How Chemometrics Revives the UV-Vis Spectroscopy Applications as an Analytical Sensor for Spectralprint (Nontargeted) Analysis
Abstract
:1. Introduction
2. Advances of UV-Vis Spectrometric Systems and Analysis
3. Strengths and Weaknesses of UV-Vis Spectroscopy
4. UV-Vis Spectral-Chemometric Platforms
4.1. UV-Vis Spectral Data Processing
4.1.1. Signal Preprocessing, Wavelength (Variable) Selection, and Data Dimension Reduction
4.1.2. Exploratory and Pattern Recognition Approaches
4.1.3. Quantitative Approaches
5. Applications for Spectralprint (Nontargeted) Analysis
5.1. Agriculture, Food, and Beverages
5.2. Chemical, Pharmaceutical, and Environmental Sciences
6. Future Perspectives and Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Power, A.C.; Chapman, J.; Chandra, S.; Cozzolino, D. 6-Ultraviolet-visible spectroscopy for food quality analysis. In Food Science, Technology and Nutrition, Evaluation Technologies for Food Quality; Woodhead Publishing Series; Zhong, J., Wang, X., Eds.; Woodhead Publishing: Sawston, UK, 2019; pp. 91–104. ISBN 9780128142172. [Google Scholar]
- Liauw, M.A.; Baylor, L.C.; Rourke, P.E.O. 4-UV-visible Spectroscopy for On-line Analysis. In Process Analytical Technology: Spectroscopic Tools and Implementation Strategies for the Chemical and Pharmaceutical Industries, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2010; pp. 82–106. ISBN 978-0-470-72207-7. [Google Scholar]
- Ríos-Reina, R.; Camiña, J.M.; Callejón, R.M.; Azcarate, S.M. Spectralprint Techniques for Wine and Vinegar Characterization, Authentication and Quality Control: Advances and Projections. TrAC Trends Anal. Chem. 2021, 134, 116121. [Google Scholar] [CrossRef]
- Wang, H.P.; Chen, P.; Dai, J.W.; Liu, D.; Li, J.Y.; Xu, Y.P.; Chu, X.L. Recent Advances of Chemometric Calibration Methods in Modern Spectroscopy: Algorithms, Strategy, and Related Issues. TrAC Trends Anal. Chem. 2022, 153, 116648. [Google Scholar] [CrossRef]
- De Caro, C.A. UV/VIS Spectrophotometry—Fundamentals and Applications; Mettler-Toledo Publication: Greifensee, Switzerland, 2015. [Google Scholar]
- Agilent Technologies. The Basics of UV-Vis Spectrophotometry; Agilent Technologies, Inc.: Santa Clara, CA, USA, 2021; Publication number 5980-1397; Available online: https://www.researchgate.net/institution/Agilent/post/5f91dc68f017d4430850d083_Download_Handbook_The_Basics_of_UV-Vis_Spectrophotometry (accessed on 20 October 2022).
- Mäntele, W.; Deniz, E. UV–VIS Absorption Spectroscopy: Lambert-Beer Reloaded. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 173, 965–968. [Google Scholar] [CrossRef] [PubMed]
- Cerdà, V.; Phansi, P.; Ferreira, S. From Mono- to Multicomponent Methods in UV-VIS Spectrophotometric and Fluorimetric Quantitative Analysis—A Review. TrAC Trends Anal. Chem. 2022, 157, 116772. [Google Scholar] [CrossRef]
- Passos, M.L.C.; Saraiva, M.L.M.F.S. Detection in UV-Visible Spectrophotometry: Detectors, Detection Systems, and Detection Strategies. Meas. J. Int. Meas. Confed. 2019, 135, 896–904. [Google Scholar] [CrossRef]
- Farag, M.A.; Sheashea, M.; Zhao, C.; Maamoun, A.A. UV Fingerprinting Approaches for Quality Control Analyses of Food and Functional Food Coupled to Chemometrics: A Comprehensive Analysis of Novel Trends and Applications. Foods 2022, 11, 2867. [Google Scholar] [CrossRef] [PubMed]
- Samad, M.; Mohammad, K.; Rahman, S. Techniques to Measure Food Safety and Quality. Microbial, Chemical and Sensory; Springer: Cham, Switzerland, 2021; ISBN 9783030686352. [Google Scholar]
- Ríos-Reina, R.; Caballero, D.; Azcarate, S.M.; García-González, D.L.; Callejón, R.M.; Amigo, J.M. VinegarScan: A Computer Tool Based on Ultraviolet Spectroscopy for a Rapid Authentication of Wine Vinegars. Chemosensors 2021, 9, 296. [Google Scholar] [CrossRef]
- Claßen, J.; Aupert, F.; Reardon, K.F.; Solle, D.; Scheper, T. Spectroscopic Sensors for In-Line Bioprocess Monitoring in Research and Pharmaceutical Industrial Application. Anal. Bioanal. Chem. 2017, 409, 651–666. [Google Scholar] [CrossRef]
