Triboelectric Nanogenerators in Sustainable Chemical Sensors
Abstract
:1. Introduction
2. Basic Principle of TENGs
2.1. Working Mode of TENGs
2.2. Working Principle
3. Recent Progress of TENG-Based Chemical Sensor Systems
3.1. Chemical Sensor Powered by TENG
3.1.1. Basic Principle
3.1.2. Design Criteria of TENG-Based Power Source
Power Management Approach
Performance Enhancement Strategy
Resistance to Harsh Conditions
3.1.3. TENG-Powered Chemical Sensors
Biosensors
Gas Sensors
Ion Sensors
3.2. TENG-Based Active Chemical Sensor
3.2.1. Basic Principle
3.2.2. Design Criteria of TENG-Based Active Sensors
Sensitivity Improvement
Integration Optimization
3.2.3. Applications of TENG-Based Active Chemical Sensors
TENG-Based Active Biosensors
TENG-Based Active Gas Sensors
TENG-Based Active Ion Sensors
Other Active Sensors
4. Conclusions and Prospect
4.1. Power Supplies
4.1.1. High Energy Conversion Efficiency
4.1.2. Longer Service Life
4.2. Active Chemical Sensor
4.2.1. Anti-Interference
4.2.2. Stability and Reliability
4.2.3. Multifunctionality
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yogeswaran, U.; Chen, S. A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors 2008, 8, 290–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, X.; Yan, X.; Li, M.; Liu, H.; Li, J.; Wang, L.; Wang, K.; Lu, X.; Wang, S.; He, B. Ultrasensitive detection of chloramphenicol using electrochemical aptamer sensor: A mini review. Electrochem. Commun. 2020, 120, 106835. [Google Scholar] [CrossRef]
- Gan, X.; Zhao, H. Understanding signal amplification strategies of nanostructured electrochemical sensors for environmental pollutants. Curr. Opin. Electrochem. 2019, 17, 56–64. [Google Scholar] [CrossRef]
- Wijesinghe, M.S.; Batchelder, K.; Wickramasinghe, D.; Oh, J.; Chow, K. Battery-powered distance-based electrochemical sensor using a longitudinally-oriented silver band electrode. Sens. Actuators B Chem. 2020, 308, 127684. [Google Scholar] [CrossRef]
- Brett, C.M.A.; Oliveira-Brett, A.M. Electrochemical sensing in solution—Origins, applications and future perspectives. J. Solid State Electrochem. 2011, 15, 1487–1494. [Google Scholar] [CrossRef]
- Yan, L.; Mi, Y.; Lu, Y.; Qin, Q.; Wang, X.; Meng, J.; Liu, F.; Wang, N.; Cao, X. Weaved piezoresistive triboelectric nanogenerator for human motion monitoring and gesture recognition. Nano Energy 2022, 96, 107135. [Google Scholar] [CrossRef]
- Downs, A.M.; Gerson, J.; Hossain, M.N.; Ploense, K.; Pham, M.; Kraatz, H.; Kippin, T.; Plaxco, K.W. Nanoporous gold for the miniaturization of in vivo electrochemical aptamer-based sensors. ACS Sens. 2021, 6, 2299–2306. [Google Scholar] [CrossRef]
- Li, M.; Zhou, P.; Wang, X.; Wen, Y.; Xu, L.; Hu, J.; Huang, Z.; Li, M. Development of a simple disposable laser-induced porous graphene flexible electrode for portable wireless intelligent votammetric nanosensing of salicylic acid in agro-products. Comput. Electron. Agric. 2021, 191, 106502. [Google Scholar] [CrossRef]
- Sánchez Del Río, J.; Yusuf, A.; Ao, X.; Olaizola, I.A.; López-Puertas, L.U.; Ballesteros, M.Y.; Giannetti, R.; Martínez, V.; Jiménez, J.L.; Monge, J.B.B.; et al. High-resolution tengs for earthquakes ground motion detection. Nano Energy 2022, 102, 107666. [Google Scholar] [CrossRef]
- Zhang, C.; Bu, T.; Zhao, J.; Liu, G.; Yang, H.; Wang, Z.L. Tribotronics for active mechanosensation and self-powered microsystems. Adv. Funct. Mater. 2019, 29, 1808114. [Google Scholar] [CrossRef]
- Nemčeková, K.; Labuda, J. Advanced materials-integrated electrochemical sensors as promising medical diagnostics tools: A review. Mater. Sci. Eng. C 2021, 120, 111751. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wen, D. Wearable biochemical sensors for human health monitoring: Sensing materials and manufacturing technologies. J. Mat. Chem. B 2020, 8, 3423–3436. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Nyein, H.Y.Y.; Gao, W.; Javey, A. Flexible electrochemical bioelectronics: The rise of in situ bioanalysis. Adv. Mater. 2020, 32, 1902083. [Google Scholar] [CrossRef]
