossRef]
- Chen, J.; Lin, B.; Zheng, F.J.; Fang, X.C.; Ren, E.F.; Wu, F.F.; Verma, K.K.; Chen, G.L. Characterization of the Pure Black Tea Wine Fermentation Process by Electronic Nose and Tongue-Based Techniques with Nutritional Characteristics. ACS Omega 2023, 8, 12538–12547. [Google Scholar] [CrossRef]
- Zuo, Y.; Chen, H.; Deng, Y. Simultaneous Determination of Catechins, Caffeine and Gallic Acids in Green, Oolong, Black and Pu-Erh Teas Using HPLC with a Photodiode Array Detector. Talanta 2002, 57, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Togari, N.; Kobayashi, A.; Aishima, T. Pattern Recognition Applied to Gas Chromatographic Profiles of Volatile Components in Three Tea Categories. Food Res. Int. 1995, 28, 495–502. [Google Scholar] [CrossRef]
- Horie, H.; Mukai, T.; Kohata, K. Simultaneous Determination of Qualitatively Important Components in Green Tea Infusions Using Capillary Electrophoresis. J. Chromatogr. A 1997, 758, 332–335. [Google Scholar] [CrossRef]
- Ha, D.; Sun, Q.; Su, K.; Wan, H.; Li, H.; Xu, N.; Sun, F.; Zhuang, L.; Hu, N.; Wang, P. Recent Achievements in Electronic Tongue and Bioelectronic Tongue as Taste Sensors. Sens. Actuators B Chem. 2015, 207, 1136–1146. [Google Scholar] [CrossRef]
- Kutyła-Olesiuk, A.; Zaborowski, M.; Prokaryn, P.; Ciosek, P. Monitoring of Beer Fermentation Based on Hybrid Electronic Tongue. Bioelectrochemistry 2012, 87, 104–113. [Google Scholar] [CrossRef]
- Cetó, X.; Gutiérrez, J.M.; Gutiérrez, M.; Céspedes, F.; Capdevila, J.; Mínguez, S.; Jiménez-Jorquera, C.; Del Valle, M. Determination of Total Polyphenol Index in Wines Employing a Voltammetric Electronic Tongue. Anal. Chim. Acta 2012, 732, 172–179. [Google Scholar] [CrossRef]
- Ciosek, P.; Sobański, T.; Augustyniak, E.; Wróblewski, W. ISE-Based Sensor Array System for Classification of Foodstuffs. Meas. Sci. Technol. 2006, 17, 6–11. [Google Scholar] [CrossRef]
- Winquist, F.; Holmin, S.; Krantz-Rülcker, C.; Wide, P.; Lundström, I. A Hybrid Electronic Tongue. Anal. Chim. Acta 2000, 406, 147–157. [Google Scholar] [CrossRef]
- Palit, M.; Tudu, B.; Bhattacharyya, N.; Dutta, A.; Dutta, P.K.; Jana, A.; Bandyopadhyay, R.; Chatterjee, A. Comparison of Multivariate Preprocessing Techniques as Applied to Electronic Tongue Based Pattern Classification for Black Tea. Anal. Chim. Acta 2010, 675, 8–15. [Google Scholar] [CrossRef]
- Modlin, I.M.; Oberg, K.; Taylor, A.; Drozdov, I.; Bodei, L.; Kidd, M. Neuroendocrine Tumor Biomarkers: Current Status and Perspectives. Neuroendocrinology 2014, 100, 265–277. [Google Scholar] [CrossRef]
- Buratti, S.; Casiraghi, A.; Minghetti, P.; Giovanelli, G. The Joint Use of Electronic Nose and Electronic Tongue for the Evaluation of the Sensorial Properties of Green and Black Tea Infusions as Related to Their Chemical Composition. Food Nutr. Sci. 2013, 4, 605–615. [Google Scholar] [CrossRef]
- Rahman, M.M.; Charoenlarpnopparut, C.; Suksompong, P. Signal Processing for Multi-Sensor E-Nose System: Acquisition and Classification. In Proceedings of the 2015 10th International Conference on Information, Communications and Signal Processing (ICICS), Singapore, 2–4 December 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Ruiz-Perez, D.; Guan, H.; Madhivanan, P.; Mathee, K.; Narasimhan, G. So You Think You Can PLS-DA? BMC Bioinform. 2020, 21, 2. [Google Scholar] [CrossRef]
- Xie, X.; Bakker, E. Ion Selective Optodes: From the Bulk to the Nanoscale. Anal. Bioanal. Chem. 2015, 407, 3899–3910. [Google Scholar] [CrossRef]
- Kossakowska, A.; Kociszewska, K.; Kochman, K.; Wojciechowski, K.; Górski, Ł.; Ciosek-Skibińska, P. Toward an Electronic Tongue Based on Surfactant-Stabilized Chemosensory Microparticles with a Dual Detection Mode. ACS Appl. Mater. Interfaces 2022, 14, 50375–50385. [Google Scholar] [CrossRef] [PubMed]
