Electronic Nose Analysis and Statistical Methods for Investigating Volatile Organic Compounds and Yield of Mint Essential Oils Obtained by Hydrodistillation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Samples
2.2. Extraction of EOs and DWEs by Hydrodistillation
2.3. Electronic Nose
2.4. Extraction Methods and Data Analysis
Statistical Classifier Methods
3. Results
3.1. Effect of Harvesting Age and Drying Method on the Extracted EO Concentration
3.2. E-Nose Sensor Response Smellprint Patterns
3.3. Principal Component Analysis
3.4. Linear Discriminant Analysis
3.5. Artificial Neural Networks
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, M.T. Ch. 94—Mentha piperita (Peppermint). In Textbook of Natural Medicine, 5th ed.; Pizzorno, J.E., Murray, M.T., Eds.; Churchill Livingstone: St. Louis, MO, USA, 2020; Volume 1, pp. 713–715. [Google Scholar] [CrossRef]
- Kokkini, S.; Karousou, R.; Hanlidou, E. Herbs of the Labiatae. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Ed.; Academic Press: Oxford, UK, 2003; pp. 3082–3090. [Google Scholar] [CrossRef]
- Karami, H.; Rasekh, M.; Darvishi, Y.; Khaledi, R. Effect of drying temperature and air velocity on the essential oil content of Mentha aquatica L. J. Essent. Oil Bear. Plants 2017, 20, 1131–1136. [Google Scholar] [CrossRef]
- Fejér, J.; Gruľová, D.; De Feo, V. Biomass production and essential oil in a new bred cultivar of peppermint (Mentha × piperita L.). Ind. Crops Prod. 2017, 109, 812–817. [Google Scholar] [CrossRef]
- Grulova, D.; De Martino, L.; Mancini, E.; Salamon, I.; De Feo, V. Seasonal variability of the main components in essential oil of Mentha × piperita L. J. Sci. Food Agric. 2015, 95, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Zheljazkov, V.D.; Cantrell, C.L.; Astatkie, T.; Hristov, A. Yield, content, and composition of peppermint and spearmints as a function of harvesting time and drying. J. Agric. Food Chem. 2010, 58, 11400–11407. [Google Scholar] [CrossRef] [PubMed]
- Sachan, A.; Das, D.; Shuaib, M.D.; Gangwar, S.; Sharma, R. An overview on Menthae piperitae (Peppermint oil). Int. J. Pharm. Chem. Biol. Sci. 2013, 3, 834–838. Available online: https://www.ijpcbs.com/articles/an-overview-on-menthae-piperitae-peppermint-oil.pdf (accessed on 2 November 2022).
- Balekundri, A.; Mannur, V. Quality control of the traditional herbs and herbal products: A review. Future J. Pharm. Sci. 2020, 6, 67. [Google Scholar] [CrossRef]
- Liu, J.; Wang, W.; Yang, Y.; Yan, Y.; Wang, W.; Wu, H.; Ren, Z. A rapid discrimination of authentic and unauthentic Radix Angelicae Sinensis growth regions by electronic nose coupled with multivariate statistical analyses. Sensors 2014, 14, 20134–20148. [Google Scholar] [CrossRef] [Green Version]
- Rasekh, M.; Karami, H.; Wilson, A.D.; Gancarz, M. Performance analysis of MAU-9 electronic-nose MOS sensor array components and ANN classification methods for discrimination of herb and fruit essential oils. Chemosensors 2021, 9, 243. [Google Scholar] [CrossRef]
- Marriott, P.J.; Shellie, R.; Cornwell, C. Gas chromatographic technologies for the analysis of essential oils. J. Chromatogr. A 2001, 936, 1–22. [Google Scholar] [CrossRef]
- Russo, M.; Serra, D.; Suraci, F.; Postorino, S. Effectiveness of electronic nose systems to detect bergamot (Citrus bergamia Risso et Poiteau) essential oil quality and genuineness. J. Essential Oil Res. 2012, 24, 137–151. [Google Scholar] [CrossRef]
- Wilson, A.D.; Baietto, M. Applications and advances in electronic-nose technologies. Sensors 2009, 9, 5099–5148. [Google Scholar] [CrossRef]