- Jeerapan, I.; Poorahong, S. Review—Flexible and stretchable electrochemical sensing systems: Materials, energy sources, and integrations. J. Electrochem. Soc. 2020, 167, 37573. [Google Scholar] [CrossRef]
- Dai, C.; Hu, L.; Jin, X.; Chen, H.; Zhang, X.; Zhang, S.; Song, L.; Ma, H.; Xu, M.; Zhao, Y.; et al. A cascade battery: Coupling two sequential electrochemical reactions in a single battery. Adv. Mater. 2021, 33, 2105480. [Google Scholar] [CrossRef]
- Jiang, G.; Li, F.; Wang, H.; Wu, M.; Qi, S.; Liu, X.; Yang, S.; Ma, J. Perspective on high-concentration electrolytes for lithium metal batteries. Small Struct. 2021, 2, 2000122. [Google Scholar] [CrossRef]
- Aller Pellitero, M.; Del Campo, F.J. Electrochromic sensors: Innovative devices enabled by spectroelectrochemical methods. Curr. Opin. Electrochem. 2019, 15, 66–72. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, D.; Liu, L.; He, L.; Cao, X.; Wang, J.; Wang, Z.L. Recent advances in self-powered electrochemical systems. Research 2021, 2021, 4673028. [Google Scholar] [CrossRef]
- Liang, J.; Mondal, A.K.; Wang, D.; Iacopi, F. Graphene-based planar microsupercapacitors: Recent advances and future challenges. Adv. Mater. Technol. 2019, 4, 1800200. [Google Scholar] [CrossRef] [Green Version]
- Parrilla, M.; De Wael, K. Wearable self-powered electrochemical devices for continuous health management. Adv. Funct. Mater. 2021, 31, 2107042. [Google Scholar] [CrossRef]
- Kim, D.W.; Lee, J.H.; Kim, J.K.; Jeong, U. Material aspects of triboelectric energy generation and sensors. NPG Asia Mater. 2020, 12, 6. [Google Scholar] [CrossRef]
- Wang, K.; Li, J. Electricity generation from the interaction of liquid–solid interface: A review. J. Mater. Chem. A 2021, 9, 8870–8895. [Google Scholar] [CrossRef]
- Tan, G.; Ohta, M.; Kanatzidis, M.G. Thermoelectric power generation: From new materials to devices. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2019, 377, 20180450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shafranjuk, S.E. Converting heat to electricity by a graphene stripe with heavy chiral fermions. Eur. Phys. J. B 2014, 87, 99. [Google Scholar] [CrossRef] [Green Version]
- Zoui, M.A.; Bentouba, S.; Stocholm, J.G.; Bourouis, M. A review on thermoelectric generators: Progress and applications. Energies 2020, 13, 3606. [Google Scholar] [CrossRef]
- Pilli, S.K.; Summers, K.; Chidambaram, D. Photoelectrochemical generation of hydrogen and electricity from hydrazine hydrate using bivo4 electrodes. Phys. Chem. Chem. Phys. 2015, 17, 13851–13859. [Google Scholar] [CrossRef]
- Zhong, M.; Shi, J.; Xiong, F.; Zhang, W.; Li, C. Enhancement of photoelectrochemical activity of nanocrystalline cds photoanode by surface modification with tio2 for hydrogen production and electricity generation. Sol. Energy 2012, 86, 756–763. [Google Scholar] [CrossRef]
- Ke, K.; Chung, C. High-performance al/pdms teng with novel complex morphology of two-height microneedles array for high-sensitivity force-sensor and self-powered application. Small 2020, 16, 2001209. [Google Scholar] [CrossRef]
- Huang, C.; Chen, G.; Nashalian, A.; Chen, J. Advances in self-powered chemical sensing via a triboelectric nanogenerator. Nanoscale 2021, 13, 2065–2081. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Z.L. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 2017, 1, 480–521. [Google Scholar] [CrossRef]
- Fan, F.; Tian, Z.; Lin Wang, Z. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Cao, X.; Jie, Y.; Wang, N.; Wang, Z.L. Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science. Adv. Energy Mater. 2016, 6, 1600665. [Google Scholar] [CrossRef]
