Simultaneous Detection of Naphthol Isomers with a 3D-Graphene-Nanostructure-Based Electrochemical Microsensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. In Situ Growth of 3DGN on Electrodes of Microsensors
2.3. 3DGN Nanostructure Characterization
2.4. 3DGN Surface Area Determination
2.5. 3DGN Electrochemistry Characterization
2.6. Naphthol Isomer Electrochemical Detection
2.7. Real Sample Analysis
3. Results
3.1. Characterization of the 3DGN-Functionalized Microsensor
3.2. Electrochemical Characterization of Naphthol Isomers on the Microsensors
3.3. Study on the Electrochemical Response of Naphthol Isomers as a Function of pH
3.4. Selectivity to the Naphthol Isomers
3.5. Detection of 1-NAP and 2-NAP with the Microsensor
3.6. Simultaneous Determination of Naphthol Isomers with the Microsensor
3.7. Reproducibility and Stability for the Detection of Naphthol Isomers
3.8. The Application of the Microsensor in the Detection of Naphthol Isomers in a Urine Sample
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Niwa, S.-I.; Eswaramoorthy, M.; Nair, J.; Raj, A.; Itoh, N.; Shoji, H.; Namba, T.; Mizukami, F. A One-Step Conversion of Benzene to Phenol with a Palladium Membrane. Science 2002, 295, 105–107. [Google Scholar] [CrossRef] [PubMed]
- Khattab, T.A.; Abdelrahman, M.S.; Rehan, M. Textile dyeing industry: Environmental impacts and remediation. Environ. Sci. Pollut. Res. 2019, 27, 3803–3818. [Google Scholar] [CrossRef]
- Croera, C.; Ferrario, D.; Gribaldo, L. In Vitro toxicity of naphthalene, 1-naphthol, 2-naphthol and 1,4-naphthoquinone on human CFU-GM from female and male cord blood donors. Toxicol. Vitr. 2008, 22, 1555–1561. [Google Scholar] [CrossRef]
- Sun, H.; Shen, O.-X.; Xu, X.-L.; Song, L.; Wang, X.-R. Carbaryl, 1-naphthol and 2-naphthol inhibit the beta-1 thyroid hormone receptor-mediated transcription in vitro. Toxicology 2008, 249, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Preuss, R.; Angerer, J.; Drexler, H. Naphthalene—An environmental and occupational toxicant. Int. Arch. Occup. Environ. Health 2003, 76, 556–576. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, M.; Hardt, J.; Schulz, C.; Angerer, J. New reference value and the background exposure for the PAH metabolites 1-hydroxypyrene and 1- and 2-naphthol in urine of the general population in Germany: Basis for validation of human biomonitoring data in environmental medicine. Int. J. Hyg. Environ. Health 2008, 211, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Ohyama, K.; Kishikawa, N.; Matayoshi, K.; Adutwum, L.A.; Wada, M.; Nakashima, K.; Kuroda, N. Sensitive determination of 1- and 2-naphthol in human plasma by HPLC-fluorescence detection with 4-(4,5-diphenyl-1H-imidazol-2-yl)benzoyl chloride as a labeling reagent. J. Sep. Sci. 2009, 32 13, 2218–2222. [Google Scholar] [CrossRef]
- Preuss, R.; Angerer, J. Simultaneous determination of 1- and 2-naphthol in human urine using on-line clean-up column-switching liquid chromatography–fluorescence detection. J. Chromatogr. B 2004, 801, 307–316. [Google Scholar] [CrossRef]