- Wilson, A.D. Diverse applications of electronic-nose technologies in agriculture and forestry. Sensors 2013, 13, 2295–2348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarezadeh, M.R.; Aboonajmi, M.; Varnamkhasti, M.G.; Azarikia, F. Olive oil classification and fraud detection using e-nose and ultrasonic system. Food Anal. Methods 2021, 14, 2199–2210. [Google Scholar] [CrossRef]
- Loutfi, A.; Coradeschia, S.; Mani, G.K.; Shankar, P.; Rayappan, J.B.B. Electronic noses for food quality: A review. J. Food Eng. 2015, 144, 103–111. [Google Scholar] [CrossRef]
- Bhattacharya, N.; Tudu, B.; Jana, A.; Ghosh, D.; Bandhopadhyaya, R.; Bhuyan, M. Preemptive identification of optimum fermentation time for black tea using electronic nose. Sens. Actuators B Chem. 2008, 131, 110–116. [Google Scholar] [CrossRef]
- Tatli, S.; Mirzaee-Ghaleh, E.; Rabbani, H.; Karami, H.; Wilson, A.D. Rapid detection of urea fertilizer effects on VOC emissions from cucumber fruits using a MOS e-nose sensor array. Agronomy 2022, 12, 35. [Google Scholar] [CrossRef]
- Farraia, M.V.; Cavaleiro Rufo, J.; Paciência, I.; Mendes, F.; Delgado, L.; Moreira, A. The electronic nose technology in clinical diagnosis: A systematic review. Porto Biomed. J. 2019, 4, e42. [Google Scholar] [CrossRef]
- Barshick, S.; Griest, W.H.; Vass, A.A. Electronic aroma detection technology for forensic and law enforcement applications. In Proc. SPIE 2941, Forensic Evidence Analysis and Crime Scene Investigation, (10 February 1997); Society of Photo-Optical Instrumentation Engineers: Washington, DC, USA, 1997. [Google Scholar] [CrossRef] [Green Version]
- Bro, R.; Smilde, A.K. Principal component analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef]
- Srinath, K.; Kiranmayee, A.H.; Bhanot, S.; Panchariya, P.C. Detection of palm oil adulteration in sunflower oil using ATR-MIR spectroscopy coupled with chemometric algorithms. MAPAN 2022, 37, 483–493. [Google Scholar] [CrossRef]
- Hartyáni, P.; Dalmadi, I.; Knorr, D. Electronic nose investigation of Alicyclobacillus acidoterrestris inoculated apple and orange juice treated by high hydrostatic pressure. Food Control 2013, 32, 262–269. [Google Scholar] [CrossRef]
- Qiao, J.; Su, G.; Liu, C.; Zou, Y.; Chang, Z.; Yu, H.; Wang, L.; Guo, R. Study on the application of electronic nose technology in the detection for the artificial ripening of crab apples. Horticulturae 2022, 8, 386. [Google Scholar] [CrossRef]
- Pardo, M.; Sberveglieri, G. Classification of electronic nose data with support vector machines. Sens. Actuators B Chem. 2005, 107, 730–737. [Google Scholar] [CrossRef]
- Shahid, A.; Choi, J.-H.; Rana, A.U.H.S.; Kim, H.-S. Least squares neural network-based wireless e-nose system using an SnO2 sensor array. Sensors 2018, 18, 1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souza, M.; Lemos, M.; Brito, D.; Nora Castro, R.; Souza, S. Production and quality of menthol mint essential oil and antifungal and antigerminative activity. Am. J. Plant Sci. 2014, 5, 3311–3318. [Google Scholar] [CrossRef] [Green Version]
- Gershenzon, J.; McConkey, M.E.; Croteau, R.B. Regulation of monoterpene accumulation in leaves of peppermint. Plant Physiology 2000, 122, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Voirin, B.; Bayet, C. Developmental changes in the monoterpene composition of Mentha x piperita leaves from individual peltate trichomes. Phytochemistry 1996, 43, 573–580. [Google Scholar] [CrossRef]
- Mokhtarikhah, G.; Ebadi, M.-T.; Ayyari, M. Qualitative changes of spearmint essential oil as affected by drying methods. Ind. Crops Prod. 2020, 153, 112492. [Google Scholar] [CrossRef]