- Niu, S.; Wang, Z.L. Theoretical systems of triboelectric nanogenerators. Nano Energy 2015, 14, 161–192. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.; Kim, D.; Tcho, I.; Kim, J.; Kim, M.; Choi, Y. Triboelectric nanogenerator: Structure, mechanism, and applications. ACS Nano 2021, 15, 258–287. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Chen, J.; Zhu, G.; Yang, J.; Bai, P.; Su, Y.; Jing, Q.; Cao, X.; Wang, Z.L. Harvesting energy from the natural vibration of human walking. ACS Nano 2013, 7, 11317–11324. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Lin, L.; Xie, Y.; Jing, Q.; Niu, S.; Wang, Z.L. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett. 2013, 13, 2226–2233. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Zhao, Y.; Jiao, S.; Wang, C.; Jia, Y.; Dai, K.; Zheng, G.; Liu, C.; Wan, P.; Shen, C. Environment tolerant conductive nanocomposite organohydrogels as flexible strain sensors and power sources for sustainable electronics. Adv. Funct. Mater. 2021, 31, 2101696. [Google Scholar] [CrossRef]
- Wang, S.; Xie, Y.; Niu, S.; Lin, L.; Wang, Z.L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 2014, 26, 2818–2824. [Google Scholar] [CrossRef]
- Wang, Z.L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282. [Google Scholar] [CrossRef]
- Pan, S.; Zhang, Z. Fundamental theories and basic principles of triboelectric effect: A review. Friction 2019, 7, 2–17. [Google Scholar] [CrossRef]
- Wang, Z.L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557. [Google Scholar] [CrossRef]
- Wang, Z.L. From contact electrification to triboelectric nanogenerators. Rep. Prog. Phys. 2021, 84, 96502. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhou, L.; Li, S.; Liu, D.; Li, Y.; Gao, Y.; Liu, Y.; Dai, Y.; Wang, J.; Wang, Z.L. Selection rules of triboelectric materials for direct-current triboelectric nanogenerator. Nat. Commun. 2021, 12, 4686. [Google Scholar] [CrossRef] [PubMed]
- Dharmasena, R.D.I.G.; Cronin, H.M.; Dorey, R.A.; Silva, S.R.P. Direct current contact-mode triboelectric nanogenerators via systematic phase shifting. Nano Energy 2020, 75, 104887. [Google Scholar] [CrossRef]
- Zhang, R.; Xia, R.; Cao, X.; Wang, N. Nutshell powder-based green triboelectric nanogenerator for wind energy harvesting. Adv. Mater. Interfaces 2022, 9, 2200293. [Google Scholar] [CrossRef]
- Zhang, D.; Xu, Z.; Yang, Z.; Song, X. High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator. Nano Energy 2020, 67, 104251. [Google Scholar] [CrossRef]
- Xu, G.; Guan, D.; Yin, X.; Fu, J.; Wang, J.; Zi, Y. A coplanar-electrode direct-current triboelectric nanogenerator with facile fabrication and stable output. EcoMat 2020, 2, e12037. [Google Scholar] [CrossRef]
- Luo, J.; Xu, L.; Tang, W.; Jiang, T.; Fan, F.R.; Pang, Y.; Chen, L.; Zhang, Y.; Wang, Z.L. Direct-current triboelectric nanogenerator realized by air breakdown induced ionized air channel. Adv. Energy Mater. 2018, 8, 1800889. [Google Scholar] [CrossRef]
- Chai, B.; Shi, K.; Zou, H.; Jiang, P.; Wu, Z.; Huang, X. Conductive interlayer modulated ferroelectric nanocomposites for high performance triboelectric nanogenerator. Nano Energy 2022, 91, 106668. [Google Scholar] [CrossRef]
- Lee, H.; Lee, H.E.; Wang, H.S.; Kang, S.; Lee, D.; Kim, Y.H.; Shin, J.H.; Lim, Y.; Lee, K.J.; Bae, B. Hierarchically surface-textured ultrastable hybrid film for large-scale triboelectric nanogenerators. Adv. Funct. Mater. 2020, 30, 2005610. [Google Scholar] [CrossRef]
- Kim, J.; Cho, H.; Han, M.; Jung, Y.; Kwak, S.S.; Yoon, H.; Park, B.; Kim, H.; Kim, H.; Park, J.; et al. Ultrahigh power output from triboelectric nanogenerator based on serrated electrode via spark discharge. Adv. Energy Mater. 2020, 10, 2002312. [Google Scholar] [CrossRef]
- Jiang, B.; Long, Y.; Pu, X.; Hu, W.; Wang, Z.L. A stretchable, harsh condition-resistant and ambient-stable hydrogel and its applications in triboelectric nanogenerator. Nano Energy 2021, 86, 106086. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Z.; Liu, Z.; Yao, S.; Zhang, J.; Zhang, Z.; Huang, T.; Zheng, L.; Wang, Z.L.; Li, L. Anti-freezing and stretchable triboelectric nanogenerator based on liquid electrode for biomechanical sensing in extreme environment. Nano Energy 2022, 96, 107067. [Google Scholar] [CrossRef]
