Luminescence Tracking and In Vivo Toxicity Evaluation of TiO2 and Europium Doped TiO2 Nanocrystals during Drosophila Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Characterization of TiO2 and Eu3+-Doped TiO2 Nanocrystals
2.2. Characterization
2.3. Tracking of TiO2 and Eu3+-Doped TiO2 Nanocrystals and Fluorescence Intensity Analysis In Vivo
2.4. Nanotoxicology Study
2.4.1. Preparation of Stock Solution of the TiO2 and Eu3+-Doped TiO2 and Drosophila Stocks
2.4.2. Analysis of Drosophila Development under TiO2 and Eu3+-Doped TiO2 Exposure
2.4.3. Longevity Measurements
2.4.4. Redox Homeostasis Analysis following Nanocrystals Exposure
2.5. Statistical Analysis
3. Results and Discussion
3.1. Characterization of TiO2 and Eu+3-Doped TiO2 Nanocrystals
3.2. Tracking of TiO2 and Eu3+-Doped TiO2 Nanocrystals In Vivo
3.3. Nanotoxicology Study
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The History of Nanoscience and Nanotechnology: From Chemical-Physical Applications to Nanomedicine. Molecules 2020, 25, 112. [Google Scholar] [CrossRef] [Green Version]
- Baranowska-Wójcik, E.; Szwajgier, D.; Oleszczuk, P.; Winiarska-Mieczan, A. Effects of Titanium Dioxide Nanoparticles Exposure on Human Health—A Review. Biol. Trace Elem. Res. 2020, 193, 118–129. [Google Scholar] [CrossRef] [Green Version]
- Ziental, D.; Czarczynska-Goslinska, B.; Mlynarczyk, D.T.; Glowacka-Sobotta, A.; Stanisz, B.; Goslinski, T.; Sobotta, L. Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine. Nanomaterials 2020, 10, 387. [Google Scholar] [CrossRef] [Green Version]
- Sario, S.; Silva, A.M.; Gaivão, I. Titanium Dioxide Nanoparticles: Toxicity and Genotoxicity in Drosophila Melanogaster (SMART Eye-Spot Test and Comet Assay in Neuroblasts). Mutat Res. Genet. Toxicol. Environ. Mutagen. 2018, 831, 19–23. [Google Scholar] [CrossRef]
- Rashid, M.M.; Tavčer, P.F.; Tomšič, B. Influence of Titanium Dioxide Nanoparticles on Human Health and the Environment. Nanomaterials 2021, 11, 2354. [Google Scholar] [CrossRef]
- Jovanović, B.; Jovanović, N.; Cvetković, V.J.; Matić, S.; Stanić, S.; Whitley, E.M.; Mitrović, T.L. The Effects of a Human Food Additive, Titanium Dioxide Nanoparticles E171, on Drosophila Melanogaster-A 20 Generation Dietary Exposure Experiment. Sci. Rep. 2018, 8, 17922. [Google Scholar] [CrossRef] [Green Version]
- Grande, F.; Tucci, P. Mini-Reviews in Medicinal Chemistry SCIENCE BENTHAM Impact Factor: 2.903 Titanium Dioxide Nanoparticles: A Risk for Human Health? Rev. Med. Chem. 2016, 16, 762–769. [Google Scholar] [CrossRef]
- Carmona, E.R.; Escobar, B.; Vales, G.; Marcos, R. Genotoxic Testing of Titanium Dioxide Anatase Nanoparticles Using the Wing-Spot Test and the Comet Assay in Drosophila. Mutat Res. Genet. Toxicol. Environ. Mutagen. 2015, 778, 12–21. [Google Scholar] [CrossRef]
- Wu, J.; Sun, J.; Xue, Y. Involvement of JNK and P53 Activation in G2/M Cell Cycle Arrest and Apoptosis Induced by Titanium Dioxide Nanoparticles in Neuron Cells. Toxicol. Lett. 2010, 199, 269–276. [Google Scholar] [CrossRef]
- Posgai, R.; Cipolla-McCulloch, C.B.; Murphy, K.R.; Hussain, S.M.; Rowe, J.J.; Nielsen, M.G. Differential Toxicity of Silver and Titanium Dioxide Nanoparticles on Drosophila Melanogaster Development, Reproductive Effort, and Viability: Size, Coatings and Antioxidants Matter. Chemosphere 2011, 85, 34–42. [Google Scholar] [CrossRef]
- Dar, G.I.; Saeed, M.; Wu, A. 2 Toxicity of TiO2 Nanoparticles; Wiley Online Library: New York, NY, USA, 2020. [Google Scholar]