- Shi, Z.; Chow, C.W.K.; Fabris, R.; Liu, J.; Jin, B. Applications of Online UV-Vis Spectrophotometer for Drinking Water Quality Monitoring and Process Control: A Review. Sensors 2022, 22, 2987. [Google Scholar] [CrossRef]
- Roberts, J.; Power, A.; Chapman, J.; Chandra, S.; Cozzolino, D. The Use of UV-Vis Spectroscopy in Bioprocess and Fermentation Monitoring. Fermentation 2018, 4, 18. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Costas-Mora, I.; Romero, V.; Lavilla, I.; Bendicho, C. Advances in Miniaturized UV-Vis Spectrometric Systems. TrAC Trends Anal. Chem. 2011, 30, 1637–1648. [Google Scholar] [CrossRef]
- Justin, T.P. UV-Vis Spectroscopy: Principle, Strengths and Limitations and Applications. Technol. Netw. Anal. Sep. 2021, 1–20. [Google Scholar]
- D’Archivio, A.A.; Maggi, M.A. Geographical Identification of Saffron (Crocus sativus L.) by Linear Discriminant Analysis Applied to the UV–Visible Spectra of Aqueous Extracts. Food Chem. 2017, 219, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Boggia, R.; Turrini, F.; Anselmo, M.; Zunin, P.; Donno, D.; Beccaro, G.L. Feasibility of UV–VIS–Fluorescence Spectroscopy Combined with Pattern Recognition Techniques to Authenticate a New Category of Plant Food Supplements. J. Food Sci. Technol. 2017, 54, 2422–2432. [Google Scholar] [CrossRef] [PubMed]
- Suhandy, D.; Yulia, M. Peaberry Coffee Discrimination Using UV-Visible Spectroscopy Combined with SIMCA and PLS-DA. Int. J. Food Prop. 2017, 20, S331–S339. [Google Scholar] [CrossRef]
- Dankowska, A.; Domagała, A.; Kowalewski, W. Quantification of Coffea Arabica and Coffea Canephora Var. Robusta Concentration in Blends by Means of Synchronous Fluorescence and UV-Vis Spectroscopies. Talanta 2017, 172, 215–220. [Google Scholar] [CrossRef]
- Milanez, K.D.T.M.; Nóbrega, T.C.A.; Nascimento, D.S.; Insausti, M.; Band, B.S.F.; Pontes, M.J.C. Multivariate Modeling for Detecting Adulteration of Extra Virgin Olive Oil with Soybean Oil Using Fluorescence and UV–Vis Spectroscopies: A Preliminary Approach. LWT 2017, 85, 9–15. [Google Scholar] [CrossRef]
- Suhandy, D.; Yulia, M. The Use of Partial Least Square Regression and Spectral Data in UV-Visible Region for Quantification of Adulteration in Indonesian Palm Civet Coffee. Int. J. Food Sci. 2017, 6274178. [Google Scholar] [CrossRef] [Green Version]
- Appah, E.; Elzey, B.; Fakayode, S.O. Investigation of the Binding and Simultaneous Quantifications of Propanil and Bromoxynil Herbicide Concentrations in Human Serum Albumin. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2017, 52, 495–504. [Google Scholar] [CrossRef]
- Terra, L.R.; Catrinck, M.N.; Teófilo, R.F. MCR-ALS Applied to the Quantification of the 5-Hydroxymethylfurfural Using UV Spectra: Study of Catalytic Process Employing Experimental Design. Chemom. Intell. Lab. Syst. 2017, 167, 132–138. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, G.; Zeng, N.; Hu, S. Interaction between 8-Methoxypsoralen and Trypsin: Monitoring by Spectroscopic, Chemometrics and Molecular Docking Approaches. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 173, 188–195. [Google Scholar] [CrossRef] [PubMed]
- Curti, S.M.M.; Ritter, C.M.; da Silva, L.B.; Consolin Filho, N.; Consolin, M.F.B.; Medeiros, F.V.S.; Março, P.H.; Valderrama, P. UV-Vis Spectroscopy and Chemometrics Applied to Residues Monitoring in Sewage. Ecotoxicol. Environ. Contam. 2017, 12, 57–62. [Google Scholar] [CrossRef]
- Kerslake, F.; Longo, R.; Dambergs, R. Discrimination of Juice Press Fractions for Sparkling Base Wines by a UV-Vis Spectral Phenolic Fingerprint and Chemometrics. Beverages 2018, 4, 45. [Google Scholar] [CrossRef] [Green Version]