- Wen, J.; Chen, B.; Tang, W.; Jiang, T.; Zhu, L.; Xu, L.; Chen, J.; Shao, J.; Han, K.; Ma, W.; et al. Harsh-environmental-resistant triboelectric nanogenerator and its applications in autodrive safety warning. Adv. Energy Mater. 2018, 8, 1801898. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.; Go, T.W.; Rajabi-Abhari, A.; Mahato, M.; Park, J.Y.; Lee, H.; Oh, I. Skin-attachable and biofriendly chitosan-diatom triboelectric nanogenerator. Nano Energy 2020, 75, 104904. [Google Scholar] [CrossRef]
- Wang, R.; Mu, L.; Bao, Y.; Lin, H.; Ji, T.; Shi, Y.; Zhu, J.; Wu, W. Holistically engineered polymer–polymer and polymer–ion interactions in biocompatible polyvinyl alcohol blends for high-performance triboelectric devices in self-powered wearable cardiovascular monitorings. Adv. Mater. 2020, 32, 2002878. [Google Scholar] [CrossRef]
- Yu, Y.; Nassar, J.; Xu, C.; Min, J.; Yang, Y.; Dai, A.; Doshi, R.; Huang, A.; Song, Y.; Gehlhar, R.; et al. Biofuel-powered soft electronic skin with multiplexed and wireless sensing for human-machine interfaces. Sci. Robot. 2020, 5, z7946. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Li, J.; Zhou, T.; Yang, K.; Wei, S.; Tang, N.; Dang, N.; Li, H.; Qiu, X.; Chen, L. Toxicity, a serious concern of thermal runaway from commercial li-ion battery. Nano Energy 2016, 27, 313–319. [Google Scholar] [CrossRef]
- Larsson, F.; Andersson, P.; Blomqvist, P.; Mellander, B. Toxic fluoride gas emissions from lithium-ion battery fires. Sci. Rep. 2017, 7, 10018. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Xu, Y.; Zhang, J.; Wu, W.; Song, G. Self-powered flexible blood oxygen monitoring system based on a triboelectric nanogenerator. Nanomaterials 2019, 9, 778. [Google Scholar] [CrossRef]
- Tang, Q.; Yeh, M.; Liu, G.; Li, S.; Chen, J.; Bai, Y.; Feng, L.; Lai, M.; Ho, K.; Guo, H.; et al. Whirligig-inspired triboelectric nanogenerator with ultrahigh specific output as reliable portable instant power supply for personal health monitoring devices. Nano Energy 2018, 47, 74–80. [Google Scholar] [CrossRef]
- Fan, Y.; Huang, M.; Hsiao, Y.; Huang, Y.; Deng, C.; Yeh, C.; Husain, R.A.; Lin, Z. Enhancing the sensitivity of portable biosensors based on self-powered ion concentration polarization and electrical kinetic trapping. Nano Energy 2020, 69, 104407. [Google Scholar] [CrossRef]
- Chang, T.; Wang, C.; Chen, C.; Li, Y.; Hsu, C.; Chang, H.; Lin, Z. Controlled synthesis of se-supported au/pd nanoparticles with photo-assisted electrocatalytic activity and their application in self-powered sensing systems. Nano Energy 2016, 22, 564–571. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, Y.; Xu, Z.; Wang, D.; Du, C. An eco-friendly gelatin based triboelectric nanogenerator for a self-powered pani nanorod/nico2 o4 nanosphere ammonia gas sensor. J. Mater. Chem. A 2022, 10, 10935–10949. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, D.; Guo, J.; Hu, Y.; Yang, Y.; Sun, T.; Zhang, H.; Liu, X. Multifunctional poly(vinyl alcohol)/ag nanofibers-based triboelectric nanogenerator for self-powered mxene/tungsten oxide nanohybrid no2 gas sensor. Nano Energy 2021, 89, 106410. [Google Scholar] [CrossRef]
- Zhao, K.; Gu, G.; Zhang, Y.; Zhang, B.; Yang, F.; Zhao, L.; Zheng, M.; Cheng, G.; Du, Z. The self-powered co2 gas sensor based on gas discharge induced by triboelectric nanogenerator. Nano Energy 2018, 53, 898–905. [Google Scholar] [CrossRef]
- Song, Y.; Min, J.; Yu, Y.; Wang, H.; Yang, Y.; Zhang, H.; Gao, W. Wireless battery-free wearable sweat sensor powered by human motion. Sci. Adv. 2020, 6, y9842. [Google Scholar] [CrossRef]
- Bai, Y.; Xu, L.; He, C.; Zhu, L.; Yang, X.; Jiang, T.; Nie, J.; Zhong, W.; Wang, Z.L. High-performance triboelectric nanogenerators for self-powered, in-situ and real-time water quality mapping. Nano Energy 2019, 66, 104117. [Google Scholar] [CrossRef]
- Chen, C.; Wen, Z.; Wei, A.; Xie, X.; Zhai, N.; Wei, X.; Peng, M.; Liu, Y.; Sun, X.; Yeow, J.T.W. Self-powered on-line ion concentration monitor in water transportation driven by triboelectric nanogenerator. Nano Energy 2019, 62, 442–448. [Google Scholar] [CrossRef]