- Lim, H.-H.; Shin, H.-S. Simultaneous determination of 2-naphthol and 1-hydroxypyrene in fish and shellfish contaminated with crude oil by gas chromatography–mass spectrometry. Food Chem. 2013, 138, 791–796. [Google Scholar] [CrossRef]
- Yuan, Y.-K.; Xiao, X.-L.; Wang, Y.-S.; Xue, J.-H.; Li, G.-R.; Kang, R.-H.; Zhang, J.-Q.; Shi, L.-F. Quartz crystal microbalance with β-cyclodextrin/TiO2 composite films coupled with chemometrics for the simultaneous determination of urinary 1- and 2-naphthol. Sens. Actuators B Chem. 2010, 145, 348–354. [Google Scholar] [CrossRef]
- Jia, G.; Li, L.; Qiu, J.; Wang, X.; Zhu, W.; Sun, Y.; Zhou, Z. Determination of carbaryl and its metabolite 1-naphthol in water samples by fluorescence spectrophotometer after anionic surfactant micelle-mediated extraction with sodium dodecylsulfate. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2007, 67, 460–464. [Google Scholar] [CrossRef] [PubMed]
- Kramer, P.M.; Marco, M.P.; Hammock, B.D. Development of a selective enzyme-linked immunosorbent assay for 1-naphthol - The major metabolite of carbaryl (1-naphthyl N-methylcarbamate). J. Agric. Food Chem. 1994, 42, 934–943. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, P.; Zhan, T.; Yu, X.; Wen, Y.; Liu, X.; Gao, H.; Wang, P.; She, X. In situ growth of ZIF-67 on ultrathin CoAl layered double hydroxide nanosheets for electrochemical sensing toward naphthol isomers. J. Colloid Interface Sci. 2020, 576, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Mei, Q.; Ding, Y.; Guo, K.; Yang, X.; Zhao, J. Ordered Mesoporous NiCo2O4 Nanospheres as a Novel Electrocatalyst Platform for 1-Naphthol and 2-Naphthol Individual Sensing Application. ACS Appl. Mater. Interfaces 2017, 9, 29771–29781. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, L.; Tang, Y.; Qin, Q.; Wu, C. Nitrogen and phosphorus co-doped porous carbon framework with superior electrochemical activity for naphthol isomers sensing. Anal. Chim. Acta 2020, 1138, 158–167. [Google Scholar] [CrossRef]
- Smutok, O.; Katz, E. Biosensors: Electrochemical Devices—General Concepts and Performance. Biosensors 2022, 13, 44. [Google Scholar] [CrossRef]
- Ronkainen, N.J.; Halsall, H.B.; Heineman, W.R. Electrochemical biosensors. Chem. Soc. Rev. 2010, 39, 74–83. [Google Scholar] [CrossRef]
- Pang, Y.H.; Huang, Y.Y.; Li, W.Y.; Yang, N.C.; Shen, X.F. Electrochemical Detection of Three Monohydroxylated Polycyclic Aromatic Hydrocarbons Using Electroreduced Graphene Oxide Modified Screen-printed Electrode. Electroanalysis 2020, 32, 1459–1467. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Feng, H.; Zhang, Y.; Jiang, J.; Feng, Y.; Chen, M.; Qian, D. A facile one-step in situ synthesis of copper nanostructures/graphene oxide as an efficient electrocatalyst for 2-naphthol sensing application. Electrochim. Acta 2015, 153, 352–360. [Google Scholar] [CrossRef]
- Pang, Y.; Zhang, Y.; Li, W.; Ding, H.; Shen, X. Synergetic accumulation and simultaneous determination of naphthol isomers on electrochemically reduced graphene oxide modified electrode. J. Electroanal. Chem. 2016, 769, 89–96. [Google Scholar] [CrossRef]
