Monitoring of Chlorophylls during the Maturation Stage of Plums by Multivariate Calibration of RGB Data from Digital Images
Abstract
1. Introduction
2. Material and Methods
2.1. Reagents and Solvent Standards
2.2. Sampling
2.3. Reference Analysis
2.4. Digital Images Acquisition
2.5. Data Processing
2.5.1. Univariate Analysis
2.5.2. First-Order Multivariate Analysis
2.5.3. Second-Order Analysis
3. Results and Discussion
3.1. Univariate Analysis
3.2. First-Order Multivariate Analysis
3.3. Second-Order Multivariate Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ministerio de Industria Comercio y Turismo Estadísticas de Comercio Exterior de Bienes de España y La UE, Spain. 2022. Available online: https://datacomex.comercio.es/Data (accessed on 10 September 2022).
- Manganaris, G.A.; Vicente, A.R.; Crisosto, C.H. Effect of Pre-Harvest and Post-Harvest Conditions and Treatments on Plum Fruit Quality. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2008, 3, 1–9. [Google Scholar] [CrossRef]
- Vlaic, R.; Muresan, V.; Andruta, M.; Crina, M.; Adriana, P.; Viorel, M.; Maria Simona, C.; Muste, S. The Changes of Polyphenols, Flavonoids, Anthocyanins and Chlorophyll Content in Plum Peels during Growth Phases: From Fructification to Ripening. Not. Bot. Horti. Agrobot. Cluj. Napoca 2017, 46, 148. [Google Scholar] [CrossRef]
- Patel, P.R.; Rao, T.V.R. Growth and Ripening in Black Plum [Syzygium cumini (L.) Skeels]. Int. J. Fruit Sci. 2014, 14, 147–156. [Google Scholar] [CrossRef]
- Lancaster, J.E.; Grant, J.E.; Lister, C.E.; Taylor, M.C. Skin Color in Apples-Influence of Copigmentation and Plastid Pigments on Shade and Darkness of Red Color in Five Genotypes. J. Am. Soc. Hortic. Sci. 1994, 119, 63–69. [Google Scholar] [CrossRef]
- Patel, P.R.; Rao, T.V.R. Physiological Changes in Relation to Growth and Ripening of Khirni [Manilkara hexandra (Roxb.) Dubard] Fruit. Fruits 2009, 64, 139–146. [Google Scholar] [CrossRef]
- Senger, R.S.; Scherr, D. Resolving Complex Phenotypes with Raman Spectroscopy and Chemometrics. Curr. Opin. Biotechnol. 2020, 66, 277–282. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, J.; Lin, T.; Ying, Y. Food and Agro-Product Quality Evaluation Based on Spectroscopy and Deep Learning: A Review. Trends Food Sci. Technol. 2021, 112, 431–441. [Google Scholar] [CrossRef]
- Mas, S.; de Juan, A.; Tauler, R.; Olivieri, A.C.; Escandar, G.M. Application of Chemometric Methods to Environmental Analysis of Organic Pollutants: A Review. Talanta 2010, 80, 1052–1067. [Google Scholar] [CrossRef]
- Monago-Maraña, O.; Domínguez-Manzano, J.; Muñoz-de la Peña, A.; Durán-Merás, I. Second-Order Calibration in Combination with Fluorescence Fibre-Optic Data Modelling as a Novel Approach for Monitoring the Maturation Stage of Plums. Chemom. Intell. Lab. Syst. 2020, 199, 103980. [Google Scholar] [CrossRef]
- Rotich, V.; al Riza, D.F.; Giametta, F.; Suzuki, T.; Ogawa, Y.; Kondo, N. Thermal Oxidation Assessment of Italian Extra Virgin Olive Oil Using an UltraViolet (UV) Induced Fluorescence Imaging System. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 237, 118373. [Google Scholar] [CrossRef]