- Lai, M.; Du, B.; Guo, H.; Xi, Y.; Yang, H.; Hu, C.; Wang, J.; Wang, Z.L. Enhancing the output charge density of teng via building longitudinal paths of electrostatic charges in the contacting layers. ACS Appl. Mater. Interfaces 2018, 10, 2158–2165. [Google Scholar] [CrossRef]
- Gupta, M.; Santermans, S.; Hellings, G.; Lagae, L.; Martens, K.; Van Roy, W. Surface charge modulation and reduction of non-linear electrolytic screening in fet-based biosensing. IEEE Sens. J. 2021, 21, 4143–4151. [Google Scholar] [CrossRef]
- Zhang, J.; Jin, R.; Jiang, D.; Chen, H. Electrochemiluminescence-based capacitance microscopy for label-free imaging of antigens on the cellular plasma membrane. J. Am. Chem. Soc. 2019, 141, 10294–10299. [Google Scholar] [CrossRef] [PubMed]
- Khandelwal, G.; Chandrasekhar, A.; Maria Joseph Raj, N.P.; Kim, S. Metal–organic framework: A novel material for triboelectric nanogenerator–based self-powered sensors and systems. Adv. Energy Mater. 2019, 9, 1803581. [Google Scholar] [CrossRef]
- Shen, Q.; Xie, X.; Peng, M.; Sun, N.; Shao, H.; Zheng, H.; Wen, Z.; Sun, X. Self-powered vehicle emission testing system based on coupling of triboelectric and chemoresistive effects. Adv. Funct. Mater. 2018, 28, 1703420. [Google Scholar] [CrossRef]
- Wang, N.; Yang, A.; Fu, Y.; Li, Y.; Yan, F. Functionalized organic thin film transistors for biosensing. Acc. Chem. Res. 2019, 52, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Nisar, A.; Khan, K.; Nisar, J.; Niaz, A.; Ashiq, M.N.; Akhter, M.S. Amino acid functionalized glassy carbon electrode for the simultaneous detection of thallium and mercuric ions. Electrochim. Acta 2019, 321, 134658. [Google Scholar] [CrossRef]
- Wu, C.; Wang, A.C.; Ding, W.; Guo, H.; Wang, Z.L. Triboelectric nanogenerator: A foundation of the energy for the new era. Adv. Energy Mater. 2019, 9, 1802906. [Google Scholar] [CrossRef]
- Karimi-Maleh, H.; Orooji, Y.; Karimi, F.; Alizadeh, M.; Baghayeri, M.; Rouhi, J.; Tajik, S.; Beitollahi, H.; Agarwal, S.; Gupta, V.K.; et al. A critical review on the use of potentiometric based biosensors for biomarkers detection. Biosens. Bioelectron. 2021, 184, 113252. [Google Scholar] [CrossRef]
- Han, S.; Peng, H.; Sun, Q.; Venkatesh, S.; Chung, K.; Lau, S.C.; Zhou, Y.; Roy, V.A.L. An overview of the development of flexible sensors. Adv. Mater. 2017, 29, 1700375. [Google Scholar] [CrossRef]
- Chen, X.; Yusuf, A.; Del Rio, J.S.; Wang, D. A facile and robust route to polyvinyl alcohol-based triboelectric nanogenerator containing flame-retardant polyelectrolyte with improved output performance and fire safety. Nano Energy 2021, 81, 105656. [Google Scholar] [CrossRef]
- Vu, D.L.; Le, C.D.; Vo, C.P.; Ahn, K.K. Surface polarity tuning through epitaxial growth on polyvinylidene fluoride membranes for enhanced performance of liquid-solid triboelectric nanogenerator. Compos. Part B Eng. 2021, 223, 109135. [Google Scholar] [CrossRef]
- Gong, H.; Xu, Z.; Yang, Y.; Xu, Q.; Li, X.; Cheng, X.; Huang, Y.; Zhang, F.; Zhao, J.; Li, S.; et al. Transparent, stretchable and degradable protein electronic skin for biomechanical energy scavenging and wireless sensing. Biosens. Bioelectron. 2020, 169, 112567. [Google Scholar] [CrossRef]
- Fu, X.P.; Bu, T.Z.; Xi, F.B.; Cheng, T.H.; Zhang, C.; Wang, Z.L. Embedded triboelectric active sensors for real-time pneumatic monitoring. ACS Appl. Mater. Interfaces 2017, 9, 32352–32358. [Google Scholar] [CrossRef] [PubMed]
- Xiang, H.; Yang, J.; Cao, X.; Wang, N. Flexible and highly sensitive triboelectric nanogenerator with magnetic nanocomposites for cultural heritage conservation and human motion monitoring. Nano Energy 2022, 101, 107570. [Google Scholar] [CrossRef]
- Su, Y.; Yao, M.; Xie, G.; Pan, H.; Yuan, H.; Yang, M.; Tai, H.; Du, X.; Jiang, Y. Improving sensitivity of self-powered room temperature no2 sensor by triboelectric-photoelectric coupling effect. Appl. Phys. Lett. 2019, 115, 73504. [Google Scholar] [CrossRef]