- Qi, L.; Liu, H.; Li, J.; Li, T.; Wang, Y. Feature Fusion of ICP-AES, UV-Vis and FT-MIR for Origin Traceability of Boletus Edulis Mushrooms in Combination with Chemometrics. Sensors 2018, 18, 241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonçalves, T.R.; Rosa, L.N.; Gonçalves, R.P.; Torquato, A.S.; Março, P.H.; Marques Gomes, S.T.; Matsushita, M.; Valderrama, P. Monitoring the Oxidative Stability of Monovarietal Extra Virgin Olive Oils by UV–Vis Spectroscopy and MCR–ALS. Food Anal. Methods 2018, 11, 1936–1943. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, X.; Liu, J.; Bian, X.; Zhang, Q.; Pan, J.; Wan, D. UV–Vis Spectroscopic Detection Coupled with Chemometrics for the Measurement of Mixed Organic Acids in Water Samples Enriched by Radial Electric Focusing Solid Phase Extraction. Metrol. Meas. Syst. 2018, 25, 317–329. [Google Scholar] [CrossRef]
- Beisl, S.; Binder, M.; Varmuza, K.; Miltner, A.; Friedl, A. UV-Vis Spectroscopy and Chemometrics for the Monitoring of Organosolv Pretreatments. ChemEngineering 2018, 2, 45. [Google Scholar] [CrossRef] [Green Version]
- Sohrabi, M.R.; Mirzabeygi, V.; Davallo, M. Use of Continuous Wavelet Transform Approach for Simultaneous Quantitative Determination of Multicomponent Mixture by UV–Vis Spectrophotometry. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 201, 306–314. [Google Scholar] [CrossRef]
- Anni, A.; Sepril, A.M.; Andrew, P.; Abdul, M. Determination of Individual Spectra of Sm, Eu, Gd, Tb and Dy from the UV-Vis Spectrum of Mixture Solution. Res. J. Chem. Environ. 2018, 22, 342–346. [Google Scholar]
- Rohaeti, E.; Muzayanah, K.; Septaningsih, D.A.; Rafi, M. Fast Analytical Method for Authentication of Chili Powder from Synthetic Dyes Using Uv-Vis Spectroscopy in Combination with Chemometrics. Indones. J. Chem. 2019, 19, 668–674. [Google Scholar] [CrossRef]
- Ríos-Reina, R.; Azcarate, S.M.; Camiña, J.; Callejón, R.M.; Amigo, J.M. Application of Hierarchical Classification Models and Reliability Estimation by Bootstrapping, for Authentication and Discrimination of Wine Vinegars by UV–Vis Spectroscopy. Chemom. Intell. Lab. Syst. 2019, 191, 42–53. [Google Scholar] [CrossRef]
- Geana, E.I.; Ciucure, C.T.; Apetrei, C.; Artem, V. Application of Spectroscopic UV-Vis and FT-IR Screening Techniques Coupled with Multivariate Statistical Analysis for Red Wine Authentication: Varietal and Vintage Year Discrimination. Molecules 2019, 24, 4166. [Google Scholar] [CrossRef] [PubMed]
- Aboulwafa, M.M.; Youssef, F.S.; Gad, H.A.; Sarker, S.D.; Nahar, L.; Al-Azizi, M.M.; Ashour, M.L. Authentication and Discrimination of Green Tea Samples Using UV–Vis, FTIR and HPLC Techniques Coupled with Chemometrics Analysis. J. Pharm. Biomed. Anal. 2019, 164, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Dankowska, A.; Kowalewski, W. Tea Types Classification with Data Fusion of UV–Vis, Synchronous Fluorescence and NIR Spectroscopies and Chemometric Analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 211, 195–202. [Google Scholar] [CrossRef]
- Scheel, G.L.; Pauli, E.D.; Rakocevic, M.; Bruns, R.E.; Scarminio, I.S. Environmental Stress Evaluation of Coffea Arabica L. Leaves from Spectrophotometric Fingerprints by PCA and OSC–PLS–DA. Arab. J. Chem. 2019, 12, 4251–4257. [Google Scholar] [CrossRef] [Green Version]
- Uncu, O.; Ozen, B. A Comparative Study of Mid-Infrared, UV–Visible and Fluorescence Spectroscopy in Combination with Chemometrics for the Detection of Adulteration of Fresh Olive Oils with Old Olive Oils. Food Control 2019, 105, 209–218. [Google Scholar] [CrossRef]
- Bordagaray, A.; Dávila, S.; Garcia-Arrona, R.; Vidal, M.; Ostra, M. Simultaneous Determination of Food Colorants in Liquid Samples by UV-Visible Spectroscopy and Multivariate Data Analysis Using a Reduced Calibration Matrix. J. Chemom. 2019, 33, e3176. [Google Scholar] [CrossRef]
- Simion, I.M.; Sârbu, C. The Impact of the Order of Derivative Spectra on the Performance of Pattern Recognition Methods. Classification of Medicinal Plants According to the Phylum. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 219, 91–95. [Google Scholar] [CrossRef]
- Otsuka, Y.; Ito, A.; Takahashi, T.; Matsumura, S.; Takeuchi, M.; Tanaka, H. Bilayer Tablet Dissolution Kinetics Based on a Degassing Cyclic Flow UV-Vis Spectroscopy with Chemometrics. Chem. Pharm. Bull. 2019, 67, 361–366. [Google Scholar] [CrossRef] [Green Version]
