Metal-Enhanced Fluorescence for Alpha-Fetoprotein Detection and for SERS Using Hybrid Nanoparticles of Magnetic Cluster Core—Plasmonic Shell Composite
Abstract
1. Introduction
2. Materials and Methods
2.1. The Materials and Reagents
2.2. Synthesis of the Fe3O4 NPs and the Gold-Capped Fe3O4 Nanoparticles (GMPs)
2.2.1. Synthesis of the Fe3O4 NPs
2.2.2. Synthesis of the GMPs
2.3. Detection of Rhodamine B by Surface-Enhanced Raman Spectroscopy (SERS)
2.4. Preparation of PDMS Chamber on the Glass Substrate
2.5. Detection of Alpha-Fetoprotein (AFP) by Transmission-Geometry-Based Setup for Fluorescence Enhancement Detection
3. Results and Discussion
3.1. Characterization of Fe3O4 NPs and GMPs
3.2. SERS-Based Detection of Rhodamine B (RhB)
3.3. Metal-Enhanced Fluorescence (MEF)-Based Detection of Alpha-Fetoprotein (AFP)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hacia, J.G.; Brody, L.C.; Chee, M.S.; Fodor, S.P.; Collins, F.S. Detection of Heterozygous Mutations in BRCA1 Using High Density Oligonucleotide Arrays and Two-Colour Fluorescence Analysis. Nat. Genet. 1996, 14, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Ai, H.; Hazelwood, K.L.; Davidson, M.W.; Campbell, R.E. Fluorescent Protein FRET Pairs for Ratiometric Imaging of Dual Biosensors. Nat. Methods 2008, 5, 401–403. [Google Scholar] [CrossRef] [PubMed]
- Nguyen-Ngoc, H.; Tran-Minh, C. Fluorescent Biosensor Using Whole Cells in an Inorganic Translucent Matrix. Anal. Chim. Acta 2007, 583, 161–165. [Google Scholar] [CrossRef]
- Jeong, Y.; Kook, Y.-M.; Lee, K.; Koh, W.-G. Metal Enhanced Fluorescence (MEF) for Biosensors: General Approaches and a Review of Recent Developments. Biosens. Bioelectron. 2018, 111, 102–116. [Google Scholar] [CrossRef] [PubMed]
- Fili, N.; Toseland, C. Fluorescence and Labelling: How to Choose and What to Do. EXS 2014, 105, 1–24. [Google Scholar]
- Badshah, M.A.; Koh, N.Y.; Zia, A.W.; Abbas, N.; Zahra, Z.; Saleem, M.W. Recent Developments in Plasmonic Nanostructures for Metal Enhanced Fluorescence-Based Biosensing. Nanomaterials 2020, 10, 1749. [Google Scholar] [CrossRef]
- Geddes, C.D.; Lakowicz, J.R. Editorial: Metal-Enhanced Fluorescence. J. Fluoresc. 2002, 12, 121–129. [Google Scholar] [CrossRef]
- Ji, X.; Xiao, C.; Lau, W.-F.; Li, J.; Fu, J. Metal Enhanced Fluorescence Improved Protein and DNA Detection by Zigzag Ag Nanorod Arrays. Biosens. Bioelectron. 2016, 82, 240–247. [Google Scholar] [CrossRef]
- Camposeo, A.; Persano, L.; Manco, R.; Wang, Y.; Del Carro, P.; Zhang, C.; Li, Z.-Y.; Pisignano, D.; Xia, Y. Metal-Enhanced Near-Infrared Fluorescence by Micropatterned Gold Nanocages. ACS Nano 2015, 9, 10047–10054. [Google Scholar] [CrossRef]
- Bai, Z.; Chang, M.; Peng, M.; Liu, P.; Lu, A.; Zhang, Z.; Qin, S. Controlling Fluorescence of a Nano-Al2O3 Film Enabled by CdSe Quantum Dots on CdSe/Al2O3 Heterojunctions. J. Lumin. 2019, 215, 116614. [Google Scholar] [CrossRef]
