Graphdiyne-Templated Platinum Nanoparticles as a Novel Platform for the Electrochemical Determination of Bisphenol AF
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Apparatus
2.2. Synthesis of PtNPs@GDY
2.3. Fabrication of the Modified Electrodes
3. Results and Discussion
3.1. Characterization of PtNPs@GDY
3.2. Electrochemical Behaviors of the Different Modified Electrodes
3.3. Effect of pH and Scan Rate
3.4. DPV Determination of BPAF
3.5. Interference, Stability and Practical Application
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Yang, J.; Wang, Y.; Li, Y.; Wang, F.; Zhang, L. Studies on electrochemical oxidation of estrogenic disrupting compound bisphenol AF and its interaction with human serum albumin. J. Hazard. Mater. 2014, 276, 105–111. [Google Scholar] [CrossRef] [PubMed]
- LaFleur, A.D.; Schug, K.A. A review of separation methods for the determination of estrogens and plastics-derived estrogen mimics from aqueous systems. Anal. Chim. Acta 2011, 696, 6–26. [Google Scholar] [CrossRef]
- Song, S.; Ruan, T.; Wang, T.; Liu, R.; Jiang, G. Distribution and preliminary exposure assessment of bisphenol AF (BPAF) in various environmental matrices around a manufacturing plant in China. Environ. Sci. Technol. 2012, 46, 13136–13143. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zhang, J.; Zhang, Y.; Zhou, P.; Wang, J.; Liu, Y. Heterogeneous catalytic oxidation degradation of BPAF by peroxymonosulfate active with manganic manganous oxide: Mineralization, mechanism and degradation pathways. Chemosphere 2021, 263, 127950. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Suyama, K.; Shiki, J.; Torikai, K.; Nose, T.; Shimohigashi, M.; Shimohigashi, Y. Bisphenol AF: Halogen bonding effect is a major driving force for the dual ERα-agonist and ERβ-antagonist activities. Bioorg. Med. Chem. 2020, 28, 115274. [Google Scholar] [CrossRef] [PubMed]
- Deiminiat, B.; Rounaghi, G.H.; Arbab-Zavar, M.H.; Razavipanah, I. A novel electrochemical aptasensor based on f-MWCNTs/AuNPs nanocomposite for label-free detection of bisphenol A. Sens. Actuators B 2017, 242, 158–166. [Google Scholar] [CrossRef]
- Ali, M.Y.; Alam, A.U.; Howlader, M.M. Fabrication of highly sensitive bisphenol A electrochemical sensor amplified with chemically modified multiwall carbon nanotubes and β-cyclodextrin. Sens. Actuators B 2020, 320, 128319. [Google Scholar] [CrossRef]
- Zhang, S.; Shi, Y.; Wang, J.; Xiao, L.; Yang, X.; Cui, R.; Han, Z. Nanocomposites consisting of nanoporous platinum-silicon and graphene for electrochemical determination of bisphenol A. Microchim. Acta 2020, 187, 241. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Campiña, J.M.; Silva, A.F. A layered nanocomposite of laccase, chitosan, and Fe3O4 nanoparticles-reduced graphene oxide for the nanomolar electrochemical detection of bisphenol A. Microchim. Acta 2020, 187, 262. [Google Scholar] [CrossRef]
- Yang, Y.; Yin, J.; Yang, Y.; Zhou, N.; Zhang, J.; Shao, B.; Wu, Y. Determination of bisphenol AF (BPAF) in tissues, serum, urine and feces of orally dosed rats by ultra-high-pressure liquid chromatography–electrospray tandem mass spectrometry. J. Chromatogr. B 2012, 901, 93–97. [Google Scholar] [CrossRef]
- Li, Y.; Lu, P.; Cheng, J.; Wang, Q.; He, C. Simultaneous solid-phase extraction and determination of three bisphenols in water samples and orange juice by a porous β-cyclodextrin polymer. Food Anal. Methods 2018, 11, 1476–1484. [Google Scholar] [CrossRef]
- Moreira, F.C.; Boaventura, R.A.R.; Brillas, E.; Vilar, V.J.P. Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Appl. Catal. B Environ. 2017, 202, 217–261. [Google Scholar] [CrossRef]
- Li, H.; Wang, W.; Lv, Q.; Xi, G.; Bai, H. Disposable paper-based electrochemical sensor based on stacked gold nanoparticles supported carbon nanotubes for the determination of bisphenol A. Electrochem. Commun. 2016, 68, 104–107. [Google Scholar] [CrossRef]