- Bian, X.; Lu, Z.; van Kollenburg, G. Ultraviolet-Visible Diffuse Reflectance Spectroscopy Combined with Chemometrics for Rapid Discrimination of Angelicae Sinensis Radix from Its Four Similar Herbs. Anal. Methods 2020, 12, 3499–3507. [Google Scholar] [CrossRef]
- Miramont, C.; Jourdes, M.; Teissedre, P.L. Development of UV-Vis and FTIR Partial Least Squares Models: Comparison and Combination of Two Spectroscopy Techniques with Chemometrics for Polyphenols Quantification in Red Wine. Oeno One 2020, 54, 779–792. [Google Scholar] [CrossRef]
- Ríos-Reina, R.; Azcarate, S.M.; Camiña, J.; Callejón, R.M. Assessment of UV–Visible Spectroscopy as a Useful Tool for Determining Grape-Must Caramel in High-Quality Wine and Balsamic Vinegars. Food Chem. 2020, 323, 126792. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Li, T.; Zhang, Y.; Sun, X.; Wang, Y.; Nie, Z. Discrimination of Narcotic Drugs in Human Urine Based on Nanoplasmonics Combined with Chemometric Method. J. Pharm. Biomed. Anal. 2020, 186, 113174. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Qu, J.; He, Y.; Bo, Z.; Pei, M. Global Calibration Model of UV-Vis Spectroscopy for COD Estimation in the Effluent of Rural Sewage Treatment Facilities. RSC Adv. 2020, 10, 20691–20700. [Google Scholar] [CrossRef] [PubMed]
- Angheluta, A.; Guizani, S.; Saunier, J.; Rönnback, R. Application of Chemometric Modelling to UV-Vis Spectroscopy: Development of Simultaneous API and Critical Excipient Assay in a Liquid Solution Continuous Flow. Pharm. Dev. Technol. 2020, 25, 919–929. [Google Scholar] [CrossRef]
- Berto, S.; Alladio, E. Application of Chemometrics Tools to the Study of the Fe(III)–Tannic Acid Interaction. Front. Chem. 2020, 8, 614171. [Google Scholar] [CrossRef]
- Braga, F.L.; Braga, S. Fast Pattern Recognition of Malted and Unmalted Beer: An Investigation Using FTIR, UV-VIS, Fluorescence Spectroscopy and Chemometrics. Sci. Agropecu. 2021, 12, 361–367. [Google Scholar] [CrossRef]
- De Souza, R.R.; Fernandes, D.D.d.S.; Diniz, P.H.G.D. Honey Authentication in Terms of Its Adulteration with Sugar Syrups Using UV–Vis Spectroscopy and One-Class Classifiers. Food Chem. 2021, 365, 130467. [Google Scholar] [CrossRef]
- Kucharska-Ambrożej, K.; Martyna, A.; Karpińska, J.; Kiełtyka-Dadasiewicz, A.; Kubat-Sikorska, A. Quality Control of Mint Species Based on UV-VIS and FTIR Spectral Data Supported by Chemometric Tools. Food Control 2021, 129, 108228. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, S.; Wang, Y.; Zhang, J. Multi-Platform Integration Based on NIR and UV–Vis Spectroscopies for the Geographical Traceability of the Fruits of Amomum Tsao-Ko. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 258, 119872. [Google Scholar] [CrossRef]
- Suhandy, D.; Yulia, M. The Use of UV Spectroscopy and SIMCA for the Authentication of Indonesian Honeys According to Botanical, Entomological and Geographical Origins. Molecules 2021, 26, 915. [Google Scholar] [CrossRef] [PubMed]
- Chai, Z.; Wang, C.; Bi, H. Rapid Identification between Two Fish Species Using Uv-Vis Spectroscopy for Substitution Detection. Molecules 2021, 26, 6529. [Google Scholar] [CrossRef] [PubMed]
- González-Domínguez, R.; Sayago, A.; Fernández-Recamales, Á. Potential of Ultraviolet-Visible Spectroscopy for the Differentiation of Spanish Vinegars According to the Geographical Origin and the Prediction of Their Functional Properties. Foods 2021, 10, 1830. [Google Scholar] [CrossRef] [PubMed]
- Yulia, M.; Suhandy, D. Quantification of Corn Adulteration in Wet and Dry-Processed Peaberry Ground Roasted Coffees by UV–Vis Spectroscopy and Chemometrics. Molecules 2021, 26, 6091. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Chen, G.; Gui, Y.; Zhang, G.; Li, Y. Rapid Quantification of Total Phenolics and Ferulic Acid in Whole Wheat Using UV–Vis Spectrophotometry. Food Control 2021, 123, 107691. [Google Scholar] [CrossRef]
