Optical Dual Gas Sensor for Simultaneous Detection of Nitric Oxide and Oxygen
Abstract
:1. Introduction
NO Probe | λex (nm)/λem (nm) | Range | Response | Sensing Type | Reference |
---|---|---|---|---|---|
Cu(II) complex | None | 0–1000 ppm | 300 s/600 s | Absorbance | [37] |
Cu(dmp)22+ | None | 0–3 ppm | 100 s/600 s | Absorbance | [38] |
Cu(ECR)2 | None | 0–6 ppm | 300 s/none | Absorbance | [39] |
CdSe/ZnS QDs | 372/530 | 0–105 ppm | None | Intensity | [40] |
Co-TPP | 415/435 | 10 ppm | None | Intensity | [41] |
(Cu2+) PANI/WO3 | None | 1–116 ppb | 59 s/17 s | Frequency shift | [42] |
CsPbBr3@ZnO | 900/518 | 0–200 ppm | 36.5 s/5.3 s | Intensity | [43] |
CsPbBr3 perovskite QDs | 380/515 | 0–1000 ppm | 36 s/117 s | Intensity | [44] |
CsPbBr3 perovskite QDs | 380/515 | 0–1000 ppm | 71 s/109 s | Intensity | This work |
O2 Probe | Support Matrix | λex (nm)/λem (nm) | IN2/IO2 | Ref. |
---|---|---|---|---|
PtTFPP | Fluoro-polymer | 544/648 | 15.4 | [21] |
PtTFPP | TFP-TriMOS/TEOS/Octyl-triEOS | 405/650 | 101 | [22] |
PtTFPP | n-propyl-TriMos/TEOS/Octyl-triEOS | 405/650 | 155 | [22] |
PtTFPP | Polystyrene polymer | 508, 541/650 | >3 | [23] |
PtTFPP | TEOS/Octyl-triEOS | 380/650 | 22 | [24] |
PtTFPP | n-propyl-TriMos/TFP-TriMOS | 400/650 | 68.7 | [25] |
PtTFPP | TEOS/Octyl-triEOS | 405/650 | 166 | [26] |
Ru(dpp)3 | DMOS ormosil | 467/592 | 14 | [27] |
Ru(dpp)3 | Silicon rubber | 406/610 | 1.5 | [28] |
Ir(ppy)3 | nBuPTP | 370/510 | 3.4 | [29] |
Os(dpp)3(PF6)2 | PDMS rubber | 480, 502/729 | 1.7 | [30] |
PdTFPP | Silica gel beads in silicone | 405/680 | 5 | [31] |
PtOEP | Poly-IBM | 535/646 | 69 | [32] |
PtTFPP | Cellulose Acetate electrospun fibers | 380/650 | 10.7 | This work |
2. Experiments
2.1. Materials
2.2. Synthesis of CsPbBr3 Perovskite Quantum Dots
2.3. Preparation of PtTFPP-Containing Electrospun Fibers Membrane
2.4. Preparation of Optical NO and O2 Sensing Materials
2.5. Instrumentation
3. Results and Discussions
3.1. Optical Properties of Optical Dual Sensor
3.2. NO Sensing Properties of Optical Dual Sensor
3.3. O2 Sensing Properties of Optical Dual Sensor
3.4. Response Time of the Optical Dual Sensor
3.5. Dynamic Response of the Optical Dual Sensor
3.6. Photostability of Optical Dual Sensor
3.7. Selectivity of Optical Dual Sensor
3.8. Cross Sensitivity of the Optical Dual Sensor
3.9. Relative Humidity Effect of Optical Dual Sensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allso, T.; Neal, R. A review: Application and implementation of optic fiber sensors for gas detection. Sensors 2021, 21, 6755. [Google Scholar]
- Mirzaei, A.; Kordrostami, Z.; Shahbaz, M.; Kim, J.Y.; Kim, H.W.; Kim, S.S. Resistive-based gas sensors using quantum dots: A review. Sensors 2022, 22, 4369. [Google Scholar] [CrossRef] [PubMed]
- Perez, A.O.; Bierer, B.; Scholz, L.; Wollenstein, J.; Palzer, S. A wireless gas sensor network to monitor indoor environmental quality in schools. Sensors 2018, 18, 4345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, L.Y.; Xia, S.Y.; Tan, Y.X.; Huang, Z.Y. Zr-doped h-BN monolayer: A high-sensitivity atmospheric pollutant monitoring sensor. Sensors 2022, 22, 4103. [Google Scholar] [CrossRef]
- Marr, I.; Reiss, S.; Hagen, G.; Moos, R. Planar zeolite film-based potentiometric gas sensors manufactured by a combined thick-film and electroplating technique. Sensors 2011, 11, 7736–7748. [Google Scholar] [CrossRef] [Green Version]
- Goldenstein, C.S.; Spearrin, R.M.; Jeffries, J.B.; Hanson, R.K. Infrared laser-absorption sensing for combustion gases. Prog. Energy Combust. Sci. 2017, 60, 132–176. [Google Scholar] [CrossRef] [Green Version]
- Senf, B.; Yeo, W.H.; Kim, J.H. Recent advances in portable biosensors for biomarker detection in body fluids. Biosensors 2020, 10, 127. [Google Scholar] [CrossRef]
- Kim, K.S.; Baek, W.H.; Kim, J.M.; Yoon, T.S.; Lee, H.H.; Kang, C.J.; Kim, Y.S. A nanopore structured high-performance toluene gas sensor made by the nanoimprinting method. Sensors 2010, 10, 765–774. [Google Scholar] [CrossRef] [Green Version]
- Loutfi, A.; Coradeschi, S.; Mani, G.K.; Shankar, P.; Rayappan, J.B.B. Electronic noses for food quality: A review. J. Food Eng. 2015, 144, 103–111. [Google Scholar] [CrossRef]
- Wang, T.; Huang, D.; Yang, Z.; Xu, S.; He, G.; Li, X.; Hu, N.; Yin, G.; He, D.; Zhang, L. A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett. 2016, 8, 95–119. [Google Scholar] [CrossRef] [Green Version]
- Iverson, N.M.; Hofferber, E.M.; Stapleton, J.A. Nitric oxide sensors for biological applications. Chemosensors 2018, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Klyamer, D.; Shutilov, R.; Basova, T. Recent advances in phthalocyanine and porphyrin-based materials as active layers for nitric oxide chemical sensors. Sensors 2022, 22, 895. [Google Scholar] [CrossRef] [PubMed]
- Goshi, E.; Zhou, G.X.; He, Q.J. Nitric oxide detection methods in vitro and in vivo. Med. Gas Res. 2019, 9, 192–207. [Google Scholar]
- Calabrese, C.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Stella, A.M.G. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat. Rev. Neurosci. 2007, 8, 766–775. [Google Scholar] [CrossRef] [PubMed]
- Bedioui, F.; Villeneuve, N. Electrochemical nitric oxide sensors for biological samples-principle, selected examples, and applications. Electroanalysis 2003, 15, 5–18. [Google Scholar] [CrossRef]
- Ding, L.Y.; Ruan, Y.L.; Li, T.; Huang, J.; Warren-Simth, S.C.; Ebendorff-Heidepriem, H.; Monro, T.M. Nitric oxide optical fiber sensor based on exposed core fibers and CdTe/CdS quantum dots. Sens. Actuators B Chem. 2018, 273, 9–17. [Google Scholar] [CrossRef]
- Ghidelli, C.; Perez-Gago, M.B. Recent advances in modified atmosphere packaging and edible coatings to maintain the quality of fresh-cut fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2018, 58, 662–679. [Google Scholar] [CrossRef]
- Tsukada, K.; Sakai, S.; Hase, K.; Minamitani, H. Development of the catheter-type optical oxygen sensor and applications to bio instrumentation. Biosens. Bioelectron. 2003, 18, 1439–1445. [Google Scholar] [CrossRef]
- Amao, Y. Probes, and polymers for optical sensing of oxygen. Microchim. Acta 2003, 143, 1–12. [Google Scholar] [CrossRef]
- Chu, C.S.; Lo, Y.L.; Sung, T.W. Review on recent developments of fluorescent oxygen and carbon dioxide optical fiber sensors. Photonic Sens. 2011, 1, 234–250. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.K.; Okura, I. Photostable optical oxygen sensing material: Platinum tetrakis (pentafluorophenyl) porphyrin immobilized in polystyrene. Anal. Commun. 1997, 34, 185–188. [Google Scholar] [CrossRef]
- Chu, C.S.; Lo, Y.L. Highly sensitive and linear calibration optical fiber oxygen sensor based on Pt (II) complex embedded in a sol-gel matrix. Sens. Actuators B Chem. 2011, 155, 53–57. [Google Scholar] [CrossRef]
- Amao, Y.; Miyashita, T.; Okura, I. Platinum tetrakis (pentafluorophenyl) porphyrin immobilized in polytrifluoroethylmethacrylate film as a photostable optical oxygen detection material. J. Fluor. Chem. 2001, 107, 101–106. [Google Scholar] [CrossRef]
- Yeh, T.S.; Chu, C.S.; Lo, Y.L. Highly sensitive optical fiber oxygen sensor using Pt (II) complex embedded in sol-gel matrices. Sens. Actuators B Chem. 2006, 119, 701–707. [Google Scholar] [CrossRef]
- Chu, C.S.; Lo, Y.L. High-performance fiber-optic oxygen sensors based on fluorinated xerogels doped with Pt (II) complexes. Sens. Actuators B Chem. 2007, 124, 376–382. [Google Scholar] [CrossRef]
- Chu, C.S.; Lo, Y.L.; Sung, T.W. Enhanced oxygen sensing properties of Pt (II) complex and dye entrapped core-shell silica nanoparticles embedded in a sol-gel matrix. Talanta 2010, 82, 1044–1051. [Google Scholar] [CrossRef]
- Chu, F.H.; Yang, J.J.; Cai, H.W.; Qu, R.H.; Fang, Z.J. Characterization of a dissolved oxygen sensor made of plastic optical fiber coated with ruthenium-incorporated sol-gel. Appl. Opt. 2009, 48, 338–342. [Google Scholar] [CrossRef] [Green Version]
- Wolfbeis, O.S.; Leiner, M.J.P.; Posch, H.E. A new sensing material for optical oxygen measurement, with the indicator embedded in an aqueous phase. Mikrochim. Acta. 1986, 90, 359–366. [Google Scholar] [CrossRef]
- Huynh, L.; Wang, Z.U.; Yang, J.; Stoeva, V.; Lough, A.; Manners, I.; Winnik, M.A. Evaluation of phosphorescent rhenium and iridium complexes in poly thionyl phosphazene films for oxygen sensor applications. Chem. Mater. 2005, 17, 4765–4773. [Google Scholar] [CrossRef]
- Xu, W.Y.; Kneas, K.A.; Demas, J.N.; DeGraff, B.A. Oxygen sensors based on luminescence quenching of metal complexes: Osmium complexes suitable for laser diode excitation. Anal. Chem. 1996, 68, 2605–2609. [Google Scholar] [CrossRef]
- Borisov, S.M.; Lehner, P.; Klimant, I. Novel optical trace oxygen sensors based on platinum(II) and palladium(II) complexes with 5,10,15,20-Meso-tetrakis-(2,3,4,5,6-pentafluorphenyl)-porphyrin covalently immobilized on silica-gel particles. Anal. Chim. Acta 2011, 690, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Amao, Y.; Asai, K.; Miyashita, T.; Okura, I. Novel optical oxygen sensing material: Platinum porphyrin-fluoropolymer film. Polym. Adv. Technol. 2000, 11, 705–709. [Google Scholar] [CrossRef]
- Dolanský, J.; Henke, P.; Kubát, P.; Fraix, A.; Sortino, S.; Mosinger, J. Polystyrene Nanofiber Materials for Visible-Light-Driven Dual Antibacterial Action via Simultaneous Photogeneration of NO and O2(1Δg). ACS Appl. Mater. Interfaces 2015, 7, 22980–22989. [Google Scholar] [CrossRef]
- DiRosa, M.D.; Chang, A.Y.; Davidson, D.F.; Hanson, R.K. CW Laser Strategies for Multi-Parameter Measurements of High-Speed Flows Containing Either NO or O2. In Proceedings of the Twenty-Ninth Aerospace Sciences Meeting of the American Institute of Aeronautics and Astronautics, Reno, NV, USA, 7–10 January 1991. [Google Scholar]
- Schmidt-Zhang, P.; Sandow, K.P.; Adolf, F.; Gopel, W.; Guth, U. A novel thick film sensor for simultaneous O2 and NO monitoring in exhaust gases. Sens. Actuator B. Chem. 2000, 70, 25–29. [Google Scholar] [CrossRef]
- Ding, Q.F.; Hayashi, T.; Packiasamy, A.R.J.; Miyazaki, A.; Fukatsu, A.; Shiraishi, H.; Nomura, T.; Iguchi, A. The effect of high glucose on NO and O2− through endothelial GTPCH1 and NADPH oxidase. Life Sci. 2004, 75, 3185–3194. [Google Scholar] [CrossRef] [PubMed]
- Dacres, H.; Narayanaswamy, R. A new optical sensing reaction for nitric oxide. Sens. Actuators B Chem. 2003, 90, 222–229. [Google Scholar] [CrossRef]
- Dacres, H.; Narayanaswamy, R. Sensitivity optical NO sensor based on bis [(2,9-dimethyl-1,10-phenanthroline)] copper(II) complex. Sens. Actuators B Chem. 2005, 107, 14–23. [Google Scholar] [CrossRef]
- Dacres, H.; Narayanaswamy, R. Evaluation of Copper(ii) Eriochrome Cyanine R (ECR) Complex Immobilized in Anion Exchange Membrane as a Potential Nitric Oxide Optical Sensor. Aust. J. Chem. 2008, 61, 189–196. [Google Scholar] [CrossRef]
- Fabregat, V.; Izquierdo, M.A.; Burguete, M.I.; Galindo, F.; Luis, S.V. Quantum dot-polymethacrylate composites for the analysis of NOx by fluorescence spectroscopy. Inorganica Chim. Acta 2012, 381, 212–217. [Google Scholar] [CrossRef]
- Miki, H.; Matsubara, F.; Nakashima, S.; Ochi, S.; Nakagawa, K.; Matsuguchi, M.; Sadaoka, Y. A fractional exhaled nitric oxide sensor based on optical absorption of cobalt tetraphenylporphyrin derivatives. Sens. Actuators B Chem. 2016, 231, 458–468. [Google Scholar] [CrossRef]
- Wang, S.H.; Shen, C.Y.; Lien, Z.J.; Wang, J.H. Nitric oxide sensing properties of a surface acoustic wave sensor with copper-ion-doped polyaniline/tungsten oxide nanocomposite film. Sens. Actuators B Chem. 2017, 243, 1075–1082. [Google Scholar] [CrossRef]
- Xuan, W.; Shan, H.; Zhu, L.; Guan, T.; Zhao, Y.; Qiang, Y.; Song, J.; Zhang, J.; Sui, M.; Gu, X.; et al. In-situ synthesis of stable ZnO-coated CsPbBr3 nanocrystals for room temperature heptanal sensors. Mater. Today Chem. 2022, 26, 101155. [Google Scholar] [CrossRef]
- Kumar, D.; Mesin, R.; Chu, C.S. Optical fluorescent sensor based on perovskite QDs for nitric oxide gas detection. Appl. Opt. 2023, 62, 3176–3181. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.C.; Yeh, S.Y.; Huang, W.L.; Xu, Y.X.; Huang, Y.S.; Yeh, T.H.; Tien, C.H.; Chen, L.C.; Tseng, Z.L. Using thermally cross-linkable hole transporting layer to improve interface characteristics for perovskite CsPbBr3 quantum-dot light emitting diodes. Polymers 2020, 12, 2243. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 2nd ed.; Kluwer Academic/Plenum Press: New York, NY, USA, 1999; Chapters 8 and 9. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mesin, R.; Chu, C.-S. Optical Dual Gas Sensor for Simultaneous Detection of Nitric Oxide and Oxygen. Chemosensors 2023, 11, 454. https://doi.org/10.3390/chemosensors11080454
Mesin R, Chu C-S. Optical Dual Gas Sensor for Simultaneous Detection of Nitric Oxide and Oxygen. Chemosensors. 2023; 11(8):454. https://doi.org/10.3390/chemosensors11080454
Chicago/Turabian StyleMesin, Rispandi, and Cheng-Shane Chu. 2023. "Optical Dual Gas Sensor for Simultaneous Detection of Nitric Oxide and Oxygen" Chemosensors 11, no. 8: 454. https://doi.org/10.3390/chemosensors11080454
APA StyleMesin, R., & Chu, C. -S. (2023). Optical Dual Gas Sensor for Simultaneous Detection of Nitric Oxide and Oxygen. Chemosensors, 11(8), 454. https://doi.org/10.3390/chemosensors11080454