- Cvetković, V.J.; Jovanović, B.; Lazarević, M.; Jovanović, N.; Savić-Zdravković, D.; Mitrović, T.; Žikić, V. Changes in the Wing Shape and Size in Drosophila Melanogaster Treated with Food Grade Titanium Dioxide Nanoparticles (E171)—A Multigenerational Study. Chemosphere 2020, 261, 127787. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, B.; Cvetković, V.J.; Mitrović, T.L. Effects of Human Food Grade Titanium Dioxide Nanoparticle Dietary Exposure on Drosophila Melanogaster Survival, Fecundity, Pupation and Expression of Antioxidant Genes. Chemosphere 2016, 144, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Pogribna, M.; Koonce, N.A.; Mathew, A.; Word, B.; Patri, A.K.; Lyn-Cook, B.; Hammons, G. Effect of Titanium Dioxide Nanoparticles on DNA Methylation in Multiple Human Cell Lines. Nanotoxicology 2020, 14, 534–553. [Google Scholar] [CrossRef] [PubMed]
- Mamboungou, J.; Canedo, A.; Qualhato, G.; Rocha, T.L.; Vieira, L.G. Environmental Risk of Titanium Dioxide Nanoparticle and Cadmium Mixture: Developmental Toxicity Assessment in Zebrafish (Danio Rerio). J. Nanopart. Res. 2022, 24, 186. [Google Scholar] [CrossRef]
- Jovanović, B. Critical Review of Public Health Regulations of Titanium Dioxide, a Human Food Additive. Integr. Environ. Assess. Manag. 2015, 11, 10–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jovanović, B. Review of Titanium Dioxide Nanoparticle Phototoxicity: Developing a Phototoxicity Ratio to Correct the Endpoint Values of Toxicity Tests. Environ. Toxicol Chem. 2015, 34, 1070–1077. [Google Scholar] [CrossRef] [Green Version]
- Lankoff, A.; Sandberg, W.J.; Wegierek-Ciuk, A.; Lisowska, H.; Refsnes, M.; Sartowska, B.; Schwarze, P.E.; Meczynska-Wielgosz, S.; Wojewodzka, M.; Kruszewski, M. The Effect of Agglomeration State of Silver and Titanium Dioxide Nanoparticles on Cellular Response of HepG2, A549 and THP-1 Cells. Toxicol. Lett. 2012, 208, 197–213. [Google Scholar] [CrossRef]
- Wani, M.R.; Shadab, G.G.H.A. Titanium Dioxide Nanoparticle Genotoxicity: A Review of Recent in Vivo and in Vitro Studies. Toxicol. Ind. Health 2020, 36, 514–530. [Google Scholar] [CrossRef]
- Silva, A.C.A.; Dantas, N.O.; Silva, M.J.B.; Spanó, M.A.; Goulart, L.R. Functional Nanocrystals: Towards Biocompatibility, Nontoxicity and Biospecificity Chapter 2. In Advances in Biochemistry & Applications in Medicine Advances in Biochemistry & Applications in Medicine; Shrestha, R., Ed.; Open Access eBooks: Las Vegas, NV, USA, 2014; Volume 1, pp. 1–27. [Google Scholar]
- Sandoval, S.; Yang, J.; Alfaro, J.G.; Liberman, A.; Makale, M.; Chiang, C.E.; Schuller, I.K.; Kummel, A.C.; Trogler, W.C. Europium-Doped TiO2 Hollow Nanoshells: Two-Photon Imaging of Cell Binding. Chem. Mater. 2012, 24, 4222–4230. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.C.A.; Alvin, E.A.; dos Santos, F.R.A.; de Matos, S.L.M.; de Oliveira, J.M.; Silva, A.S.; Guimarães, É.v; Vieira, M.S.; Da, E.A.; Filho, S.; et al. Doped Semiconductor Nanocrystals: Development and Applications. In Materials at the Nanoscale, 1st ed.; Mallik, A., Ed.; IntechOpen: London, UK, 2021; Volume 1. [Google Scholar] [CrossRef]
- Norris, D.J.; Efros, A.L.; Erwin, S.C. Doped Nanocrystals. Science 2008, 319, 1776–1779. [Google Scholar] [CrossRef]
- Padmanabhan, P.; Kumar, A.; Kumar, S.; Chaudhary, R.K.; Gulyás, B. Nanoparticles in Practice for Molecular-Imaging Applications: An Overview. Acta Biomater 2016, 41, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Salvador, F.F.S.; Francisco, L.H.C.; Brito, H.F.; Felinto, M.C.F.C. Development of Europium-Doped Ultrasmall Luminescent Tin Oxide Nanoparticles for Applications in Nuclear Medicine. In Proceedings of the International Nuclear Atlantic Conference, Virtual Meeting, 29 November–2 December 2021. [Google Scholar]
- Zeng, H.; Li, X.; Sun, M.; Wu, S.; Chen, H. Synthesis of Europium-Doped Fluorapatite Nanorods and Their Biomedical Applications in Drug Delivery. Molecules 2017, 22, 753. [Google Scholar] [CrossRef] [Green Version]
