High Serum Aspartate Aminotransferase, Underweight, and Weight Loss in Older People: Results of the KITCHEN-4
Abstract
1. Introduction
2. Methods
2.1. Study Design
2.2. Subjects
2.3. Measurement of Clinical Parameters
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fielding, R.A.; Vellas, B.; Evans, W.J.; Bhasin, S.; Morley, J.E.; Newman, A.B.; van Kan, A.G.; Andrieu, S.; Bauer, J.; Breuille, D.; et al. Sarcopenia: An undiagnosed condition in older adults. Current consensus definition: Prevalence, etiology, and consequences. International working group on sarcopenia. J. Am. Med. Dir. Assoc. 2011, 12, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, S.M.; Kehayias, J.J. Sarcopenia and the analysis of body composition. Adv. Nutr. 2014, 5, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Liguori, I.; Russo, G.; Aran, L.; Bulli, G.; Curcio, F.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Sarcopenia: Assessment of disease burden and strategies to improve outcomes. Clin. Interv. Aging 2018, 13, 913–927. [Google Scholar] [CrossRef] [PubMed]
- Keevil, V.L.; Romero-Ortuno, R. Ageing well: A review of sarcopenia and frailty. Proc. Nutr. Soc. 2015, 74, 337–347. [Google Scholar] [CrossRef]
- Calvani, R.; Marini, F.; Cesari, M.; Tosato, M.; Anker, S.D.; von Haehling, S.; Miller, R.R.; Bernabei, R.; Landi, F.; Marzetti, E. SPRINTT consortium. Biomarkers for physical frailty and sarcopenia: State of the science and future developments. J. Cachexia Sarcopenia Muscle 2015, 6, 278–286. [Google Scholar] [CrossRef]
- Kogan, M.; Klempfner, R.; Lotan, D.; Wasserstrum, Y.; Goldenberg, I.; Segal, G. Low ALT blood levels are associated with lower baseline fitness amongst participants of a cardiac rehabilitation program. J. Exerc. Sci. Fit. 2018, 16, 1–4. [Google Scholar] [CrossRef]
- Vespasiani-Gentilucci, U.; De Vincentis, A.; