Monitoring of Chlorophylls during the Maturation Stage of Plums by Multivariate Calibration of RGB Data from Digital Images
Abstract
:1. Introduction
2. Material and Methods
2.1. Reagents and Solvent Standards
2.2. Sampling
2.3. Reference Analysis
2.4. Digital Images Acquisition
2.5. Data Processing
2.5.1. Univariate Analysis
2.5.2. First-Order Multivariate Analysis
2.5.3. Second-Order Analysis
3. Results and Discussion
3.1. Univariate Analysis
3.2. First-Order Multivariate Analysis
3.3. Second-Order Multivariate Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ministerio de Industria Comercio y Turismo Estadísticas de Comercio Exterior de Bienes de España y La UE, Spain. 2022. Available online: https://datacomex.comercio.es/Data (accessed on 10 September 2022).
- Manganaris, G.A.; Vicente, A.R.; Crisosto, C.H. Effect of Pre-Harvest and Post-Harvest Conditions and Treatments on Plum Fruit Quality. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2008, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Vlaic, R.; Muresan, V.; Andruta, M.; Crina, M.; Adriana, P.; Viorel, M.; Maria Simona, C.; Muste, S. The Changes of Polyphenols, Flavonoids, Anthocyanins and Chlorophyll Content in Plum Peels during Growth Phases: From Fructification to Ripening. Not. Bot. Horti. Agrobot. Cluj. Napoca 2017, 46, 148. [Google Scholar] [CrossRef] [Green Version]
- Patel, P.R.; Rao, T.V.R. Growth and Ripening in Black Plum [Syzygium cumini (L.) Skeels]. Int. J. Fruit Sci. 2014, 14, 147–156. [Google Scholar] [CrossRef]
- Lancaster, J.E.; Grant, J.E.; Lister, C.E.; Taylor, M.C. Skin Color in Apples-Influence of Copigmentation and Plastid Pigments on Shade and Darkness of Red Color in Five Genotypes. J. Am. Soc. Hortic. Sci. 1994, 119, 63–69. [Google Scholar] [CrossRef]
- Patel, P.R.; Rao, T.V.R. Physiological Changes in Relation to Growth and Ripening of Khirni [Manilkara hexandra (Roxb.) Dubard] Fruit. Fruits 2009, 64, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Senger, R.S.; Scherr, D. Resolving Complex Phenotypes with Raman Spectroscopy and Chemometrics. Curr. Opin. Biotechnol. 2020, 66, 277–282. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, J.; Lin, T.; Ying, Y. Food and Agro-Product Quality Evaluation Based on Spectroscopy and Deep Learning: A Review. Trends Food Sci. Technol. 2021, 112, 431–441. [Google Scholar] [CrossRef]
- Mas, S.; de Juan, A.; Tauler, R.; Olivieri, A.C.; Escandar, G.M. Application of Chemometric Methods to Environmental Analysis of Organic Pollutants: A Review. Talanta 2010, 80, 1052–1067. [Google Scholar] [CrossRef]
- Monago-Maraña, O.; Domínguez-Manzano, J.; Muñoz-de la Peña, A.; Durán-Merás, I. Second-Order Calibration in Combination with Fluorescence Fibre-Optic Data Modelling as a Novel Approach for Monitoring the Maturation Stage of Plums. Chemom. Intell. Lab. Syst. 2020, 199, 103980. [Google Scholar] [CrossRef]
- Rotich, V.; al Riza, D.F.; Giametta, F.; Suzuki, T.; Ogawa, Y.; Kondo, N. Thermal Oxidation Assessment of Italian Extra Virgin Olive Oil Using an UltraViolet (UV) Induced Fluorescence Imaging System. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 237, 118373. [Google Scholar] [CrossRef]