- Aslan, K.; Wu, M.; Lakowicz, J.R.; Geddes, C.D. Fluorescent Core−Shell Ag@SiO2 Nanocomposites for Metal-Enhanced Fluorescence and Single Nanoparticle Sensing Platforms. J. Am. Chem. Soc. 2007, 129, 1524–1525. [Google Scholar] [CrossRef] [PubMed]
- Shukla, R.; Bansal, V.; Chaudhary, M.; Basu, A.; Bhonde, R.R.; Sastry, M. Biocompatibility of Gold Nanoparticles and Their Endocytotic Fate Inside the Cellular Compartment: A Microscopic Overview. Langmuir 2005, 21, 10644–10654. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, C.Y.; Zhu, Y.R.; Chen, Z.Y. A Novel Ultraviolet Irradiation Technique for Shape-Controlled Synthesis of Gold Nanoparticles at Room Temperature. Chem. Mater. 1999, 11, 2310–2312. [Google Scholar] [CrossRef]
- Rajkumar, S.; Prabaharan, M. Chapter 29—Theranostic Application of Fe3O4–Au Hybrid Nanoparticles. In Noble Metal-Metal Oxide Hybrid Nanoparticles; Mohapatra, S., Nguyen, T.A., Nguyen-Tri, P., Eds.; Woodhead Publishing: Sawston, UK, 2019; Volume 29, pp. 607–623. [Google Scholar]
- Ghazanfari, M.R.; Kashefi, M.; Shams, S.F.; Jaafari, M.R. Perspective of Fe3O4 Nanoparticles Role in Biomedical Applications. Biochem. Res. Int. 2016, 2016, 7840161. [Google Scholar] [CrossRef]
- Ruales-Lonfat, C.; Barona, J.F.; Sienkiewicz, A.; Bensimon, M.; Vélez-Colmenares, J.; Benítez, N.; Pulgarín, C. Iron Oxides Semiconductors Are Efficients for Solar Water Disinfection: A Comparison with Photo-Fenton Processes at Neutral PH. Appl. Catal. B Environ. 2015, 166–167, 497–508. [Google Scholar] [CrossRef]
- Gu, X.; Wu, Y.; Zhang, L.; Liu, Y.; Li, Y.; Yan, Y.; Wu, D. Hybrid Magnetic Nanoparticle/Nanogold Clusters and Their Distance-Dependent Metal-Enhanced Fluorescence Effect via DNA Hybridization. Nanoscale 2014, 6, 8681–8693. [Google Scholar] [CrossRef]
- Wheeler, D.; Adams, S.; López Luke, T.; Torres-Castro, A.; Zhang, J. Magnetic Fe3O4-Au Core-Shell Nanostructures for Surface Enhanced Raman Scattering. Ann. Phys. 2012, 524, 670–679. [Google Scholar] [CrossRef]
- Wang, C.; Li, P.; Wang, J.; Rong, Z.; Pang, Y.; Xu, J.; Dong, P.; Xiao, R.; Wang, S. Polyethylenimine-Interlayered Core–shell–satellite 3D Magnetic Microspheres as Versatile SERS Substrates. Nanoscale 2015, 7, 18694–18707. [Google Scholar] [CrossRef]
- Sciacca, B.; Monro, T.M. Dip Biosensor Based on Localized Surface Plasmon Resonance at the Tip of an Optical Fiber. Langmuir 2014, 30, 946–954. [Google Scholar] [CrossRef]
- Shen, J.; Zhou, Y.; Huang, J.; Zhu, Y.; Zhu, J.; Yang, X.; Chen, W.; Yao, Y.; Qian, S.; Jiang, H.; et al. In-Situ SERS Monitoring of Reaction Catalyzed by Multifunctional Fe3O4@TiO2@Ag-Au Microspheres. Appl. Catal. B Environ. 2017, 205, 11–18. [Google Scholar] [CrossRef]
- Song, D.; Yang, R.; Fang, S.; Liu, Y.; Long, F.; Zhu, A. SERS Based Aptasensor for Ochratoxin A by Combining Fe3O4@Au Magnetic Nanoparticles and Au-DTNB@Ag Nanoprobes with Multiple Signal Enhancement. Microchim. Acta 2018, 185, 491. [Google Scholar] [CrossRef] [PubMed]