- Yu, J.; Hou, X.; He, J.; Cui, M.; Wang, C.; Geng, W.; Mu, J.; Han, B.; Chou, X. Ultra-flexible and high-sensitive triboelectric nanogenerator as electronic skin for self-powered human physiological signal monitoring. Nano Energy 2020, 69, 104437. [Google Scholar] [CrossRef]
- Hu, S.; Shi, Z.; Zheng, R.; Ye, W.; Gao, X.; Zhao, W.; Yang, G. Superhydrophobic liquid–solid contact triboelectric nanogenerator as a droplet sensor for biomedical applications. ACS Appl. Mater. Interfaces 2020, 12, 40021–40030. [Google Scholar] [CrossRef]
- Ren, Z.; Ding, Y.; Nie, J.; Wang, F.; Xu, L.; Lin, S.; Chen, X.; Wang, Z.L. Environmental energy harvesting adapting to different weather conditions and self-powered vapor sensor based on humidity-responsive triboelectric nanogenerators. ACS Appl. Mater. Interfaces 2019, 11, 6143–6153. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, D.; Liu, X.; Yang, Y.; Wang, X.; Xue, Q. Self-powered multifunctional monitoring and analysis system based on dual-triboelectric nanogenerator and chitosan/activated carbon film humidity sensor. Nano Energy 2022, 94, 106881. [Google Scholar] [CrossRef]
- Wang, Z.; Chang, J.; Zhi, H.; Li, C.; Feng, L. A pda functionalized cnt/pani self-powered sensing system for meat spoilage biomarker nh3 monitoring. Sens. Actuators B Chem. 2022, 356, 131292. [Google Scholar] [CrossRef]
- Meng, K.; Xiao, X.; Wei, W.; Chen, G.; Nashalian, A.; Shen, S.; Xiao, X.; Chen, J. Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 2022, 34, 2109357. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Ota, H.; Kiriya, D.; Takei, K.; Javey, A. Flexible electronics toward wearable sensing. Acc. Chem. Res. 2019, 52, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.C.; Mun, J.; Kwon, S.Y.; Park, S.; Bao, Z.; Park, S. Electronic skin: Recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv. Mater. 2019, 31, 1904765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, T.; Fu, Y.; Sun, C.; Zhao, X.; Jiao, C.; Du, A.; Wang, Q.; Mao, Y.; Liu, B. Wearable biosensors for real-time sweat analysis and body motion capture based on stretchable fiber-based triboelectric nanogenerators. Biosens. Bioelectron. 2022, 205, 114115. [Google Scholar] [CrossRef]
- Wang, C.; Wang, P.; Chen, J.; Zhu, L.; Zhang, D.; Wan, Y.; Ai, S. Self-powered biosensing system driven by triboelectric nanogenerator for specific detection of gram-positive bacteria. Nano Energy 2022, 93, 106828. [Google Scholar] [CrossRef]
- Udy, A.; O Donoghue, S.; D Intini, V.; Healy, H.; Lipman, J. Point of care measurement of plasma creatinine in critically ill patients with acute kidney injury. Anaesthesia 2009, 64, 403–407. [Google Scholar] [CrossRef]
- Luo, Y.; Zhao, T.; Dai, Y.; Li, Q.; Fu, H. Flexible nanosensors for non-invasive creatinine detection based on triboelectric nanogenerator and enzymatic reaction. Sens. Actuators A Phys. 2021, 320, 112585. [Google Scholar] [CrossRef]
- Jiang, P.; Zhang, L.; Guo, H.; Chen, C.; Wu, C.; Zhang, S.; Wang, Z.L. Signal output of triboelectric nanogenerator at oil–water–solid multiphase interfaces and its application for dual-signal chemical sensing. Adv. Mater. 2019, 31, 1902793. [Google Scholar] [CrossRef]
- Holland, C.A.; Henry, A.T.; Whinna, H.C.; Church, F.C. Effect of oligodeoxynucleotide thrombin aptamer on thrombin inhibition by heparin cofactor ii and antithrombin. FEBS Lett. 2000, 484, 87–91. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Zheng, P.; Jiang, J.; Shen, G.; Yu, R.; Liu, G. Electrostatic interaction based approach to thrombin detection by surface-enhanced raman spectroscopy. Anal. Chem. 2009, 81, 87–93. [Google Scholar] [CrossRef]
- Jung, Y.K.; Kim, K.N.; Baik, J.M.; Kim, B. Self-powered triboelectric aptasensor for label-free highly specific thrombin detection. Nano Energy 2016, 30, 77–83. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, D.; Yang, Y.; Mi, Q.; Zhang, J.; Yu, L. Multifunctional latex/polytetrafluoroethylene-based triboelectric nanogenerator for self-powered organ-like mxene/metal–organic framework-derived cuo nanohybrid ammonia sensor. ACS Nano 2021, 15, 2911–2919. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Chen, J.; Yeh, M.; Guo, H.; Li, Z.; Fan, X.; Zhang, T.; Zhu, L.; Wang, Z.L. Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer. Nano Energy 2015, 16, 38–46. [Google Scholar] [CrossRef]