- Ali, M.M.; Al-Ani, A.; Eamus, D.; Tan, D.K. An Algorithm Based on the RGB Colour Model to Estimate Plant Chlorophyll and Nitrogen Contents. In Proceedings of the International Conference on Sustainable Environment and Agriculture, Venice, Italy, 17–18 November 2013; International Association of Computer Science & Information Technology: Singapore, 2013. [Google Scholar]
- de Sousa Fernandes, D.D.; Romeo, F.; Krepper, G.; di Nezio, M.S.; Pistonesi, M.F.; Centurión, M.E.; de Araújo, M.C.U.; Diniz, P.H.G.D. Quantification and Identification of Adulteration in the Fat Content of Chicken Hamburgers Using Digital Images and Chemometric Tools. LWT 2019, 100, 20–27. [Google Scholar] [CrossRef]
- Reile, C.G.; Rodríguez, M.S.; de Sousa Fernandes, D.D.; de Araujo Gomes, A.; Diniz, P.H.G.D.; di Anibal, C.V. Qualitative and Quantitative Analysis Based on Digital Images to Determine the Adulteration of Ketchup Samples with Sudan I Dye. Food Chem. 2020, 328, 127101. [Google Scholar] [CrossRef]
- Herrero-Latorre, C.; Barciela-García, J.; García-Martín, S.; Peña-Crecente, R.M. Detection and Quantification of Adulterations in Aged Wine Using RGB Digital Images Combined with Multivariate Chemometric Techniques. Food Chem. X 2019, 3. [Google Scholar] [CrossRef] [PubMed]
- Sorouraddin, M.H.; Saadati, M.; Mirabi, F. Simultaneous Determination of Some Common Food Dyes in Commercial Products by Digital Image Analysis. J. Food Drug Anal. 2015, 23, 447–452. [Google Scholar] [CrossRef] [Green Version]
- Beltrame, K.K.; Gonçalves, T.R.; Gomes, S.T.M.; Matsushita, M.; Rutledge, D.N.; Março, P.H.; Valderrama, P. Digital Images and Independent Components Analysis in the Determination of Bioactive Compounds from Grape Juice. LWT 2021, 152, 112308. [Google Scholar] [CrossRef]
- Elsayed, S.; Galal, H.; Allam, A.; Schmidhalter, U. Passive Reflectance Sensing and Digital Image Analysis for Assessing Quality Parameters of Mango Fruits. Sci. Hortic. 2016, 212, 136–147. [Google Scholar] [CrossRef]
- Shariati-Rad, M.; Irandoust, M.; Mohammadi, S. Multivariate Analysis of Digital Images of a Paper Sensor by Partial Least Squares for Determination of Nitrite. Chemom. Intell. Lab. Syst. 2016, 158, 48–53. [Google Scholar] [CrossRef]
- Zhuang, J.; Hou, C.; Tang, Y.; He, Y.; Guo, Q.; Miao, A.; Zhong, Z.; Luo, S. Assessment of External Properties for Identifying Banana Fruit Maturity Stages Using Optical Imaging Techniques. Sensors 2019, 19, 2910. [Google Scholar] [CrossRef] [Green Version]
- Sandak, J.; Sandak, A.; Cocchi, M. Multi-Sensor Data Fusion and Parallel Factor Analysis Reveals Kinetics of Wood Weathering. Talanta 2021, 225, 122024. [Google Scholar] [CrossRef]
- Olivieri, A.; Escandar, G.M. Practical Three-Way Calibration; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 0124104541. [Google Scholar]
- Cerrato-Alvarez, M.; Frutos-Puerto, S.; Miró-Rodríguez, C.; Pinilla-Gil, E. Measurement of Tropospheric Ozone by Digital Image Analysis of Indigotrisulfonate-Impregnated Passive Sampling Pads Using a Smartphone Camera. Microchem. J. 2020, 154, 104535. [Google Scholar] [CrossRef]
- Martens, H.; Naes, T. Multivariate Calibration; John Wiley & Sons: Hoboken, NJ, USA, 1992; ISBN 0471930474. [Google Scholar]
- Indahl, U.G. The Geometry of PLS1 Explained Properly: 10 Key Notes on Mathematical Properties of and Some Alternative Algorithmic Approaches to PLS1 Modelling. J. Chemom. 2014, 28, 168–180. [Google Scholar] [CrossRef]