- Ozdemir, N.; Ozgen, Y.; Kiralan, M.; Bayrak, A.; Arslan, N.; Ramadan, M.F. Effect of different drying methods on the essential oil yield, composition and antioxidant activity of Origanum vulgare L. and Origanum onites L. J. Food Meas. Charact. 2018, 12, 820–825. [Google Scholar] [CrossRef]
- Bettaieb Rebey, I.; Bourgou, S.; Ben Kaab, S.; Aidi Wannes, W.; Ksouri, R.; Saidani Tounsi, M.; Fauconnier, M.-L. On the effect of initial drying techniques on essential oil composition, phenolic compound and antioxidant properties of anise (Pimpinella anisum L.) seeds. J. Food Meas. Charact. 2020, 14, 220–228. [Google Scholar] [CrossRef] [Green Version]
- Parhizi, Z.; Karami, H.; Golpour, I.; Kaveh, M.; Szymanek, M.; Blanco-Marigorta, A.M.; Marcos, J.D.; Khalife, E.; Skowron, S.; Adnan Othman, N.; et al. Modeling and optimization of energy and exergy parameters of a hybrid-solar dryer for basil leaf drying using RSM. Sustainability 2022, 14, 8839. [Google Scholar] [CrossRef]
- Rocha, R.P.; de Castro Melo, E.; Barbosa, L.C.A.; dos Santos, R.H.S.; Cecon, P.R.; Dallacort, R.; Santi, A. Influence of plant age on the content and composition of essential oil of Cymbopogon citratus (DC.) Stapf. J. Med. Plants Res. 2014, 8, 1121–1126. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.L.; Chen, Y.; Xu, W.; Xu, M.T.; Sun, Y.; Wang, X.C.; Wang, X.Y.; Luo, J.; Zhang, H.; Xiong, Y.K. Assessment of dry-ing kinetics, textural and aroma attributes of Mentha haplocalyx leaves during the hot air thin-layer drying process. Foods 2022, 11, 784. [Google Scholar] [CrossRef] [PubMed]
- Hazrati, S.; Lotfi, K.; Govahi, M.; Ebadi, M.-T. A comparative study: Influence of various drying methods on essential oil components and biological properties of Stachys lavandulifolia. Food Sci. Nutr. 2021, 9, 2612–2619. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, A.; Farrokhi, E. Evaluation of the effect of different drying methods on antioxidant and phytochemical activity of essential oil of Origanum vulgare L. subsp. gracile. Eco-phytochem. J. Med. Plants 2019, 7, 15–27. Available online: https://www.sid.ir/en/journal/ViewPaper.aspx?id=787488 (accessed on 17 September 2022).
- de Aquino Brito Lima-Corrêa, R.; dos Santos Andrade, M.; da Silva, M.F.G.F.; Freire, J.T.; Ferreira, M.C. Thin-layer and vibrofluidized drying of basil leaves (Ocimum basilicum L.): Analysis of drying homogeneity and influence of drying conditions on the composition of essential oil and leaf colour. J. Appl. Res. Med. Aromat. Plants 2017, 7, 54–63. [Google Scholar] [CrossRef]
- Taheri-Garavand, A.; Mumivand, H.; Fatahi, S.; Nasiri, A.; Omid, M. Modeling the kinetics of essential oil content and main constituents of mint (Mentha aquatica L.) leaves during thin-layer drying process using response surface methodology. J. Food Process. Preserv. 2021, 45, e15515. [Google Scholar] [CrossRef]
- Ahmed, A.; Ayoub, K.; Chaima, A.J.; Hanaa, L.; Abdelaziz, C. Effect of drying methods on yield, chemical composition and bioactivities of essential oil obtained from Moroccan Mentha pulegium L. Biocatal. Agric. Biotechnol. 2018, 16, 638–643. [Google Scholar] [CrossRef]
- Soodmand-Moghaddam, S.; Sharifi, M.; Zareiforoush, H. Investigation of fuel consumption and essential oil content in drying process of lemon verbena leaves using a continuous flow dryer equipped with a solar pre-heating system. J. Clean. Prod. 2019, 233, 1133–1145. [Google Scholar] [CrossRef]