- Kal-Koshvandi, A.T. Recent Advances in Optical Biosensors for the Detection of Cancer Biomarker α-Fetoprotein (AFP). TrAC Trends Anal. Chem. 2020, 128, 115920. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, S.; Xue, Y.; Liang, J.; Cui, L.; Li, Q.; Zhou, S.; Huang, Y.; Li, G.; Zhao, Y. A Fe3O4@Au-Basedpseudo-Homogeneous Electrochemical Immunosensor for AFP Measurement Using AFP Antibody-GNPs-HRP as Detection Probe. Anal. Biochem. 2017, 534, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Li, X.Q.; Wang, H.; Wu, X.M.; Wang, G.L. Tuning Surface States to Achieve the Modulated Fluorescence of Carbon Dots for Probing the Activity of Alkaline Phosphatase and Immunoassay of A-Fetoprotein. Sens. Actuators B Chem. 2018, 257, 620–628. [Google Scholar] [CrossRef]
- Fan, F.; Shen, H.; Zhang, G.; Jiang, X.; Kang, X. Chemiluminescence Immunoassay Based on Microfluidic Chips for α-Fetoprotein. Clin. Chim. Acta 2014, 431, 113–117. [Google Scholar] [CrossRef]
- Zheng, X.; Hua, X.; Qiao, X.; Xia, F.; Tian, D.; Zhou, C. Simple and Signal-off Electrochemiluminescence Immunosensor for Alpha Fetoprotein Based on Gold Nanoparticle-Modified Graphite-like Carbon Nitride Nanosheet Nanohybrids. RSC Adv. 2016, 6, 21308–21316. [Google Scholar] [CrossRef]
- Preechakasedkit, P.; Siangproh, W.; Khongchareonporn, N.; Ngamrojanavanich, N.; Chailapakul, O. Development of an Automated Wax-Printed Paper-Based Lateral Flow Device for Alpha-Fetoprotein Enzyme-Linked Immunosorbent Assay. Biosens. Bioelectron. 2018, 102, 27–32. [Google Scholar] [CrossRef]
- Wangkam, T.; Boonperm, K.; Khomkrachang, P.; Srikhirin, T.; Praphanphoj, V.; Sutapan, B.; Somboonkaew, A.; Amarit, R. Hepatocellular Carcinoma Biomarker Detection by Surface Plasmon Resonance Sensor. Adv. Mater. Res. 2015, 1131, 84–87. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, F.; Wang, Z.; Liang, Q. A Graphene Oxide-Based Label-Free Electrochemical Aptasensor for the Detection of Alpha-Fetoprotein. Biosens. Bioelectron. 2018, 112, 186–192. [Google Scholar] [CrossRef]
- Niu, Y.; Yang, T.; Ma, S.; Peng, F.; Yi, M.; Wan, M.; Mao, C.; Shen, J. Label-Free Immunosensor Based on Hyperbranched Polyester for Specific Detection of α-Fetoprotein. Biosens. Bioelectron. 2017, 92, 1–7. [Google Scholar] [CrossRef]
- Chen, X.; Xu, W.; Jiang, Y.; Pan, G.; Zhou, D.; Zhu, J.; Wang, H.; Chen, C.; Li, D.; Song, H. A Novel Upconversion Luminescence Derived Photoelectrochemical Immunoassay: Ultrasensitive Detection to Alpha-Fetoprotein. Nanoscale 2017, 9, 16357–16364. [Google Scholar] [CrossRef] [PubMed]
- Do, P.Q.T.; Huong, V.T.; Phuong, N.T.T.; Nguyen, T.H.; Ta, H.K.T.; Ju, H.; Phan, T.B.; Phung, V.D.; Trinh, K.T.L.; Tran, N.H.T. The Highly Sensitive Determination of Serotonin by Using Gold Nanoparticles (Au NPs) with a Localized Surface Plasmon Resonance (LSPR) Absorption Wavelength in the Visible Region. RSC Adv. 2020, 10, 30858–30869. [Google Scholar] [CrossRef] [PubMed]