- Kalinowska, A.; Wicik, M.; Matusiak, P.; Ciosek-Skibińska, P. Chemosensory Optode Array Based on Pluronic-Stabilized Microspheres for Differential Sensing. Chemosensors 2022, 10, 2. [Google Scholar] [CrossRef]
- Zhang, W.; Rozniecka, E.; Malinowska, E.; Parzuchowski, P.; Meyerhoff, M.E. Optical Chloride Sensor Based on Dimer-Monomer Equilibrium of Indium(III) Octaethylporphyrin in Polymeric Film. Anal. Chem. 2002, 74, 4548–4557. [Google Scholar] [CrossRef]
- Górski, Ł.; Malinowska, E.; Parzuchowski, P.; Zhang, W.; Meyerhoff, M.E. Recognition of Anions Using Metalloporphyrin-Based Ion-Selective Membranes: State-of-the-Art. Electroanalysis 2003, 15, 1229–1235. [Google Scholar] [CrossRef]
- Steinle, E.D.; Schaller, U.; Meyerhoff, M.E. Response Characteristics of Anion-Selective Polymer Membrane Electrodes Based on Gallium(III), Indium(III) and Thallium(III) Porphyrins. Anal. Sci. 1998, 14, 79–84. [Google Scholar] [CrossRef]
- Kossakowska, A.; Szajda, E.; Jędryka, N.; Ciosek-Skibińska, P. Development of Lasalocid A—Based Amine-Sensitive Nanoparticles for “Smart Tongue” Sensing of Dietary Supplements. Sens. Actuators B Chem. 2024, 407, 135463. [Google Scholar] [CrossRef]
- Zheng, W.; Shan, N.; Yu, L.; Wang, X. UV-Visible, Fluorescence and EPR Properties of Porphyrins and Metalloporphyrins. Dyes Pigments 2008, 77, 153–157. [Google Scholar] [CrossRef]
- Nasri, H. Porphyrins and Metalloporphyrins: An Overview. In Proceedings of the 2020 IEEE International Conference on Design and Test of Integrated Micro and Nano-Systems (DTS), Hammamet, Tunisia, 7–10 June 2020; pp. 1–6. [Google Scholar]
- Ük, N.; Aykut, S.; Jahangiri, H.; Nar, I.; Ünlü, C. Indium-Based Quantum Dots Trapped in Solid-State Matrices: A One-Pot Synthesis, Thermoresponsive Properties, and Enhanced Micropollutant Removal. New J. Chem. 2024, 48, 10074–10086. [Google Scholar] [CrossRef]
- Bahmani Jalali, H.; De Trizio, L.; Manna, L.; Di Stasio, F. Indium Arsenide Quantum Dots: An Alternative to Lead-Based Infrared Emitting Nanomaterials. Chem. Soc. Rev. 2022, 51, 9861–9881. [Google Scholar] [CrossRef] [PubMed]
- Pietrzak, M. Porphyrins and Metalloporphyrins in Electroanalytical Chemistry. In Advances in Chemistry Research; Taylor, J.C., Ed.; Nova: New York, NY, USA, 2017; Volume 36, pp. 95–152. ISBN 978-1-53610-764-7. [Google Scholar]
- Prins, P.T.; Rutkowska-Zbik, D.; Pullen, S.; Baumgartner, B. Porphyrins on Acid: Kinetics of the Photoinduced-Protonation of Tetrakis(4-Carboxyphenyl)-Porphyrin. Phys. Chem. Chem. Phys. 2024, 26, 24524–24532. [Google Scholar] [CrossRef] [PubMed]
- Giovannetti, R. The Use of Spectrophotometry UV-Vis for the Study of Porphyrins. In Macro to Nano Spectroscopy; Uddin, J., Ed.; InTech: London, UK, 2012. [Google Scholar]
- Bakker, E.; Qin, Y. Electrochemical Sensors. Anal. Chem. 2006, 78, 3965–3984. [Google Scholar] [CrossRef]
- Wang, E.; Meyerhoff, M.E. Anion Selective Optical Sensing with Metalloporphyrin-Doped Polymeric Films. Anal. Chim. Acta 1993, 283, 673–682. [Google Scholar] [CrossRef]
- Papkovsky, D.B. Luminescent Porphyrins as Probes for Optical (Bio)Sensors. Sens. Actuators B Chem. 1993, 11, 293–300. [Google Scholar] [CrossRef]
- Di Natale, C.; Paolesse, R.; Macagnano, A.; Mantini, A.; Goletti, C.; D’Amico, A. Characterization and Design of Porphyrins-Based Broad Selectivity Chemical Sensors for Electronic Nose Applications. Sens. Actuators B Chem. 1998, 52, 162–168. [Google Scholar] [CrossRef]
- Di, C.; Paolesse, R.; Macagnano, A.; Mantini, A.; Amico, A.D.; Ubigli, M.; Legin, A.; Lvova, L.; Rudnitskaya, A.; Vlasov, Y. Application of a Combined Artificial Olfaction and Taste System to the Quantification of Relevant Compounds in Red Wine. Sens. Actuators B Chem. 2000, 69, 342–347. [Google Scholar]