- Gusti, N.; Oktarina, D.; Elvia, R.; Nursa’adah, E.; Wardhana, R.W.; Sundaryono, A.; Lutfi Firdaus, M. Facile Detection of Oil Adulteration Using UV-Visible Spectroscopy Coupled with Chemometric Analysis. Sci. Technol. Indones. 2021, 6, 14–18. [Google Scholar] [CrossRef]
- Zhu, Q.; Gu, A.; Li, D.; Zhang, T.; Xiang, L.; He, M. Online Recognition of Drainage Type Based on UV-Vis Spectra and Derivative Neural Network Algorithm. Front. Environ. Sci. Eng. 2021, 15, 136. [Google Scholar] [CrossRef]
- Rafi, M.; Nurcahyo, B.; Wahyuni, W.T.; Arif, Z.; Septaningsih, D.A.; Putri, S.P.; Fukusaki, E. Feasibility of UV-Vis Spectral Fingerprinting Combined with Chemometrics for Rapid Detection of Phyllanthus Niruri Adulteration with Leucaena Leucocephala. Sains Malays. 2021, 50, 997–1006. [Google Scholar] [CrossRef]
- Riswanto, F.D.O.; Rohman, A.; Pramono, S.; Martono, S. The Employment of UV-Vis Spectroscopy and Chemometrics Techniques for Analyzing the Combination of Genistein and Curcumin. J. Appl. Pharm. Sci. 2021, 11, 154–161. [Google Scholar] [CrossRef]
- Dinç, E.; Selimoğlu, F.; Ünal, N.; Ertekin, Z.C. Simultaneous Determination of the Acid Dissociation Constants of Phenolics by Multivariate Analysis of PH and Ultraviolet-Visible Spectrophotometric Measurements. Anal. Lett. 2021, 54, 2624–2637. [Google Scholar] [CrossRef]
- Selimoğlu, F.; Ünal, N.; Ceren Ertekin, Z.; Dinç, E. PARAFAC and MCR-ALS Approaches to the PKa Determination of Benzoic Acid and Its Derivatives. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 248, 119253. [Google Scholar] [CrossRef] [PubMed]
- Batubara, I.; Husna, S.; Rafi, M.; Sumaryada, T.; Uchiyama, S.; Juliandi, B.; Putri, S.P.; Fukusaki, E. A Combination of UV-Vis Spectroscopy and Chemometrics for Detection of Sappanwood (Caesalpinia sappan) Adulteration from Three Dyes. Sains Malays. 2022, 51, 775–781. [Google Scholar] [CrossRef]
- Cavdaroglu, C.; Ozen, B. Detection of Vinegar Adulteration with Spirit Vinegar and Acetic Acid Using UV–Visible and Fourier Transform Infrared Spectroscopy. Food Chem. 2022, 379, 132150. [Google Scholar] [CrossRef] [PubMed]
- Mannu, A.; Poddighe, M.; Garroni, S.; Malfatti, L. Application of IR and UV–VIS Spectroscopies and Multivariate Analysis for the Classification of Waste Vegetable Oils. Resour. Conserv. Recycl. 2022, 178, 106088. [Google Scholar] [CrossRef]
- Petretto, G.L.; Di Pietro, M.E.; Piroddi, M.; Pintore, G.; Mannu, A. Classification of Pummelo (Citrus grandis) Extracts through UV-VIS-Based Chemical Fingerprint. Beverages 2022, 8, 34. [Google Scholar] [CrossRef]
- Hegazi, N.M.; Khattab, A.R.; Frolov, A.; Wessjohann, L.A.; Farag, M.A. Authentication of Saffron Spice Accessions from Its Common Substitutes via a Multiplex Approach of UV/VIS Fingerprints and UPLC/MS Using Molecular Networking and Chemometrics. Food Chem. 2022, 367, 130739. [Google Scholar] [CrossRef]
- Achir, N.; Servent, A.; Soto, M.; Dhuique-Mayer, C. Feasibility of Individual Carotenoid Quantification in Mixtures Using UV-Vis Spectrophotometry with Multivariate Curve Resolution Alternating Least Squares (MCR-ALS). J. Spectrosc. 2022, 4509523. [Google Scholar] [CrossRef]
- Wegner, C.H.; Zimmermann, I.; Hubbuch, J. Rapid Analysis for Multicomponent High-Throughput Crystallization Screening: Combination of UV-Vis Spectroscopy and Chemometrics. Cryst. Growth Des. 2022, 22, 1054–1065. [Google Scholar] [CrossRef]
- Maleš, P.; Brkljača, Z.; Domazet Jurašin, D.; Bakarić, D. New Spirit of an Old Technique: Characterization of Lipid Phase Transitions via UV/Vis Spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 272, 121013. [Google Scholar] [CrossRef]
- Azcarate, S.M.; Cantarelli, M.A.; Pellerano, R.G.; Marchevsky, E.J.; Camiña, J.M. Classification of Argentinean Sauvignon Blanc Wines by UV Spectroscopy and Chemometric Methods. J. Food Sci. 2013, 78, 432–436. [Google Scholar] [CrossRef]
- Acevedo, F.J.; Jiménez, J.; Maldonado, S.; Domínguez, E.; Narváez, A. Classification of Wines Produced in Specific Regions by UV-Visible Spectroscopy Combined with Support Vector Machines. J. Agric. Food Chem. 2007, 55, 6842–6849. [Google Scholar] [CrossRef] [PubMed]