- Uddin, A.S.M.I.; Yaqoob, U.; Chung, G. Improving the working efficiency of a triboelectric nanogenerator by the semimetallic pedot:pss hole transport layer and its application in self-powered active acetylene gas sensing. ACS Appl. Mater. Interfaces 2016, 8, 30079–30089. [Google Scholar] [CrossRef]
- Cai, C.; Mo, J.; Lu, Y.; Zhang, N.; Wu, Z.; Wang, S.; Nie, S. Integration of a porous wood-based triboelectric nanogenerator and gas sensor for real-time wireless food-quality assessment. Nano Energy 2021, 83, 105833. [Google Scholar] [CrossRef]
- Chang, J.; Meng, H.; Li, C.; Gao, J.; Chen, S.; Hu, Q.; Li, H.; Feng, L. A wearable toxic gas-monitoring device based on triboelectric nanogenerator for self-powered aniline early warning. Adv. Mater. Technol. 2020, 5, 1901087. [Google Scholar] [CrossRef]
- Liu, H.; Wang, H.; Fan, Y.; Lyu, Y.; Liu, Z. A triboelectric nanogenerator based on white sugar for self-powered humidity sensor. Solid-State Electron. 2020, 174, 107920. [Google Scholar] [CrossRef]
- Wu, L.; Huang, C.; Emery, B.P.; Sedgwick, A.C.; Bull, S.D.; He, X.; Tian, H.; Yoon, J.; Sessler, J.L.; James, T.D. Förster resonance energy transfer (fret)-based small-molecule sensors and imaging agents. Chem. Soc. Rev. 2020, 49, 5110–5139. [Google Scholar] [CrossRef]
- Gao, W.; Emaminejad, S.; Nyein, H.Y.Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H.M.; Ota, H.; Shiraki, H.; Kiriya, D.; et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Dong, J.; Zhou, H.; Yang, X.; Xu, C.; Yao, Y.; Zhou, G.; Zhang, S.; Song, Q. Real-time acid rain sensor based on a triboelectric nanogenerator made of a ptfe–pdms composite film. ACS Appl. Electron. Mater. 2021, 3, 4162–4171. [Google Scholar] [CrossRef]
- Lin, Z.; Zhu, G.; Zhou, Y.S.; Yang, Y.; Bai, P.; Chen, J.; Wang, Z.L. A self-powered triboelectric nanosensor for mercury ion detection. Angew. Chem. Int. Ed. 2013, 52, 5065–5069. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chen, J.; Guo, H.; Fan, X.; Wen, Z.; Yeh, M.; Yu, C.; Cao, X.; Wang, Z.L. Triboelectrification-enabled self-powered detection and removal of heavy metal ions in wastewater. Adv. Mater. 2016, 28, 2983–2991. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Zhang, D.; Zhang, Q.; Li, Z.; Guo, H.; Gong, Y.; Peng, Y. Influence of temperature difference on performance of solid-liquid triboelectric nanogenerators. Nano Energy 2022, 99, 107431. [Google Scholar] [CrossRef]
- Chung, J.; Cho, H.; Yong, H.; Heo, D.; Rim, Y.S.; Lee, S. Versatile surface for solid–solid/liquid–solid triboelectric nanogenerator based on fluorocarbon liquid infused surfaces. Sci. Technol. Adv. Mater. 2020, 21, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wu, Z.; Pan, L.; Gao, R.; Zhang, B.; Yang, L.; Guo, H.; Liao, R.; Wang, Z.L. Direct-current rotary-tubular triboelectric nanogenerators based on liquid-dielectrics contact for sustainable energy harvesting and chemical composition analysis. ACS Nano 2019, 13, 2587–2598. [Google Scholar] [CrossRef]
- Li, Z.; Chen, J.; Yang, J.; Su, Y.; Fan, X.; Wu, Y.; Yu, C.; Wang, Z.L. Β-cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation. Energy Environ. Sci. 2015, 8, 887–896. [Google Scholar] [CrossRef]
- Chatterjee, S.; Saha, S.; Barman, S.R.; Khan, I.; Pao, Y.; Lee, S.; Choi, D.; Lin, Z. Enhanced sensing performance of triboelectric nanosensors by solid-liquid contact electrification. Nano Energy 2020, 77, 105093. [Google Scholar] [CrossRef]
- Zhou, L.; Gao, Y.; Liu, D.; Liu, L.; Zhao, Z.; Li, S.; Yuan, W.; Cui, S.; Wang, Z.L.; Wang, J. Achieving ultrarobust and humidity-resistant triboelectric nanogenerator by dual-capacitor enhancement system. Adv. Energy Mater. 2021, 7, 2101958. [Google Scholar] [CrossRef]