- Huong, V.T.; Van Tran, V.; Lee, N.Y.; Van Hoang, D.; Loan Trinh, K.T.; Phan, T.B.; Thi Tran, N.H. Bimetallic Thin-Film Combination of Surface Plasmon Resonance-Based Optical Fiber Cladding with the Polarizing Homodyne Balanced Detection Method and Biomedical Assay Application. Langmuir 2020, 36, 9967–9976. [Google Scholar] [CrossRef]
- Tran, N.H.T.; Trinh, K.T.L.; Lee, J.H.; Yoon, W.J.; Ju, H. Reproducible Enhancement of Fluorescence by Bimetal Mediated Surface Plasmon Coupled Emission for Highly Sensitive Quantitative Diagnosis of Double-Stranded DNA. Small 2018, 14, 1801385–1801395. [Google Scholar] [CrossRef]
- Fornasiero, D.; Grieser, F. Analysis of the Visible Absorption and SERS Excitation Spectra of Silver Sols. J. Chem. Phys. 1987, 87, 3213–3217. [Google Scholar] [CrossRef]
- Halas, N. Playing with Plasmons: Tuning the Optical Resonant Properties of Metallic Nanoshells. MRS Bull. 2005, 30, 362–367. [Google Scholar] [CrossRef]
- Nordlander, P.J. Plasmon Hybridization in Metallic Nanostructures. Nano Lett. 2004, 4, 2209–2213. [Google Scholar] [CrossRef]
- Schick, I.; Gehrig, D.; Montigny, M.; Balke, B.; Panthöfer, M.; Henkel, A.; Laquai, F.; Tremel, W. Effect of Charge Transfer in Magnetic-Plasmonic Au@MOx (M = Mn, Fe) Heterodimers on the Kinetics of Nanocrystal Formation. Chem. Mater. 2015, 27, 4877–4884. [Google Scholar] [CrossRef]
- Homola, J. On the Sensitivity of Surface Plasmon Resonance Sensors with Spectral Interrogation. Sens. Actuators B Chem. 1997, 41, 207–211. [Google Scholar] [CrossRef]
- Liu, Y.; Kou, Q.; Wang, D.; Chen, L.; Sun, Y.; Lu, Z.; Zhang, Y.; Wang, Y.; Yang, J.; Xing, S.G. Rational Synthesis and Tailored Optical and Magnetic Characteristics of Fe3O4–Au Composite Nanoparticles. J. Mater. Sci. 2017, 52, 10163–10174. [Google Scholar] [CrossRef]
- Zhu, N.; Ji, H.; Yu, P.; Niu, J.; Farooq, M.U.; Akram, M.W.; Udego, I.O.; Li, H.; Niu, X. Surface Modification of Magnetic Iron Oxide Nanoparticles. Nanomaterials 2018, 8, 810. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.; Nada, A.; Kamal, D.E. Density Functional Theory and FTIR Spectroscopic Study of Carboxyl Group. Indian J. Pure Appl. Phys. 2005, 34, 911–917. [Google Scholar]
- Ji, X.; Song, X.; Li, J.; Bai, Y.; Yang, W.; Peng, X. Size Control of Gold Nanocrystals in Citrate Reduction: The Third Role of Citrate. J. Am. Chem. Soc. 2007, 129, 13939–13948. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Peng, H.; Wen, Y.; Li, N. Re-Examination of Characteristic FTIR Spectrum of Secondary Layer in Bilayer Oleic Acid-Coated Fe3O4 Nanoparticles. Appl. Surf. Sci. 2010, 256, 3093–3097. [Google Scholar] [CrossRef]
- Ghosh, D.; Chattopadhyay, N. Gold Nanoparticles: Acceptors for Efficient Energy Transfer from the Photoexcited Fluorophores. Opt. Photonics J. 2013, 3, 18–26. [Google Scholar] [CrossRef]
- Kwok, D.Y.; Neumann, A.W. Contact Angle Measurement and Contact Angle Interpretation. Adv. Colloid Interface Sci. 1999, 81, 167–249. [Google Scholar] [CrossRef]