- Zhu, G.; Gai, P.; Wu, L.; Zhang, J.; Zhang, X.; Chen, J. β-Cyclodextrin-Platinum Nanoparticles/Graphene Nanohybrids: Enhanced Sensitivity for Electrochemical Detection of Naphthol Isomers. Chem. Asian J. 2012, 7, 732–737. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Lin, Z.; Huang, X.; Wang, Y.; Huang, Y.; Duan, X. Functionalized Graphene Hydrogel-Based High-Performance Supercapacitors. Adv. Mater. 2013, 25, 5779–5784. [Google Scholar] [CrossRef] [PubMed]
- Schaper, A.K.; Wang, M.S.; Xu, Z.; Bando, Y.; Golberg, D. Comparative Studies on the Electrical and Mechanical Behavior of Catalytically Grown Multiwalled Carbon Nanotubes and Scrolled Graphene. Nano Lett. 2011, 11, 3295–3300. [Google Scholar] [CrossRef]
- Yan, M.; Wang, F.; Han, C.; Ma, X.; Xu, X.; An, Q.; Xu, L.; Niu, C.; Zhao, Y.; Tian, X.; et al. Nanowire Templated Semihollow Bicontinuous Graphene Scrolls: Designed Construction, Mechanism, and Enhanced Energy Storage Performance. J. Am. Chem. Soc. 2013, 135, 18176–18182. [Google Scholar] [CrossRef] [PubMed]
- Boulanger, N.; Kuzenkova, A.S.; Iakunkov, A.; Romanchuk, A.Y.; Trigub, A.L.; Egorov, A.V.; Bauters, S.; Amidani, L.; Retegan, M.; Kvashnina, K.O.; et al. Enhanced Sorption of Radionuclides by Defect-Rich Graphene Oxide. ACS Appl. Mater. Interfaces 2020, 12, 45122–45135. [Google Scholar] [CrossRef]
- McAllister, M.J.; Li, J.-L.; Adamson, D.H.; Schniepp, H.C.; Abdala, A.A.; Liu, J.; Herrera-Alonso, M.; Milius, D.L.; Car, R.; Prud’homme, R.K.; et al. Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite. Chem. Mater. 2007, 19, 4396–4404. [Google Scholar] [CrossRef]
- Montes-Navajas, P.; Asenjo, N.G.; Santamaría, R.; Menéndez, R.; Corma, A.; García, H. Surface Area Measurement of Graphene Oxide in Aqueous Solutions. Langmuir 2013, 29, 13443–13448. [Google Scholar] [CrossRef]
- Sun, Z.; Fang, S.; Hu, Y.H. 3D Graphene Materials: From Understanding to Design and Synthesis Control. Chem. Rev. 2020, 120, 10336–10453. [Google Scholar] [CrossRef]
- Zhang, Y.; Chu, M.; Yang, L.; Tan, Y.; Deng, W.; Ma, M.; Su, X.; Xie, Q. Three-dimensional graphene networks as a new substrate for immobilization of laccase and dopamine and its application in glucose/O2 biofuel cell. ACS Appl. Mater. Interfaces 2014, 6, 12808–12814. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Jiang, J.; Gao, C.W.; Nan, H.Y.; Ni, Z.H.; Wang, D.; Zhong, B.; Wen, G.W. Raman spectroscopy study of twisted tetralayer graphene. J. Raman Spectrosc. 2016, 47, 668–673. [Google Scholar] [CrossRef]
- Ranjan, P.; Tulika; Laha, R.; Balakrishnan, J. Au concentration-dependent quenching of Raman 2D peak in graphene. J. Raman Spectrosc. 2017, 48, 586–591. [Google Scholar] [CrossRef]
- Zhan, T.; Song, Y.; Tan, Z.; Hou, W. Electrochemical bisphenol A sensor based on exfoliated Ni2Al-layered double hydroxide nanosheets modified electrode. Sens. Actuators B Chem. 2017, 238, 962–971. [Google Scholar] [CrossRef]
- Brocenschi, R.F.; Silva, T.A.; Lourencao, B.C.; Fatibello-Filho, O.; Rocha-Filho, R.C. Use of a boron-doped diamond electrode to assess the electrochemical response of the naphthol isomers and to attain their truly simultaneous electroanalytical determination. Electrochim. Acta 2017, 243, 374–381. [Google Scholar] [CrossRef]