- Oliveri, P.; Malegori, C.; Simonetti, R.; Casale, M. The Impact of Signal Pre-Processing on the Final Interpretation of Analytical Outcomes—A Tutorial. Anal. Chim. Acta 2019, 1058, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Urbano, M.; Luque de Castro, M.D.; Pérez, P.M.; García-Olmo, J.; Gómez-Nieto, M.A. Ultraviolet-Visible Spectroscopy and Pattern Recognition Methods for Differentiation and Classification of Wines. Food Chem. 2006, 97, 166–175. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, D.; Dong, Y.; Ju, H.; Wu, C.; Lin, S. Characteristic Volatiles Fingerprints and Changes of Volatile Compounds in Fresh and Dried Tricholoma Matsutake Singer by HS-GC-IMS and HS-SPME-GC–MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1099, 46–55. [Google Scholar] [CrossRef]
- Owen, T. Chapter 1 Principles and applications of UV-visible spectroscopy. In Fundamentals of Modern UV-Visible Spectroscopy, Primer; No. 5980-1397E; Agilent Technologies: Waldbronn, Germany, 2000; pp. 2–28. [Google Scholar]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard Normal Variate Transformation and Detrending of Near-Infrared Diffuse Reflectance Spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Hasbi, N.H.; Bade, A.; Chee, F.P. Pattern Recognition for Ultraviolet and Fourier Transform Data: A Walkthrough of Techniques and Direction. J. Phys. Conf. Ser. 2022, 2314, 012012. [Google Scholar] [CrossRef]
- Ranaweera, R.K.R.; Capone, D.L.; Bastian, S.E.P.; Cozzolino, D.; Jeffery, D.W. A Review of Wine Authentication Using Spectroscopic Approaches in Combination with Chemometrics. Molecules 2021, 26, 4334. [Google Scholar] [CrossRef]
- Valand, R.; Tanna, S.; Lawson, G.; Bengtström, L. A Review of Fourier Transform Infrared (FTIR) Spectroscopy Used in Food Adulteration and Authenticity Investigations. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2020, 37, 19–38. [Google Scholar] [CrossRef]
- Prieto, N.; Roehe, R.; Lavín, P.; Batten, G.; Andrés, S. Application of near Infrared Reflectance Spectroscopy to Predict Meat and Meat Products Quality: A Review. Meat Sci. 2009, 83, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Karoui, R.; de Baerdemaeker, J. A Review of the Analytical Methods Coupled with Chemometric Tools for the Determination of the Quality and Identity of Dairy Products. Food Chem. 2007, 102, 621–640. [Google Scholar] [CrossRef]
- Indahl, U.G. The Geometry of PLS1 Explained Properly: 10 Key Notes on Mathematical Properties of and Some Alternative Algorithmic Approaches to PLS1 Modelling. J. Chemom. 2014, 28, 168–180. [Google Scholar] [CrossRef]
- Ballabio, D.; Consonni, V. Classification Tools in Chemistry. Part 1: Linear Models. PLS-DA. Anal. Methods 2013, 5, 3790–3798. [Google Scholar] [CrossRef]
- Santos, G.R.; Paulino, G.S.P.; Borges, G.P.I.; Santiago, A.F.; da Silva, G.A. Avanços Analíticos Baseados Em Modelos De Calibração De Primeira Ordem E Espectroscopia Uv-Vis Para Avaliação Da Qualidade Da Água: Uma Revisão—Parte 1. Quim. Nov. 2022, 45, 314–323. [Google Scholar] [CrossRef]
- Lavine, B. A User-Friendly Guide to Multivariate Calibration and Classification, Tomas Naes, Tomas Isakson, Tom Fearn and Tony Davies, NIR Publications, Chichester, 2002, ISBN 0-9528666-2-5, £45.00. J. Chemom. 2003, 17, 571–572. [Google Scholar] [CrossRef]
- Becerra, E.; Danchana, K.; Cerdà, V. WinMLR, a Software Program for the Simultaneous Determination of Several Components in Mixtures Using Multilinear Regression Analysis. Talanta 2020, 213, 120830. [Google Scholar] [CrossRef]
- Mevik, B.-H.; Wehrens, R. The Pls Package: Principal Component and Partial Least Squares Regression in R. J. Stat. Softw. 2007, 18, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Mevik, B.H.; Segtnan, V.H.; Næs, T. Ensemble Methods and Partial Least Squares Regression. J. Chemom. 2004, 18, 498–507. [Google Scholar] [CrossRef]