- Meira, M.; Manganotti, S.; Ronie Martins, E. Crescimento e produção de óleo essencial de Melissa officinalis L. nas condições climáticas de Montes Claros—MG. Biotemas 2011, 24, 1–8. [Google Scholar] [CrossRef]
- May, A.; Suguino, E.; Martins, A.; Barata, L.; Pinheiro, M.Q. Biomass production and essential oil of rosemary (Rosmarinus officinalis L.) in function of the height and interval between the cuts. Rev. Bras. Plantas Med. 2010, 12, 195–200. [Google Scholar] [CrossRef]
- Gorji-Chakespari, A.; Nikbakht, A.M.; Sefidkon, F.; Ghasemi-Varnamkhasti, M.; Valero, E.L. Classification of essential oil composition in Rosa damascena Mill. genotypes using an electronic nose. J. Appl. Res. Med. Aromat. Plants 2017, 4, 27–34. [Google Scholar] [CrossRef]
- Graboski, A.M.; Zakrzevski, C.A.; Shimizu, F.M.; Paschoalin, R.T.; Soares, A.C.; Steffens, J.; Paroul, N.; Steffens, C. Electronic nose based on carbon nanocomposite sensors for clove essential oil detection. ACS Sens. 2020, 5, 1814–1821. [Google Scholar] [CrossRef]
- Aghoutane, Y.; Moufid, M.; Motia, S.; Padzys, G.S.; Omouendze, L.P.; Llobet, E.; Bouchikhi, B.; El Bari, N. Characterization and analysis of okoume and aiele essential oils from Gabon by GC-MS, electronic nose, and their antibacterial activity assessment. Sensors 2020, 20, 6750. [Google Scholar] [CrossRef] [PubMed]
- Kiani, S.; Minaei, S.; Ghasemi-Varnamkhasti, M. Real-time aroma monitoring of mint (Mentha spicata L.) leaves during the drying process using electronic nose system. Measurement 2018, 124, 447–452. [Google Scholar] [CrossRef]
- Zhang, B.; Huang, Y.; Zhang, Q.; Liu, X.; Li, F.; Chen, K. Fragrance discrimination of Chinese Cymbidium species and cultivars using an electronic nose. Sci. Hortic. 2014, 172, 271–277. [Google Scholar] [CrossRef]
- Cui, S.; Wang, J.; Yang, L.; Wu, J.; Wang, X. Qualitative and quantitative analysis on aroma characteristics of ginseng at different ages using E-nose and GC–MS combined with chemometrics. J. Pharm. Biomed. Anal. 2015, 102, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Xu, F.; Cao, C.; Shang, M.-Y.; Zhang, C.-Y.; Yu, J.; Liu, G.-X.; Wang, X.; Cai, S.-Q. Comparative analysis of two species of Asari Radix et Rhizoma by electronic nose, headspace GC–MS and chemometrics. J. Pharm. Biomed. Anal. 2013, 85, 231–238. [Google Scholar] [CrossRef]
- Hui, G.; Jin, J.; Deng, S.; Ye, X.; Zhao, M.; Wang, M.; Ye, D. Winter jujube (Zizyphus jujuba Mill.) quality forecasting method based on electronic nose. Food Chem. 2015, 170, 484–491. [Google Scholar] [CrossRef]
- Nie, J.-Y.; Li, R.; Jiang, Z.-T.; Wang, Y.; Tan, J.; Tang, S.-H.; Zhang, Y. Antioxidant activity screening and chemical constituents of the essential oil from rosemary by ultra-fast GC electronic nose coupled with chemical methodology. J. Sci. Food Agric. 2020, 100, 3481–3487. [Google Scholar] [CrossRef]
Sensor No. | Sensor Type | Common Gases Detected | Detection Range (ppm) |
---|---|---|---|
1 | MQ3 | Alcohol | 10–300 |
2 | TGS822 | Organic solvents | 50–5000 |
3 | MQ-136 | Sulfur dioxide (SO2) | 1–200 |
4 | MQ-9 | CO, combustible gases | 10–10,000 |
5 | TGS813 | CH4, C3H8, C4H10 | 500–10,000 |
6 | MQ135 | Ammonia, benzene, sulfides | 10–10,000 |
7 | TGS2602 | H2S, sulfides, ammonia, toluene | 1–30 |
8 | TGS2620 | Alcohol, organic solvents | 50–5000 |
Source | Type III Sum of Squares | df | Mean Square | F | Significance (p Values) |
---|---|---|---|---|---|
Corrected Model | 0.029 a | 9 | 0.003 | 532.741 | <0.0001 |
Intercept | 5.457 | 1 | 5.457 | 9.146 × 105 | <0.0001 |
Plant age | 0.002 | 4 | 0.000 | 78.953 | <0.0001 |
Drying method | 0.027 | 1 | 0.027 | 4.475 × 103 | <0.0001 |