- Ben Haddada, M.; Blanchard, J.; Casale, S.; Krafft, J.-M.; Vallée, A.; Méthivier, C.; Boujday, S. Optimizing the Immobilization of Gold Nanoparticles on Functionalized Silicon Surfaces: Amine- vs. Thiol-Terminated Silane. Gold Bull. 2013, 46, 335–341. [Google Scholar] [CrossRef]
- Ding, D.; Yan, X.; Zhang, X.; He, Q.; Qiu, B.; Jiang, D.; Wei, H.; Guo, J.; Umar, A.; Sun, L.; et al. Preparation and Enhanced Properties of Fe3O4 Nanoparticles Reinforced Polyimide Nanocomposites. Superlattices Microstruct. 2015, 85, 305–320. [Google Scholar] [CrossRef]
- Smith, T. The Hydrophilic Nature of a Clean Gold Surface. J. Colloid Interface Sci. 1980, 75, 51–55. [Google Scholar] [CrossRef]
- Ruíz-Baltazar, A.; Esparza, R.; Rosas, G.; Perez-Campos, R. Effect of the Surfactant on the Growth and Oxidation of Iron Nanoparticles. J. Nanomater. 2015, 2015, 240948. [Google Scholar] [CrossRef]
- Krishnamurthy, S.; Esterle, A.; Sharma, N.C.; Sahi, S. V Yucca-Derived Synthesis of Gold Nanomaterial and Their Catalytic Potential. Nanoscale Res. Lett. 2014, 9, 627. [Google Scholar] [CrossRef]
- Holzwarth, U.; Gibson, N. The Scherrer Equation versus the “Debye-Scherrer Equation”. Nat. Nanotechnol. 2011, 6, 534. [Google Scholar] [CrossRef]
- Mahadevan, S.; Chauhan, A.P.S. Investigation of Synthesized Nanosized Copper by Polyol Technique with Graphite Powder. Adv. Powder Technol. 2016, 27, 1852–1856. [Google Scholar] [CrossRef]
- Ko, H.; Singamaneni, S.; Tsukruk, V. V Nanostructured Surfaces and Assemblies as SERS Media. Small 2008, 4, 1576–1599. [Google Scholar] [CrossRef]
- Nasrazadani, S.; Hassani, S. Modern Analytical Techniques in Failure Analysis of Aerospace, Chemical, and Oil and Gas Industries. In Handbook of Materials Failure Analysis with Case Studies from the Oil and Gas Industry; Elsevier: Amsterdam, The Netherlands, 2016; Volume 2, pp. 39–54. [Google Scholar]
- Dabiri, M.; Lehi, N.; Movahed, S. Fe3O4@RGO@Au@C Composite with Magnetic Core and Au Enwrapped in Double-Shelled Carbon: An Excellent Catalyst in the Reduction of Nitroarenes and Suzuki–Miyaura Cross-Coupling. Catal. Lett. 2016, 146, 1647–1686. [Google Scholar] [CrossRef]
- Zeng, Y.; Hao, R.; Xing, B.; Hou, Y.; Xu, Z. One-Pot Synthesis of Fe3O4 Nanoprisms with Controlled Electrochemical Properties. Chem. Commun. 2010, 46, 3920–3922. [Google Scholar] [CrossRef]
- Singh, S.; Pasricha, R.; Bhatta, U.M.; Satyam, P.V.; Sastry, M.; Prasad, B.L. V Effect of Halogen Addition to Monolayer Protected Gold Nanoparticles. J. Mater. Chem. 2007, 17, 1614–1619. [Google Scholar] [CrossRef]
- Liu, X.; Shao, Y.; Tang, Y.; Yao, K. Highly Uniform and Reproducible Surface Enhanced Raman Scattering on Air-Stable Metallic Glassy Nanowire Array. Sci. Rep. 2014, 4, 5835. [Google Scholar] [CrossRef]
- Lin, S.; Hasi, W.-L.-J.; Lin, X.; Han, S.; Lou, X.-T.; Yang, F.; Lin, D.-Y.; Lu, Z.-W. Rapid and Sensitive SERS Method for Determination of Rhodamine B in Chili Powder with Paper-Based Substrates. Anal. Methods 2015, 7, 5289–5294. [Google Scholar] [CrossRef]
- Fang, C.; Agarwal, A.; Buddharaju, K.; Khalid, N.; Shaik, S.; Widjaja, E.; Garland, M.; Balasubramanian, N.; Kwong, D.-L. DNA Detection Using Nanostructured SERS Substrates with Rhodamine B as Raman Label. Biosens. Bioelectron. 2008, 24, 216–221. [Google Scholar] [CrossRef]
- Leech, J.W. The Feynman Lectures on Physics; Addison-Wesley Pub. Co., Ltd.: Boston, MA, USA, 1966; Volume 17, ISBN 9780465024148. [Google Scholar]
- Ma, Y.; Yang, L.; Yang, Y.; Peng, Y.; Wei, Y.; Huang, Z. Multifunctional Ag-Decorated g-C3N4 Nanosheets as Recyclable SERS Substrates for CV and RhB Detection. RSC Adv. 2018, 8, 22095–22102. [Google Scholar] [CrossRef]
- Chook, S.W.; Chia, C.H.; Chan, C.H.; Chin, S.X.; Zakaria, S.; Sajab, M.S.; Huang, N.M. A Porous Aerogel Nanocomposite of Silver Nanoparticles-Functionalized Cellulose Nanofibrils for SERS Detection and Catalytic Degradation of Rhodamine B. RSC Adv. 2015, 5, 88915–88920. [Google Scholar] [CrossRef]
- Yang, C.; Qing, C.; Wang, Q.; Zhang, X.; Lou, J.; Liu, Y. Synthesis of the Hybrid CdS/Au Flower-like Nanomaterials and Their SERS Application. Sens. Actuators B Chem. 2020, 304, 127218. [Google Scholar] [CrossRef]
- Ran, Y.; Strobbia, P.; Cupil-Garcia, V.; Vo-Dinh, T. Fiber-Optrode SERS Probes Using Plasmonic Silver-Coated Gold Nanostars. Sens. Actuators B Chem. 2019, 287, 95–101. [Google Scholar] [CrossRef]
- Zhao, D.; Lin, K.; Wang, L.; Qiu, Z.; Zhao, X.; Du, K.; Han, L.; Tian, F.; Chang, Y. A Physical Approach for the Estimation of the SERS Enhancement Factor through the Enrichment and Separation of Target Molecules Using Magnetic Adsorbents. RSC Adv. 2020, 10, 20028–20037. [Google Scholar] [CrossRef]
- Li, C.; Chen, M. Active Site-Dominated Electromagnetic Enhancement of Surface-Enhanced Raman Spectroscopy (SERS) on a Cu Triangle Plate. RSC Adv. 2020, 10, 42030–42037. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Shen, Y.; Xie, A. An Assembled Ordered W18O49 Nanowire Film with High SERS Sensitivity and Stability for the Detection of RB. Appl. Surf. Sci. 2020, 504, 144073. [Google Scholar] [CrossRef]
- Natan, M.J. Concluding Remarks Surface Enhanced Raman Scattering. Faraday Discuss. 2006, 132, 321–328. [Google Scholar] [CrossRef]
- Wang, Y.; Zu, X.; Yi, G.; Luo, H.; Huang, H. Gap-Plasmon of Fe3O4@Ag Core-Shell Nanostructures for Highly Enhanced Fluorescence Detection of Rhodamine B. J. Wuhan Univ. Technol. Sci. Ed. 2017, 32, 264–271. [Google Scholar] [CrossRef]
- Toda, M.; Arima, Y.; Takiguchi, H.; Iwata, H. Surface Plasmon Field-Enhanced Fluorescence Spectroscopy Apparatus with a Convergent Optical System for Point-of-Care Testing. Anal. Biochem. 2014, 467, 47–53. [Google Scholar] [CrossRef]
- Lu, C.; Wei, D.; Li, G. A Fluorescence Turn-on Biosensor Based on Gold Nanoclusters and Aptamer for Alpha Fetoprotein Detection. IOP Conf. Ser. Earth Environ. Sci. 2019, 218, 12106. [Google Scholar] [CrossRef]
- Xu, S.; Feng, X.; Gao, T.; Liu, G.; Mao, Y.; Lin, J.; Yu, X.; Luo, X. Aptamer Induced Multicoloured Au NCs-MoS2 “Switch on” Fluorescence Resonance Energy Transfer Biosensor for Dual Color Simultaneous Detection of Multiple Tumor Markers by Single Wavelength Excitation. Anal. Chim. Acta 2017, 983, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zeng, J.; Liu, H.; Ding, P.; Liang, J.; Nie, X.; Zhou, Z. A Fluorometric Aptamer Nanoprobe for Alpha-Fetoprotein by Exploiting the FRET between 5-Carboxyfluorescein and Palladium Nanoparticles. Microchim. Acta 2019, 186, 314. [Google Scholar] [CrossRef] [PubMed]
- Bao, B.; Su, P.; Zhu, J.; Chen, J.; Xu, Y.; Gu, B.; Liu, Y.; Wang, L. Rapid Aptasensor Capable of Simply Detect Tumor Markers Based on Conjugated Polyelectrolytes. Talanta 2018, 190, 204–209. [Google Scholar] [CrossRef]
Wavelength (cm−1) | 1647 | 1605 | 1568 | 1513 | 1366 | 1295 | 1203 | 622 |
Assignment | 𝞶Aromatic C-C | 𝞶Aromatic C=C | 𝟂Aromatic C-C | 𝟂Aromatic C-C | 𝞶Aromatic C-C | 𝞶Bridge-band C-C | 𝟂Aromatic C-H | Xanthene ring puckering |
SERS Substrates | LOD (M) | EF (Fold) | Ref. |
---|---|---|---|
GMPs | 3.5 × 10−12 | 2.1 × 108 | This work |
Ag-decorated g-C3N4 nanosheets | 10−5 | -* | [64] |
CNF-Ag NPs | 5 × 10−7 | -* | [65] |
CdS/Au flower-like | 10−8 | -* | [66] |
Ag-coated Au nanostars | 10−8 | -* | [67] |
Fe3O4@1G NPs with one graphene layer | -* | 1.64 × 105 | [68] |
Cu triangle plate etched by H2O2/HCl | -* | 4.5 × 106 | [69] |
W18O49 nanowire film | -* | 4.38 × 105 | [70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phuc, L.G.; Do, P.Q.T.; Ta, H.K.T.; Dang, V.Q.; Joo, S.-W.; Manh, D.H.; Bach, T.N.; Van, T.T.T.; Tran, N.H.T. Metal-Enhanced Fluorescence for Alpha-Fetoprotein Detection and for SERS Using Hybrid Nanoparticles of Magnetic Cluster Core—Plasmonic Shell Composite. Chemosensors 2023, 11, 56. https://doi.org/10.3390/chemosensors11010056
Phuc LG, Do PQT, Ta HKT, Dang VQ, Joo S-W, Manh DH, Bach TN, Van TTT, Tran NHT. Metal-Enhanced Fluorescence for Alpha-Fetoprotein Detection and for SERS Using Hybrid Nanoparticles of Magnetic Cluster Core—Plasmonic Shell Composite. Chemosensors. 2023; 11(1):56. https://doi.org/10.3390/chemosensors11010056
Chicago/Turabian StylePhuc, Lam Gia, Phuong Que Tran Do, Hanh Kieu Thi Ta, Vinh Quang Dang, Sang-Woo Joo, Do Hung Manh, Ta Ngoc Bach, Tran T. T. Van, and Nhu Hoa Thi Tran. 2023. "Metal-Enhanced Fluorescence for Alpha-Fetoprotein Detection and for SERS Using Hybrid Nanoparticles of Magnetic Cluster Core—Plasmonic Shell Composite" Chemosensors 11, no. 1: 56. https://doi.org/10.3390/chemosensors11010056
APA StylePhuc, L. G., Do, P. Q. T., Ta, H. K. T., Dang, V. Q., Joo, S.-W., Manh, D. H., Bach, T. N., Van, T. T. T., & Tran, N. H. T. (2023). Metal-Enhanced Fluorescence for Alpha-Fetoprotein Detection and for SERS Using Hybrid Nanoparticles of Magnetic Cluster Core—Plasmonic Shell Composite. Chemosensors, 11(1), 56. https://doi.org/10.3390/chemosensors11010056