- De Juan, A.; Jaumot, J.; Tauler, R. Multivariate Curve Resolution (MCR). Solving the Mixture Analysis Problem. Anal. Methods 2014, 6, 4964. [Google Scholar] [CrossRef]
- Beaver, C.; Collins, T.S.; Harbertson, J. Model Optimization for the Prediction of Red Wine Phenolic Compounds Using Ultraviolet–Visible Spectra. Molecules 2020, 25, 1576. [Google Scholar] [CrossRef] [Green Version]
- Martelo-Vidal, M.J.; Domínguez-Agis, F.; Vázquez, M. Ultraviolet/Visible/near-Infrared Spectral Analysis and Chemometric Tools for the Discrimination of Wines between Subzones inside a Controlled Designation of Origin: A Case Study of Rías Baixas. Aust. J. Grape Wine Res. 2013, 19, 62–67. [Google Scholar] [CrossRef]
Year | Ref. | Area | Aim | Sample | Sampling | UV-Vis Analysis (Range/Resolution/ Cuvette Path Length) | Preprocessing Method | Multivariate Method |
---|---|---|---|---|---|---|---|---|
2017 | [18] | A, F, and B | PR | Saffron | Extract solutions | 200–700 nm/1 nm/10 mm | AS | PCA, LDA |
[19] | PR | Plant food supplements | Dilution 1:10 (v:v) | 190–1100 nm/1 nm/1 mm | 1D + AS | PCA, SIMCA | ||
[20] | PR | Coffe | Extract solutions | 190–700 nm/1 nm/10 mm | - | PCA, PLS-DA, SIMCA | ||
[21] | PR and Q | Coffe | Dilution 1:120 (v:v) | 190–700 nm/n.d./10 mm | - | PCA-LDA, PCR | ||
[22] | Q | Extra virgin olive oil | Direct analysis | 190–1100 nm/1 nm/10 mm (transmitance mode) | - | PLS, PLS-JK, SPA-MLR, SW-MLR, GA-MLR | ||
[23] | Q | Palm Civet Coffee | Extraction and dilution 1:20 (v:v) | 190–700 nm/1 nm/10 mm | MSC + SNV | PCA, PLS | ||
[24] | C and P | Q | Propanil and bromoxynil herbicide | Direct analysis of solutions | 240–350 nm/n.d./10 mm | - | PLS | |
[25] | Q | 5-Hydroxymethylfurfural | Direct analysis of solutions | 200–300 nm/n.d./10 mm | MC | MCR-ALS, PLS | ||
[26] | Q | 8-methoxypsoralen and trypsin | Direct analysis of solutions | 230–350 nm/1 nm/n.d. | - | MCR-ALS | ||
[27] | Q | Sewage | Direct analysis | 230–800 nm/n.d./10 mm | - | MCR-ALS | ||
2018 | [28] | A, F, and B | PR | Sparkling Wines | Dilution 1:5 (v:v) | 200–600 nm/2 nm/10 mm | - | PCA |
[29] | PR | Mushrooms | Extracted solutions | 200–600 nm/1 nm/n.d. | - | PCA, DF, PLS-DA, GS-SVM | ||
[30] | PR | Olive oil | Direct analysis | 200–800 nm/1 nm/1 mm | SG-S, BL | MCR-ALS | ||
[31] | C, P, and E | Q | Water | Extracted solutions | 200–600 nm/n.d./n.d. | MSC, SNV, SG-S, CWT, 1D, 2D | PLS | |
[32] | Q | Wheat straw extracts | Extraction and dilution 6:10 (v:v) | 190–450 nm/1 nm/10 mm | 1D, 2D | PLS | ||
[33] | Q | Cough syrup | Direct analysis of solutions | 220–300 nm/2 nm/10 mm | CWT, DWT | PLS, PCR | ||
[34] | Q | Rare earth elements | Direct analysis of dilutions | 200–800 nm/10 nm/n.d. | - | MCR-ALS | ||
2019 | [35] | A, F, and B | PR | Chili Powder | Extract solutions | 200–800 nm/0.5 nm/10 mm | - | PCA, DA |
[36] | PR | Wine vinegars | Diluted 1:10 (v:v) | 180–890 nm/2 nm/10 mm | SNV | PCA, PLS-DA, SIMCA | ||
[37] | PR | Red wine | Direct analysis | 190–800 nm/1 nm/1 mm | - | PCA, PLS-DA, LDA | ||
[38] | PR | Green tea | Dilution 1:25 (v:v) | 200–800 nm/1 nm/10 mm | MC + PS | PCA, HCA, PLS-DA, SIMCA | ||
[39] | PR | Tea | Dilution 1:10 (v:v) | 190–800 nm/1 nm/n.d. | - | PCA, PCA-LDA, PCA-MLR | ||
[40] | PR | Coffea arabica L. leaves | Extraction and dilution 1:20 (v:v) | 200–800 nm/1 nm/10 mm | - | PCA, OSC-PLS-DA | ||
[41] | PR and Q | Olive oils | Direct analysis | 200–800 nm/2–5 nm/10 mm | MC, UVS, 1D, 2D, SG-S, WDTs, MSC, OSC | OPLS-DA, PLS | ||
[42] | Q | Food colorants | Direct analysis of solutions | 340–590 nm/n.d./n.d. | - | MCR-ALS | ||
[43] | C, P, and E | PR | Medicinal plants | Extraction and dilution 60:40 (v:v) | 200–430 nm/0.3 mm/10 mm | SG-S, 1D-4D | CA, PCA, PCA-LDA | |
[44] | Q | Bilayer Tablet | Direct analysis of solutions | 240–360 nm/n.d./n.d. | BL | PLS | ||
2020 | [45] | A, F, and B | PR | Herbs | Direct analysis of powders | 200–800 nm/1 nm/diffuse reflectance mode | AS, CWT, SG-S | PCA, ELM |
[46] | Q | Red wine | Dilution 1:100 (v:v) | 200–700 nm/1 mm/10 mm | - | PLS | ||
[47] | Q | Vinegars | Dilution 1:10/1:50 (v:v) | 180–890 nm/2 nm/10 mm | - | PLS | ||