Plant age × Drying method | 2.3 × 10−5 | 4 | 5.75 × 10−6 | 0.964 | 0.449 |
Error | 0.000 | 20 | 5.97 × 10−6 | ||
Total | 5.486 | 30 | |||
Corrected Total | 0.029 | 29 |
E-A | E-B | Accuracy | Precision | Recall | Specificity | AUC | F | |||||||||
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |||||||
EA1 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
EA2 | 0 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
EA3 | 0 | 0 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.99 | 1.00 | 0.93 | 1.00 | 1.00 | 0.97 |
EA4 | 0 | 0 | 1 | 13 | 3 | 0 | 0 | 0 | 0 | 0 | 0.96 | 0.76 | 0.87 | 0.97 | 0.87 | 0.81 |
EA5 | 0 | 0 | 0 | 2 | 12 | 0 | 0 | 0 | 0 | 0 | 0.97 | 0.86 | 0.80 | 0.98 | 0.92 | 0.83 |
EB1 | 0 | 0 | 0 | 0 | 0 | 15 | 1 | 0 | 0 | 0 | 0.99 | 0.94 | 1.00 | 0.99 | 0.96 | 0.97 |
EB2 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0.98 | 1.00 | 0.80 | 1.00 | 1.00 | 0.99 |
EB3 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 12 | 0 | 0 | 0.96 | 0.86 | 0.80 | 0.98 | 0.92 | 0.83 |
EB4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 15 | 1 | 0.97 | 0.79 | 1.00 | 0.97 | 0.88 | 0.88 |
EB5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14 | 0.99 | 1.00 | 0.93 | 1.00 | 1.00 | 0.97 |
Average | 0.98 | 0.92 | 0.91 | 0.99 | 0.95 | 0.91 | ||||||||||
DW-A | DW-B | Accuracy | Precision | Recall | Specificity | AUC | F | |||||||||
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |||||||
DWA1 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
DWA2 | 0 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
DWA3 | 0 | 0 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.99 | 1.00 | 0.93 | 1.00 | 1.00 | 0.97 |
DWA4 | 0 | 0 | 1 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0.99 | 0.94 | 1.00 | 0.99 | 0.97 | 0.97 |
DWA5 | 0 | 0 | 0 | 0 | 15 | 0 | 0 | 0 | 0 | 0 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
DWB1 | 0 | 0 | 0 | 0 | 0 | 10 | 2 | 0 | 0 | 0 | 0.95 | 0.83 | 0.67 | 0.99 | 0.91 | 0.74 |
DWB2 | 0 | 0 | 0 | 0 | 0 | 5 | 10 | 0 | 0 | 0 | 0.93 | 0.67 | 0.67 | 0.96 | 0.81 | 0.67 |
DWB3 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 15 | 0 | 0 | 0.98 | 0.83 | 1.00 | 0.98 | 0.91 | 0.91 |
DWB4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 6 | 0.94 | 0.67 | 0.80 | 0.96 | 0.81 | 0.73 |
DWB5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 9 | 0.94 | 0.75 | 0.60 | 0.98 | 0.86 | 0.67 |
Average | 0.97 | 0.87 | 0.87 | 0.99 | 0.93 | 0.86 |
EO-A | EO-B | Accuracy | Precision | Recall | Specificity | AUC | F | |
EOA | 65 | 0 | 0.93 | 1.00 | 0.87 | 1.00 | 1.00 | 0.93 |
EOB | 10 | 75 | 0.93 | 0.88 | 1.00 | 0.87 | 0.87 | 0.94 |
Average | 0.93 | 0.94 | 0.93 | 0.93 | 0.94 | 0.93 | ||
DW-A | DW-B | Accuracy | Precision | Recall | Specificity | AUC | F | |
DWA | 75 | 0 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
DWB | 0 | 75 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Average | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Topology | Training | Test | CCR (%) | |||
---|---|---|---|---|---|---|
RMSE | R2 | RMSE | R2 | |||
Essential Oil | 8-6-10 | 0.555 | 0.901 | 0.657 | 0.849 | 85.6 |
8-7-10 | 0.430 | 0.943 | 0.565 | 0.896 | 90.0 | |
8-8-10 | 0.409 | 0.949 | 0.597 | 0.883 | 88.8 | |
8-9-10 | 0.279 | 0.977 | 0.425 | 0.946 | 95.2 | |
8-10-10 | 0.007 | 0.999 | 0.359 | 0.962 | 96.7 | |
8-11-10 | 0.109 | 0.996 | 0.364 | 0.954 | 96.1 | |
Mint Distilled Water | 8-6-10 | 0.559 | 0.898 | 0.552 | 0.901 | 91.1 |
8-7-10 | 0.463 | 0.933 | 0.467 | 0.932 | 93.9 | |
8-8-10 | 0.328 | 0.968 | 0.414 | 0.947 | 95.1 | |
8-9-10 | 0.036 | 0.999 | 0.070 | 0.998 | 100.0 | |