- Li, L.; Liu, E.; Wang, X.; Chen, J.; Zhang, X. Simultaneous determination of naphthol isomers at poly(3-methylthiophene)-nano-Au modified electrode with the enhancement of surfactant. Mater. Sci. Eng. C 2015, 53, 36–42. [Google Scholar] [CrossRef]
- Peng, L.; Dong, S.; An, Y.; Qu, M. Controllable generation of ZnO/ZnCo2O4 arising from bimetal–organic frameworks for electrochemical detection of naphthol isomers. Analyst 2021, 146, 3352–3360. [Google Scholar] [CrossRef]
- Li, K.; Kang, J.; Zhan, T.; Cao, W.; Liu, X.; Gao, H.; Si, C.; She, X. Electrochemical sensing platform for naphthol isomers based on in situ growth of ZIF-8 on reduced graphene oxide by a reaction-diffusion technique. J. Colloid Interface Sci. 2021, 581, 576–585. [Google Scholar] [CrossRef]
- Zhu, G.; Gai, P.; Yang, Y.; Zhang, X.; Chen, J. Electrochemical sensor for naphthols based on gold nanoparticles/hollow nitrogen-doped carbon microsphere hybrids functionalized with SH-β-cyclodextrin. Anal. Chim. Acta 2012, 723, 33–38. [Google Scholar] [CrossRef]
Nanomaterials | Linear Range (μM) | LOD (nM) | Reference | ||
---|---|---|---|---|---|
1-NAP | 2-NAP | 1-NAP | 2-NAP | ||
Electroreduced graphene oxide/GCE | 0.005–0.4 0.5–20 | 0.005–0.35 0.5–20 | 1.01 | 0.43 | [20] |
Boron-doped diamond | 0.2–3.85 | 0.2–3.85 | 50 | 100 | [33] |
P3MT-nano-Au | 0.7–150 | 1.0–150 | 100 | 300 | [34] |
ZnO/ZnCo2O4 | 0.4–50 | 0.06–40 | 130 | 20 | [35] |
rGO@ZIF-8/GCE | 0.05–12 | 0.02–15 | 15 | 17 | [36] |
PtNPs/CNTs/GCE | 1–800 | 1–800 | 500 | 600 | [37] |
LDHNS@ZIF-67/GCE | 0.3–150 | 0.3–150 | 62 | 94 | [13] |
3DGN/SPE sensor | 0.01–10 | 0.02–15 | 10 | 20 | This work |
Added (μM) | Detected (μM) | Equation Used | Recovery (%) * | ||||
---|---|---|---|---|---|---|---|
1-NAP | 2-NAP | 1-NAP | 2-NAP | 1-NAP | 2-NAP | 1-NAP | 2-NAP |
8 µM | - | 8.37 ± 0.09 | - | (1) | - | 105 | - |
- | 8 µM | 7.98 ± 0.04 | - | (2) | - | 100 | |
4 µM | 4 µM | 3.98 ± 0.06 | 4.28 ± 0.03 | (3) | (4) | 100 | 107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, J.; Shen, W.; Wang, X.; Li, M.; Zhang, Y.; Xu, P.; Li, X. Simultaneous Detection of Naphthol Isomers with a 3D-Graphene-Nanostructure-Based Electrochemical Microsensor. Chemosensors 2023, 11, 217. https://doi.org/10.3390/chemosensors11040217
Shi J, Shen W, Wang X, Li M, Zhang Y, Xu P, Li X. Simultaneous Detection of Naphthol Isomers with a 3D-Graphene-Nanostructure-Based Electrochemical Microsensor. Chemosensors. 2023; 11(4):217. https://doi.org/10.3390/chemosensors11040217
Chicago/Turabian StyleShi, Jiaci, Wei Shen, Xuefeng Wang, Ming Li, Yuan Zhang, Pengcheng Xu, and Xinxin Li. 2023. "Simultaneous Detection of Naphthol Isomers with a 3D-Graphene-Nanostructure-Based Electrochemical Microsensor" Chemosensors 11, no. 4: 217. https://doi.org/10.3390/chemosensors11040217
APA StyleShi, J., Shen, W., Wang, X., Li, M., Zhang, Y., Xu, P., & Li, X. (2023). Simultaneous Detection of Naphthol Isomers with a 3D-Graphene-Nanostructure-Based Electrochemical Microsensor. Chemosensors, 11(4), 217. https://doi.org/10.3390/chemosensors11040217