- Ali, M.M.; Al-Ani, A.; Eamus, D.; Tan, D.K. An Algorithm Based on the RGB Colour Model to Estimate Plant Chlorophyll and Nitrogen Contents. In Proceedings of the International Conference on Sustainable Environment and Agriculture, Venice, Italy, 17–18 November 2013; International Association of Computer Science & Information Technology: Singapore, 2013. [Google Scholar]
- de Sousa Fernandes, D.D.; Romeo, F.; Krepper, G.; di Nezio, M.S.; Pistonesi, M.F.; Centurión, M.E.; de Araújo, M.C.U.; Diniz, P.H.G.D. Quantification and Identification of Adulteration in the Fat Content of Chicken Hamburgers Using Digital Images and Chemometric Tools. LWT 2019, 100, 20–27. [Google Scholar] [CrossRef]
- Reile, C.G.; Rodríguez, M.S.; de Sousa Fernandes, D.D.; de Araujo Gomes, A.; Diniz, P.H.G.D.; di Anibal, C.V. Qualitative and Quantitative Analysis Based on Digital Images to Determine the Adulteration of Ketchup Samples with Sudan I Dye. Food Chem. 2020, 328, 127101. [Google Scholar] [CrossRef]
- Herrero-Latorre, C.; Barciela-García, J.; García-Martín, S.; Peña-Crecente, R.M. Detection and Quantification of Adulterations in Aged Wine Using RGB Digital Images Combined with Multivariate Chemometric Techniques. Food Chem. X 2019, 3. [Google Scholar] [CrossRef] [PubMed]
- Sorouraddin, M.H.; Saadati, M.; Mirabi, F. Simultaneous Determination of Some Common Food Dyes in Commercial Products by Digital Image Analysis. J. Food Drug Anal. 2015, 23, 447–452. [Google Scholar] [CrossRef]
- Beltrame, K.K.; Gonçalves, T.R.; Gomes, S.T.M.; Matsushita, M.; Rutledge, D.N.; Março, P.H.; Valderrama, P. Digital Images and Independent Components Analysis in the Determination of Bioactive Compounds from Grape Juice. LWT 2021, 152, 112308. [Google Scholar] [CrossRef]
- Elsayed, S.; Galal, H.; Allam, A.; Schmidhalter, U. Passive Reflectance Sensing and Digital Image Analysis for Assessing Quality Parameters of Mango Fruits. Sci. Hortic. 2016, 212, 136–147. [Google Scholar] [CrossRef]
- Shariati-Rad, M.; Irandoust, M.; Mohammadi, S. Multivariate Analysis of Digital Images of a Paper Sensor by Partial Least Squares for Determination of Nitrite. Chemom. Intell. Lab. Syst. 2016, 158, 48–53. [Google Scholar] [CrossRef]
- Zhuang, J.; Hou, C.; Tang, Y.; He, Y.; Guo, Q.; Miao, A.; Zhong, Z.; Luo, S. Assessment of External Properties for Identifying Banana Fruit Maturity Stages Using Optical Imaging Techniques. Sensors 2019, 19, 2910. [Google Scholar] [CrossRef]
- Sandak, J.; Sandak, A.; Cocchi, M. Multi-Sensor Data Fusion and Parallel Factor Analysis Reveals Kinetics of Wood Weathering. Talanta 2021, 225, 122024. [Google Scholar] [CrossRef]
- Olivieri, A.; Escandar, G.M. Practical Three-Way Calibration; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 0124104541. [Google Scholar]
- Cerrato-Alvarez, M.; Frutos-Puerto, S.; Miró-Rodríguez, C.; Pinilla-Gil, E. Measurement of Tropospheric Ozone by Digital Image Analysis of Indigotrisulfonate-Impregnated Passive Sampling Pads Using a Smartphone Camera. Microchem. J. 2020, 154, 104535. [Google Scholar] [CrossRef]
- Martens, H.; Naes, T. Multivariate Calibration; John Wiley & Sons: Hoboken, NJ, USA, 1992; ISBN 0471930474. [Google Scholar]
- Indahl, U.G. The Geometry of PLS1 Explained Properly: 10 Key Notes on Mathematical Properties of and Some Alternative Algorithmic Approaches to PLS1 Modelling. J. Chemom. 2014, 28, 168–180. [Google Scholar] [CrossRef]