8-10-10 | 0.423 | 0.945 | 0.689 | 0.856 | 86.2 | |
8-11-10 | 0.368 | 0.960 | 0.538 | 0.907 | 91.2 |
EO-A | EO-B | Accuracy | Precision | Recall | Specificity | AUC | F | |||||||||
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |||||||
EOA1 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
EOA2 | 0 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
EOA3 | 0 | 0 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
EOA4 | 0 | 0 | 0 | 14 | 0 | 0 | 0 | 0 | 0 | 0 | 0.99 | 1.00 | 0.93 | 1.00 | 1.00 | 0.97 |
EOA5 | 0 | 0 | 0 | 1 | 15 | 0 | 0 | 0 | 0 | 0 | 0.99 | 0.94 | 1.00 | 0.99 | 0.97 | 0.97 |
EOB1 | 0 | 0 | 0 | 0 | 0 | 15 | 0 | 0 | 0 | 0 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
EOB2 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 0 | 0 | 0 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
EOB3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 | 0.98 | 1.00 | 0.80 | 1.00 | 1.00 | 0.89 |
EOB4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 15 | 1 | 0.97 | 0.79 | 1.00 | 0.97 | 0.88 | 0.88 |
EOB5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14 | 0.99 | 1.00 | 0.93 | 1.00 | 1.00 | 0.97 |
Average | 0.99 | 0.97 | 0.97 | 1.00 | 0.98 | 0.97 | ||||||||||
DW-A | DW-B | Accuracy | Precision | Recall | Specificity | AUC | F | |||||||||
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |||||||
DWA1 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
DWA2 | 0 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
DWA3 | 0 | 0 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
DWA4 | 0 | 0 | 0 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
DWA5 | 0 | 0 | 0 | 0 | 15 | 0 | 0 | 0 | 0 | 0 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
DWB1 | 0 | 0 | 0 | 0 | 0 | 15 | 0 | 0 | 0 | 0 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
DWB2 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 0 | 0 | 0 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
DWB3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 0 | 0 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
DWB4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 0 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
DWB5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Average | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zorpeykar, S.; Mirzaee-Ghaleh, E.; Karami, H.; Ramedani, Z.; Wilson, A.D. Electronic Nose Analysis and Statistical Methods for Investigating Volatile Organic Compounds and Yield of Mint Essential Oils Obtained by Hydrodistillation. Chemosensors 2022, 10, 486. https://doi.org/10.3390/chemosensors10110486
Zorpeykar S, Mirzaee-Ghaleh E, Karami H, Ramedani Z, Wilson AD. Electronic Nose Analysis and Statistical Methods for Investigating Volatile Organic Compounds and Yield of Mint Essential Oils Obtained by Hydrodistillation. Chemosensors. 2022; 10(11):486. https://doi.org/10.3390/chemosensors10110486
Chicago/Turabian StyleZorpeykar, Sepideh, Esmaeil Mirzaee-Ghaleh, Hamed Karami, Zeynab Ramedani, and Alphus Dan Wilson. 2022. "Electronic Nose Analysis and Statistical Methods for Investigating Volatile Organic Compounds and Yield of Mint Essential Oils Obtained by Hydrodistillation" Chemosensors 10, no. 11: 486. https://doi.org/10.3390/chemosensors10110486
APA StyleZorpeykar, S., Mirzaee-Ghaleh, E., Karami, H., Ramedani, Z., & Wilson, A. D. (2022). Electronic Nose Analysis and Statistical Methods for Investigating Volatile Organic Compounds and Yield of Mint Essential Oils Obtained by Hydrodistillation. Chemosensors, 10(11), 486. https://doi.org/10.3390/chemosensors10110486