- Lvova, L.; Yaroshenko, I.; Kirsanov, D.; Di Natale, C.; Paolesse, R.; Legin, A. Electronic Tongue for Brand Uniformity Control: A Case Study of Apulian Red Wines Recognition and Defects Evaluation. Sensors 2018, 18, 2584. [Google Scholar] [CrossRef]
- Lvova, L.; Paolesse, R.; Di Natale, C.; D’Amico, A. Detection of Alcohols in Beverages: An Application of Porphyrin-Based Electronic Tongue. Sens. Actuators B Chem. 2006, 118, 439–447. [Google Scholar] [CrossRef]
- Di Natale, C.; Paolesse, R.; Macagnano, A.; Mantini, A.; D’Amico, A.; Legin, A.; Lvova, L.; Rudnitskaya, A.; Vlasov, Y. Electronic Nose and Electronic Tongue Integration for Improved Classification of Clinical and Food Samples. Sens. Actuators B Chem. 2000, 64, 15–21. [Google Scholar] [CrossRef]
- Krishnan, A.; Williams, L.J.; McIntosh, A.R.; Abdi, H. Partial Least Squares (PLS) Methods for Neuroimaging: A Tutorial and Review. Neuroimage 2011, 56, 455–475. [Google Scholar] [CrossRef] [PubMed]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-Regression: A Basic Tool of Chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Reviews, C.; Science, F. Yerba Mate Tea (Ilex Paraguariensis): A Comprehensive Review on Chemistry, Health Implications, and Technological Considerations. J. Food Sci. 2007, 72, R138–R151. [Google Scholar] [CrossRef]
- Głowacz, K.; Wawrzyniak, U.E.; Ciosek-Skibińska, P. Comparison of Various Data Analysis Techniques Applied for the Classification of Oligopeptides and Amino Acids by Voltammetric Electronic Tongue. Sens. Actuators B Chem. 2021, 331, 129354. [Google Scholar] [CrossRef]
- Cuadros-Rodríguez, L.; Pérez-Castaño, E.; Ruiz-Samblás, C. Quality Performance Metrics in Multivariate Classification Methods for Qualitative Analysis. TrAC—Trends Anal. Chem. 2016, 80, 612–624. [Google Scholar] [CrossRef]
No. | Type of Tea/Control | Specification | Brewing Procedure | Estimated F− Level (Mean, mg/L) | |
---|---|---|---|---|---|
TEA | I * | Red tea | PU ERH MINI TOU CHA –15 years Country of origin: China | 5 min, 100 °C | ~2.6 |
II | Red tea | PU ERH STD. Country of origin: China | 5 min, 100 °C | ~2.6 | |
III | Black tea | Assam Hatimara CTC BOP 100% Country of origin: India | 5 min, 100 °C | ~3.3 | |
IV | Green tea | Gunpowder Temple of Heaven 100% Country of origin: China | 3 min, 70–80 °C | ~1.5 | |
V | Green tea + vitamin | Green Tea 78%, Candied papaya, Spirulina, Natural flavor, Heather flowers, Vitamin C, E, B6, B1, B12, folic acid, biotin, nicotinamide Country of origin: European Union | 3 min, 70–80 °C | ~1.2 | |
VI | Black tea + Green tea + yerba mate | Black tea, Green tea, Natural flavor, Yerba Mate, Nettle leaves, Oat pieces, Sunflower, Red currant, Vitamin C, Guarana seeds, Sloe flower Country of origin: China | 3 min, 70–80 °C | ~1.6 | |
CONTROL | VII | Yerba mate | Yerba Mate 100% Country of origin: Argentina | 5 min, 70–80 °C | ~0.07 |
VIII | CBD hemp tea | Finola hemp leaves Country of origin: European Union | 5 min, 100 °C | <0.6 |
Sphere ID | Surfactant | Plasticizer | Ion Exchanger | Ionophore | Optical Properties |
---|---|---|---|---|---|
MnOEPCl-MPs | F127, 12.5 mg | o-NPOE, 4.0 mg | KTpClPB, 0.48 mg | MnOEPCl, 2.0 mg | λmax = 456 nm |
MnTPPCl-MPs | F127, 12.5 mg | o-NPOE, 4.0 mg | KTpClPB, 0.425 mg | MnTPPCl, 2.0 mg | λmax = 468 nm |
ZrTPPCl2-MPs | F127, 12.5 mg | o-NPOE, 4.0 mg | KTpClPB, 0.26 mg | ZrTPPCl2, 2.0 mg | λmax = 410 nm λex/λem = 410 nm/650 nm |
GaTPPCl-MPs | F127, 12.5 mg | o-NPOE, 4.0 mg | KTpClPB, 0.28 mg | GaTPPCl, 2.0 mg | λmax = 420 nm λex/λem = 421 nm/627 nm |
InTPPCl-MPs | F127, 12.5 mg | DOP, 4.0 mg | KTFPB, 0.30 mg | InTPPCl, 2.1 mg | λmax = 424 nm λex/λem = 424 nm/660 nm |
GaOEPCl-MPs | Triton N-101, 12.5 mg | DOS, 4.0 mg | KTpClPB, 0.28 mg | GaOEPCl, 1.8 mg | λmax = 404 nm λex/λem = 404 nm/626 nm |
InOEPCl-MPs | Triton X-100, 12.5 mg | o-NPOE, 4.0 mg | KTFPB, 0.30 mg | InOEPCl, 1.9 mg | λmax = 406 nm λex/λem = 406 nm/576 nm |