- Lv, S.; Zhang, X.; Huang, T.; Yu, H.; Zhu, M. Interconnected array design for enhancing the performance of an enclosed flexible triboelectric nanogenerator. Nano Energy 2021, 89, 106476. [Google Scholar] [CrossRef]
- Yu, X.; Fu, S.; Zuo, X.; Zeng, J.; Shan, C.; He, W.; Li, W.; Hu, C. Moisture resistant and stable wireless wind speed sensing system based on triboelectric nanogenerator with charge-excitation strategy. Adv. Funct. Mater. 2022, 7, 2207498. [Google Scholar] [CrossRef]
- Chen, W.; Chen, B.; Lv, R.; Wu, M.; Zhou, J.; Lu, B.; Huang, B.; Lu, Q.; Tang, L. Fabrication of quartz crystal microbalance humidity sensors based on super-hydrophilic cellulose nanocrystals. Cellulose 2021, 28, 3409–3421. [Google Scholar] [CrossRef]
Application | Function | Structure | Outputs Performance a | Sensing Performance | Refs. | |||
---|---|---|---|---|---|---|---|---|
Materials | Analyte | Imax | Umax | Detection Range | Selectivity | |||
Biosensor | Power source | Au/PDMS-Au | Blood oxygen | 7.4 µA | 75.3 V | — | — | [60] |
Cu/PTFE-Cu | Blood glucose | 317 µA | 153 V | — | — | [61] | ||
PDMS-Chitosan/glycerol | Antigen | — | 250 V | 1.05~8.4 µg mL−1 | — | [62] | ||
Al/PTFE-Gelatin/Al | Glucose | 45 µA | 500 V | 200 µM~2 mM | Good | [63] | ||
Active chemical sensor | Ecoflex/MWCNT-PANI | Lactic acid | — | — | 0~200 mm L−1 | Good | [94] | |
Glucose | — | — | 0~56 mm L−1 | Good | ||||
Creatinine | — | — | 0~88 mm L−1 | Good | ||||
Al/FEP/ITO-Van-Al | Gram-positive bacteria | — | 165 V | 2 × 103~2 × 107 cfu/mL | Good | [95] | ||
Cu/PDMS-PANI | Creatinine | 1.47 nA | — | 10−6~10−3 mol L−1 | Good | [97] | ||
PTFE/Cu/Glass | Dopamine | 1.9 nA | 4.5 V | 25~500 µmol L−1 | Good | [98] | ||
Al/PDMS-Au NPs/Al | Thrombin | 18 µA | 17 V | 0~100 nm L−1 | Good | [101] | ||
Gas sensor | Power source | Cu/PTFE-Cu | Humidity | 4 µA | 22.5 V | 0~97% RH | Good | [46] |
Cu/PI-Gelatin/Cu | Ammonia | 49 µA | 400 V | 0~20 ppm | Good | [64] | ||
Cu/PVA/Ag-FEP | NO2 | 5.6 µA | 530 V | 0~50 ppm | — | [65] | ||
PMMA/Cu-PTFE | CO2 | 20.1 µA | 1160 V | 1~200 × 103 ppm | — | [66] | ||
Active chemical sensor | Cu/FEP/Elastic | Alcohol | 5.9 µA | 2.3 V | 10~200 ppm | Good | [103] | |
Al/Nylon- PDMS/EPP/ITO | C2H2 | 3.94 µA | 191.6 V | 30~1000 ppm | — | [104] | ||
Cu/Wood-FEP/Cu | Ammonia | 2.4 µA | 47 V | 10~500 ppm | Good | [105] | ||
PVDF/rGO-In2O3-Al/PET | Aniline | 1.2 µA | 4 V | 200~1200 ppm | Good | [106] | ||
Cu/Sugar-Cu/PTFE | Humidity | 6.35 µA | 95.68 V | 40~80% RH | — | [107] | ||
Ion sensor | Power source | PTFE-ENIG/polyimide/Cu | H+ | 42.25 µA | 190 V | 4~8 pH | Good | [67] |
Na+ | 12.5~200 mM | |||||||
Cu/PTFE/Glass | Water | 120 µA | 365 V | — | — | [68] | ||
Cu/PCB/PMMA-PTFE/Cu | Multiple ions | 112 µA | 210 V | 0~1 × 10−5 mol L−1 | Good | [69] | ||
Active chemical sensor | FTO/PTFE–PDMS/Cu | H+ | 26.37 μA | 69.04 V | 5~1 pH | — | [110] | |
Glass/Au film-Au NPs | Hg2+ | 63 μA | 105 V | 100 nM~ to 5 μM | Good | [111] | ||
Cu/PTFE-Modifying agent/AAO | Pb2+ | 0.18 mA | 310 V | 0–200 × 10−6μM | Good | [112] | ||
Cr3+ | ||||||||
Cu2+ | ||||||||
Other | Active chemical sensor | FEP/Cu/Electric brushes | Multiple compounds | 11.5 μA | 228 V | — | — | [115] |
Cu/PTFE-β-CD/TiO2/Ti | Phenol | 6.5 μA | 57 V | 10~100 μM | Good | [116] | ||
Ti/TiO2 nanosheet | Catechin | — | 1.2 V | 100 nM~100 μM | Good | [117] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Q.; Cao, X.; Wang, N. Triboelectric Nanogenerators in Sustainable Chemical Sensors. Chemosensors 2022, 10, 484. https://doi.org/10.3390/chemosensors10110484
Zhu Q, Cao X, Wang N. Triboelectric Nanogenerators in Sustainable Chemical Sensors. Chemosensors. 2022; 10(11):484. https://doi.org/10.3390/chemosensors10110484
Chicago/Turabian StyleZhu, Qiliang, Xia Cao, and Ning Wang. 2022. "Triboelectric Nanogenerators in Sustainable Chemical Sensors" Chemosensors 10, no. 11: 484. https://doi.org/10.3390/chemosensors10110484
APA StyleZhu, Q., Cao, X., & Wang, N. (2022). Triboelectric Nanogenerators in Sustainable Chemical Sensors. Chemosensors, 10(11), 484. https://doi.org/10.3390/chemosensors10110484