- Yang, J.; Wang, X.; Zhang, D.; Wang, L.; Li, Q.; Zhang, L. Simultaneous determination of endocrine disrupting compounds bisphenol F and bisphenol AF using carboxyl functionalized multi-walled carbon nanotubes modified electrode. Talanta 2014, 130, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Li, S.; Lv, P.; He, C.; Ma, D.; Yang, Z. First principles study on the interfacial properties of NM/graphdiyne (NM = Pd, Pt, Rh and Ir): The implications for NM growing. Appl. Surf. Sci. 2016, 360, 1–7. [Google Scholar] [CrossRef]
- Hui, L.; Xue, Y.; Yu, H.; Liu, Y.; Fang, Y.; Xing, C.; Li, Y. Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst. J. Am. Chem. Soc. 2019, 141, 10677–10683. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Wang, N.; He, J.; Yang, Z.; Shen, X.; Huang, C. Preparation of 3D architecture graphdiyne nanosheets for high-performance sodium-ion batteries and capacitors. ACS Appl. Mater. Interfaces 2017, 9, 40604–40613. [Google Scholar] [CrossRef]
- Wang, N.; He, J.; Wang, K.; Zhao, Y.; Jiu, T.; Huang, C.; Li, Y. Graphdiyne-Based Materials: Preparation and Application for Electrochemical Energy Storage. Adv. Mater. 2019, 31, 1803202. [Google Scholar] [CrossRef]
- Lin, Z.Z. Graphdiyne as a promising substrate for stabilizing Pt nanoparticle catalyst. Carbon 2015, 86, 301–309. [Google Scholar] [CrossRef] [Green Version]
- Yakubu, S.; Xiao, J.; Gu, J.; Cheng, J.; Wang, J.; Li, X.; Zhang, Z. A competitive electrochemical immunosensor based on bimetallic nanoparticle decorated nanoflower-like MnO2 for enhanced peroxidase-like activity and sensitive detection of Tetrabromobisphenol A. Sens. Actuators B 2020, 325, 128909. [Google Scholar] [CrossRef]
- Shi, Q.; Tao, H.; Wu, Y.; Chen, J.; Wang, X. An ultrasensitive label-free electrochemical aptasensing platform for thiamethoxam detection based on ZIF-67 derived Co-N doped porous carbon. Bioelectrochemistry 2022, 149, 108317. [Google Scholar] [CrossRef]
- Wei, P.; Wang, S.; Wang, W.; Niu, Z.; Rodas-Gonzalez, A.; Li, K.; Yang, Q. CoNi bimetallic metal–organic framework and gold nanoparticles-based aptamer electrochemical sensor for enrofloxacin detection. Appl. Surf. Sci. 2022, 604, 154369. [Google Scholar] [CrossRef]
- Nehru, R.; Hsu, Y.F.; Wang, S.F.; Dong, C.D.; Govindasamy, M.; Habila, M.A.; AlMasoud, N. Graphene oxide@ Ce-doped TiO2 nanoparticles as electrocatalyst materials for voltammetric detection of hazardous methyl parathion. Microchim. Acta 2021, 188, 216. [Google Scholar] [CrossRef] [PubMed]
- Skoog, D.; Holler, J.; Nieman, T. Principles of Instrumental Analysis, 5th ed.; Harrcourt Brace College Publishers: Orlando, FL, USA, 1998; pp. 13–14. [Google Scholar]
- Chan, Y.Y.; Yue, Y.N.; Li, Y.X.; Webster, R.D. Electrochemical/chemical oxidation of bisphenol A in a four-electron/two-proton process in aprotic organic solvents. Electrochim. Acta 2013, 112, 287–294. [Google Scholar] [CrossRef]
Samples | Added (μM) | Found (μM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
River water | 0 | 0 | - | - |
5.0 | 9.25 | 85.0 | 2.3 | |
10.0 | 19.03 | 90.3 | 1.5 | |
20.0 | 43.66 | 118.3 | 4.2 | |
30.0 | 58.75 | 95.8 | 2.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Xia, Z.; Gui, G.; Zhang, P.; Li, Q.; Meng, L. Graphdiyne-Templated Platinum Nanoparticles as a Novel Platform for the Electrochemical Determination of Bisphenol AF. Chemosensors 2022, 10, 485. https://doi.org/10.3390/chemosensors10110485
Zhang Y, Xia Z, Gui G, Zhang P, Li Q, Meng L. Graphdiyne-Templated Platinum Nanoparticles as a Novel Platform for the Electrochemical Determination of Bisphenol AF. Chemosensors. 2022; 10(11):485. https://doi.org/10.3390/chemosensors10110485
Chicago/Turabian StyleZhang, Yu, Zhi Xia, Guofeng Gui, Ping Zhang, Qianzhu Li, and Lifen Meng. 2022. "Graphdiyne-Templated Platinum Nanoparticles as a Novel Platform for the Electrochemical Determination of Bisphenol AF" Chemosensors 10, no. 11: 485. https://doi.org/10.3390/chemosensors10110485
APA StyleZhang, Y., Xia, Z., Gui, G., Zhang, P., Li, Q., & Meng, L. (2022). Graphdiyne-Templated Platinum Nanoparticles as a Novel Platform for the Electrochemical Determination of Bisphenol AF. Chemosensors, 10(11), 485. https://doi.org/10.3390/chemosensors10110485