MPs ID | Model Analyte | Spectrophotometric Calibration | Spectrofluorimetric Calibration | ||
---|---|---|---|---|---|
Linear Range/log(c/M) | R2 | Linear Range/log(c/M) | R2 | ||
GaTPPCl-MPs | F− | (−6.0)–(−1.0) | 0.959 | (−4.0)–(−1.0) | 0.772 |
InTPPCl-MPs | F− | (−4.5)–(−1.0) | 0.824 | (−4.0)–(−1.0) | 0.726 |
GaOEPCl-MPs | F− | (−5.0)–(−1.0) | 0.877 | (−3.0)–(−1.0) | 0.754 |
InOEPCl-MPs | Cl− | (−4.5)–(−1.0) | 0.891 | (−5.5)–(−2.0) | 0.912 |
REAL CLASS | |||||||||
I | II | III | IV | V | VI | VII | VIII | ||
(A) | |||||||||
PREDICTED CLASS | I | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
II | 0 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | |
III | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | |
IV | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | |
V | 0 | 0 | 0 | 0 | 3 | 0 | 1 | 0 | |
VI | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | |
VII | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | |
VIII | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 3 | |
REAL CLASS | |||||||||
I | II | III | IV | V | VI | VII | VIII | ||
(B) | |||||||||
PREDICTED CLASS | I | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
II | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | |
III | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | |
IV | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | |
V | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | |
VI | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | |
VII | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | |
VIII | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | |
REAL CLASS | |||||||||
I | II | III | IV | V | VI | VII | VIII | ||
(C) | |||||||||
PREDICTED CLASS | I | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
II | 0 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | |
III | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | |
IV | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | |
V | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | |
VI | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | |
VII | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | |
VIII | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | |
REAL CLASS | |||||||||
I | II | III | IV | V | VI | VII | VIII | ||
(D) | |||||||||
PREDICTED CLASS | I | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
II | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | |
III | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | |
IV | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | |
V | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | |
VI | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | |
VII | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | |
VIII | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kossakowska, A.; Jędryka, N.; Ciosek-Skibińska, P. Recognition of Tea Infusions by Optical “Smart-Tongue” Based on Microparticles Incorporated with Metalloporphyrins. Chemosensors 2025, 13, 203. https://doi.org/10.3390/chemosensors13060203
Kossakowska A, Jędryka N, Ciosek-Skibińska P. Recognition of Tea Infusions by Optical “Smart-Tongue” Based on Microparticles Incorporated with Metalloporphyrins. Chemosensors. 2025; 13(6):203. https://doi.org/10.3390/chemosensors13060203
Chicago/Turabian StyleKossakowska, Aleksandra, Natalia Jędryka, and Patrycja Ciosek-Skibińska. 2025. "Recognition of Tea Infusions by Optical “Smart-Tongue” Based on Microparticles Incorporated with Metalloporphyrins" Chemosensors 13, no. 6: 203. https://doi.org/10.3390/chemosensors13060203
APA StyleKossakowska, A., Jędryka, N., & Ciosek-Skibińska, P. (2025). Recognition of Tea Infusions by Optical “Smart-Tongue” Based on Microparticles Incorporated with Metalloporphyrins. Chemosensors, 13(6), 203. https://doi.org/10.3390/chemosensors13060203