- Olivieri, A.C.; Wu, H.L.; Yu, R.Q. MVC2: A MATLAB Graphical Interface Toolbox for Second-Order Multivariate Calibration. Chemom. Intell. Lab. Syst. 2009, 96, 246–251. [Google Scholar] [CrossRef]
- Yadav, S.P.; Ibaraki, Y.; Gupta, S.D. Estimation of the Chlorophyll Content of Micropropagated Potato Plants Using RGB Based Image Analysis. Plant Cell Tissue Organ. Cult. 2010, 100, 183–188. [Google Scholar] [CrossRef]
- Sánchez-Sastre, L.F.; Alte da Veiga, N.M.S.; Ruiz-Potosme, N.M.; Carrión-Prieto, P.; Marcos-Robles, J.L.; Navas-Gracia, L.M.; Martín-Ramos, P. Assessment of RGB Vegetation Indices to Estimate Chlorophyll Content in Sugar Beet Leaves in the Final Cultivation Stage. AgriEngineering 2020, 2, 9. [Google Scholar] [CrossRef] [Green Version]
- Dey, A.K.; Sharma, M.; Meshram, M.R. An Analysis of Leaf Chlorophyll Measurement Method Using Chlorophyll Meter and Image Processing Technique. Procedia Comput. Sci. 2016, 85, 286–292. [Google Scholar] [CrossRef] [Green Version]
- Bro, R.; Kiers, H.A.L. A New Efficient Method for Determining the Number of Components in PARAFAC Models. J. Chemom. J. Chemom. Soc. 2003, 17, 274–286. [Google Scholar] [CrossRef]
Channel | Slope | Intercept | R2 | RMSEP (μg/mL) | REP (%) |
---|---|---|---|---|---|
R | 0.98 | 0.57 | 0.89 | 9.4 | 13 |
G | 0.24 | 101.4 | 0.39 | 53.8 | 73 |
B | −4.98 | 635.7 | 0.01 | 304.9 | 414 |
First-Order | |||||||
---|---|---|---|---|---|---|---|
Algorithm | Channel | Components | Slope | Intercept | R2 | RMSEP (μg/mL) | REP (%) |
PLS | Red | 3 | 0.70 | 20.8 | 0.68 | 16.6 | 23 |
Green | 5 | 0.97 | 4.60 | 0.92 | 8.4 | 11 | |
B | 3 | 0.74 | 20.0 | 0.70 | 16.0 | 21 | |
RGB | 7 | 0.71 | 7.34 | 0.89 | 9.1 | 12 | |
Second-Order | |||||||
Algorithm | Channel | Components | Slope | Intercept | R2 | RMSEP (μg/mL) | REP (%) |
U-PLS | Red | 3 | 0.93 | 5.06 | 0.95 | 9.1 | 12 |
Green | 3 | 0.95 | 3.52 | 0.96 | 7.5 | 10 | |
Blue | 3 | 0.90 | 6.44 | 0.95 | 12.2 | 17 | |
N-PLS | Red | 4 | 0.93 | 6.35 | 0.92 | 10.9 | 15 |
Green | 3 | 0.93 | 4.67 | 0.95 | 9.64 | 12 | |
Blue | 2 | 0.77 | 14.7 | 0.78 | 18.9 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domínguez-Manzano, J.; Monago-Maraña, O.; Muñoz de la Peña, A.; Durán-Merás, I. Monitoring of Chlorophylls during the Maturation Stage of Plums by Multivariate Calibration of RGB Data from Digital Images. Chemosensors 2023, 11, 9. https://doi.org/10.3390/chemosensors11010009
Domínguez-Manzano J, Monago-Maraña O, Muñoz de la Peña A, Durán-Merás I. Monitoring of Chlorophylls during the Maturation Stage of Plums by Multivariate Calibration of RGB Data from Digital Images. Chemosensors. 2023; 11(1):9. https://doi.org/10.3390/chemosensors11010009
Chicago/Turabian StyleDomínguez-Manzano, Jaime, Olga Monago-Maraña, Arsenio Muñoz de la Peña, and Isabel Durán-Merás. 2023. "Monitoring of Chlorophylls during the Maturation Stage of Plums by Multivariate Calibration of RGB Data from Digital Images" Chemosensors 11, no. 1: 9. https://doi.org/10.3390/chemosensors11010009
APA StyleDomínguez-Manzano, J., Monago-Maraña, O., Muñoz de la Peña, A., & Durán-Merás, I. (2023). Monitoring of Chlorophylls during the Maturation Stage of Plums by Multivariate Calibration of RGB Data from Digital Images. Chemosensors, 11(1), 9. https://doi.org/10.3390/chemosensors11010009