- Olivieri, A.C.; Wu, H.L.; Yu, R.Q. MVC2: A MATLAB Graphical Interface Toolbox for Second-Order Multivariate Calibration. Chemom. Intell. Lab. Syst. 2009, 96, 246–251. [Google Scholar] [CrossRef]
- Yadav, S.P.; Ibaraki, Y.; Gupta, S.D. Estimation of the Chlorophyll Content of Micropropagated Potato Plants Using RGB Based Image Analysis. Plant Cell Tissue Organ. Cult. 2010, 100, 183–188. [Google Scholar] [CrossRef]
- Sánchez-Sastre, L.F.; Alte da Veiga, N.M.S.; Ruiz-Potosme, N.M.; Carrión-Prieto, P.; Marcos-Robles, J.L.; Navas-Gracia, L.M.; Martín-Ramos, P. Assessment of RGB Vegetation Indices to Estimate Chlorophyll Content in Sugar Beet Leaves in the Final Cultivation Stage. AgriEngineering 2020, 2, 9. [Google Scholar] [CrossRef]
- Dey, A.K.; Sharma, M.; Meshram, M.R. An Analysis of Leaf Chlorophyll Measurement Method Using Chlorophyll Meter and Image Processing Technique. Procedia Comput. Sci. 2016, 85, 286–292. [Google Scholar] [CrossRef]
- Bro, R.; Kiers, H.A.L. A New Efficient Method for Determining the Number of Components in PARAFAC Models. J. Chemom. J. Chemom. Soc. 2003, 17, 274–286. [Google Scholar] [CrossRef]
Channel | Slope | Intercept | R2 | RMSEP (μg/mL) | REP (%) |
---|---|---|---|---|---|
R | 0.98 | 0.57 | 0.89 | 9.4 | 13 |
G | 0.24 | 101.4 | 0.39 | 53.8 | 73 |
B | −4.98 | 635.7 | 0.01 | 304.9 | 414 |
First-Order | |||||||
---|---|---|---|---|---|---|---|
Algorithm | Channel | Components | Slope | Intercept | R2 | RMSEP (μg/mL) | REP (%) |
PLS | Red | 3 | 0.70 | 20.8 | 0.68 | 16.6 | 23 |
Green | 5 | 0.97 | 4.60 | 0.92 | 8.4 | 11 | |
B | 3 | 0.74 | 20.0 | 0.70 | 16.0 | 21 | |
RGB | 7 | 0.71 | 7.34 | 0.89 | 9.1 | 12 | |
Second-Order | |||||||
Algorithm | Channel | Components | Slope | Intercept | R2 | RMSEP (μg/mL) | REP (%) |
U-PLS | Red | 3 | 0.93 | 5.06 | 0.95 | 9.1 | 12 |
Green | 3 | 0.95 | 3.52 | 0.96 | 7.5 | 10 | |
Blue | 3 | 0.90 | 6.44 | 0.95 | 12.2 | 17 | |
N-PLS | Red | 4 | 0.93 | 6.35 | 0.92 | 10.9 | 15 |
Green | 3 | 0.93 | 4.67 | 0.95 | 9.64 | 12 | |
Blue | 2 | 0.77 | 14.7 | 0.78 | 18.9 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domínguez-Manzano, J.; Monago-Maraña, O.; Muñoz de la Peña, A.; Durán-Merás, I. Monitoring of Chlorophylls during the Maturation Stage of Plums by Multivariate Calibration of RGB Data from Digital Images. Chemosensors 2023, 11, 9. https://doi.org/10.3390/chemosensors11010009
Domínguez-Manzano J, Monago-Maraña O, Muñoz de la Peña A, Durán-Merás I. Monitoring of Chlorophylls during the Maturation Stage of Plums by Multivariate Calibration of RGB Data from Digital Images. Chemosensors. 2023; 11(1):9. https://doi.org/10.3390/chemosensors11010009
Chicago/Turabian StyleDomínguez-Manzano, Jaime, Olga Monago-Maraña, Arsenio Muñoz de la Peña, and Isabel Durán-Merás. 2023. "Monitoring of Chlorophylls during the Maturation Stage of Plums by Multivariate Calibration of RGB Data from Digital Images" Chemosensors 11, no. 1: 9. https://doi.org/10.3390/chemosensors11010009
APA StyleDomínguez-Manzano, J., Monago-Maraña, O., Muñoz de la Peña, A., & Durán-Merás, I. (2023). Monitoring of Chlorophylls during the Maturation Stage of Plums by Multivariate Calibration of RGB Data from Digital Images. Chemosensors, 11(1), 9. https://doi.org/10.3390/chemosensors11010009