[48] | C, P, and E | PR | Human urine | Direct analysis of solutions | 230–1000 nm/n.d./n.d. | MSC | PLS-DA | |
[49] | Q | Effluent sewage | Direct analysis | 190–1100 nm/1 nm/n.d. | SG-S, MSC +SVN | PLS, SVM, BP-NN | ||
[50] | Q | Excipients | Direct analysis of solutions | 190–600 nm/0.5 nm/optical fibre | SNV, D1, D2 | PCA, PLS | ||
[51] | Q | Interaction of iron(III) and tannic acid | Direct analysis of solutions | 350–600 nm/n.d./10 mm | - | MCR-ALS | ||
2021 | [52] | A, F, and B | PR | Beer | Direct analysis | 190–1100 nm/1 nm/10 mm | - | PCA, |
[53] | PR | Honey | Direct analysis of solutions | 200–800 nm/1 nm/10 mm | OFF, LBC, OFF + LBC, 1D, SG-S | PCA, OC-PLS, DD-SIMCA | ||
[54] | PR | Mint species | Extracted solutions | 240–350 nm/1.5 nm/n.d. | 1D + SG-S + PQN | SIMCA, PLS-DA, SVM | ||
[12] | PR | Wine vinegars | Dilution 1:10 (v:v) | 180–890 nm/2 nm/10 mm | SNV | HCA, SIMCA, PLS-DA | ||
[55] | PR | Fruit | Direct analysis of powders | 200–700 nm/1 nm/n.d. | SG-S + VSN + 1D | PCA, SO-PLS, SO-COvSel, PLS-DA, DF | ||
[56] | PR | Honey | Dilution 1:20 (v:v) | 190–400 nm/1 nm/transmittance mode | SMTH + MC + SG-1D | PCA, SIMCA | ||
[57] | PR | Fish species | Extraction and dilution 1:80 (v:v) | 190–400 nm/n.d./n.d. | - | PCA | ||
[58] | PR and Q | Vinegar | Direct analysis | 200–700 nm/2 nm/2 mm | SNV, MSC, 1D, 2D | LDA, PLS | ||
[59] | Q | Coffee | Extracted solutions | 250–400 nm/1 nm/n.d. | SMTH + SNV +1 D | PCA, PLS, MLR, PCR | ||
[60] | Q | Whole wheat | Extraction and dilution 1:80 (v:v) | 240–600 nm/5 nm/microplate | - | PCA, PCR, PLS | ||
[61] | C, P, and E | Q | Engine and machine oils | Dilution | 420–920 nm/n.d./n.d. | - | PCA, PLS | |
[62] | PR | Drainage | Direct analysis | 220–680 nm/2.5 nm/5 mm | - | PCA, FNN, MD-CNN | ||
[63] | PR | Plant leaves | Extraction and dilution 2.5:10 (v:v) | 200–800 nm/0.5 nm/10 mm | SMTH + SNV | PCA, DA, SIMCA | ||
[64] | PR and Q | Spices | Direct analysis of solutions | 200–800 nm/2 nm/10 mm | Raw, 1D, 2D, SNV, SG-S | PCR, PLS, sPLS-DA | ||
[65] | Q | Phenolics | Direct analysis of solutions | 200–420 nm/0.1 nm/n.d. | - | MCR-ALS, PARAFAC | ||
[66] | Q | Benzoic acid and its derivates | Direct analysis of solutions | 200–350 nm/0.1 nm/n.d. | - | MCR-ALS, PARAFAC | ||
2022 | [67] | A, F, and B | PR | Sappanwood | Extraction and dilution 0.25:5 (v:v) | 200–800 nm/n.d./10 mm | SG-S | PCA, DA |
[68] | PR | Vinegar | Dilution 5 times | 200–550 nm/n.d./96-well plate | 1D, 2D, 3D, SNV, MSC, OSC, WCTS, WDTS | PLS-DA, OPLS-DA, ANN | ||
[69] | PR | Vegetable oils | Dilution 1:200 (v:v) | 200–600 nm/n.d./n.d. (reflectance mode) | - | PCA, PLS-DA | ||
[70] | PR | Pummelo extracts | Extracted solutions | 200–600 nm/n.n./10 mm | - | PCA, PLS-DA, sPLS-DA | ||
[71] | PR | Saffron | Dilution 100-fold | 200–700 nm/5 nm/96-well plate | MC + PS | PCA, HCA, OPLS-DA | ||
[72] | Q | Carotenoids from fruit extracts | Extraction and dilution 1:10 (v:v) | 250–600 nm/0.5 nm/n.d. | - | MCR-ALS | ||
[73] | C, P, and E | Q | Heterogeneous supernatants | Direct analysis of solutions | 240–450 nm/1 nm/n.d. | SG-S | PLS | |
[74] | Q | Lipid phase | Direct analysis of solutions | 250–500 nm/n.d./n.d. | SG-S | MCR-ALS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ríos-Reina, R.; Azcarate, S.M. How Chemometrics Revives the UV-Vis Spectroscopy Applications as an Analytical Sensor for Spectralprint (Nontargeted) Analysis. Chemosensors 2023, 11, 8. https://doi.org/10.3390/chemosensors11010008
Ríos-Reina R, Azcarate SM. How Chemometrics Revives the UV-Vis Spectroscopy Applications as an Analytical Sensor for Spectralprint (Nontargeted) Analysis. Chemosensors. 2023; 11(1):8. https://doi.org/10.3390/chemosensors11010008
Chicago/Turabian StyleRíos-Reina, Rocío, and Silvana M. Azcarate. 2023. "How Chemometrics Revives the UV-Vis Spectroscopy Applications as an Analytical Sensor for Spectralprint (Nontargeted) Analysis" Chemosensors 11, no. 1: 8. https://doi.org/10.3390/chemosensors11010008