- Patil, M.S. Toxicological Studies on model organism Drosophila melanogaster. EPRA Int. J. Multidiscip. Res. (IJMR)-Peer Rev. J. 2022, 8, 1–4. [Google Scholar] [CrossRef]
- Reiter, L.T.; Potocki, L.; Chien, S.; Gribskov, M.; Bier, E. A Systematic Analysis of Human Disease-Associated Gene Sequences in Drosophila Melanogaster. Genome Res. 2001, 11, 1114–1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, U.B.; Nichols, C.D. Human Disease Models in Drosophila Melanogaster and the Role of the Fly in Therapeutic Drug Discovery. Pharmacol Rev. 2011, 63, 411–436. [Google Scholar] [CrossRef] [Green Version]
- Qualhato, G.; Rocha, T.L.; de Oliveira Lima, E.C.; e Silva, D.M.; Cardoso, J.R.; Koppe Grisolia, C.; de Sabóia-Morais, S.M.T. Genotoxic and Mutagenic Assessment of Iron Oxide (Maghemite-Γ-Fe2O3) Nanoparticle in the Guppy Poecilia Reticulata. Chemosphere 2017, 183, 305–314. [Google Scholar] [CrossRef]
- Albrecht, S.C.; Barata, A.G.; Großhans, J.; Teleman, A.A.; Dick, T.P. In Vivo Mapping of Hydrogen Peroxide and Oxidized Glutathione Reveals Chemical and Regional Specificity of Redox Homeostasis. Cell Metab 2011, 14, 819–829. [Google Scholar] [CrossRef] [Green Version]
- Mohanraj, V.J.; Chen, Y. Nanoparticles-A Review. Trop. J. Pharmaceut. Res. 2006, 5, 561–573. [Google Scholar] [CrossRef] [Green Version]
- Jayaram, D.T.; Payne, C.K. Intracellular Generation of Superoxide by TiO2Nanoparticles Decreases Histone Deacetylase 9 (HDAC9), an Epigenetic Modifier. Bioconjug Chem 2020, 31, 1354–1361. [Google Scholar] [CrossRef]
- Pan, X.; Connacher, R.P.; O’Connor, M.B. Control of the Insect Metamorphic Transition by Ecdysteroid Production and Secretion. Curr. Opin. Insect. Sci. 2021, 43, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Hydrogen Peroxide as a Central Redox Signaling Molecule in Physiological Oxidative Stress: Oxidative Eustress. Redox. Biol. 2017, 11, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Andrés, C.M.C.; Pérez de la Lastra, J.M.; Juan, C.A.; Plou, F.J.; Pérez-Lebeña, E. Chemistry of Hydrogen Peroxide Formation and Elimination in Mammalian Cells, and Its Role in Various Pathologies. Stresses 2022, 2, 256–274. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, J.M.; da Silva, K.T.R.; dos Santos, F.R.A.; Valer, F.B.; Takaki, R.K.O.; de Carvalho, J.P.S.; de Castro, O.W.; Rocha, T.L.; Dantas, N.O.; Silva, A.C.A.; et al. Luminescence Tracking and In Vivo Toxicity Evaluation of TiO2 and Europium Doped TiO2 Nanocrystals during Drosophila Development. Chemosensors 2023, 11, 55. https://doi.org/10.3390/chemosensors11010055
de Oliveira JM, da Silva KTR, dos Santos FRA, Valer FB, Takaki RKO, de Carvalho JPS, de Castro OW, Rocha TL, Dantas NO, Silva ACA, et al. Luminescence Tracking and In Vivo Toxicity Evaluation of TiO2 and Europium Doped TiO2 Nanocrystals during Drosophila Development. Chemosensors. 2023; 11(1):55. https://doi.org/10.3390/chemosensors11010055
Chicago/Turabian Stylede Oliveira, Jerusa Maria, Kellen Talita Romão da Silva, Francisco Rubens Alves dos Santos, Felipe Berti Valer, Ricardo Kenji Ohno Takaki, João Paulo Santos de Carvalho, Olagide Wagner de Castro, Thiago Lopes Rocha, Noelio Oliveira Dantas, Anielle Christine Almeida Silva, and et al. 2023. "Luminescence Tracking and In Vivo Toxicity Evaluation of TiO2 and Europium Doped TiO2 Nanocrystals during Drosophila Development" Chemosensors 11, no. 1: 55. https://doi.org/10.3390/chemosensors11010055
APA Stylede Oliveira, J. M., da Silva, K. T. R., dos Santos, F. R. A., Valer, F. B., Takaki, R. K. O., de Carvalho, J. P. S., de Castro, O. W., Rocha, T. L., Dantas, N. O., Silva, A. C. A., & Anhezini, L. (2023). Luminescence Tracking and In Vivo Toxicity Evaluation of TiO2 and Europium Doped TiO2 Nanocrystals during Drosophila Development. Chemosensors, 11(1), 55. https://doi.org/10.3390/chemosensors11010055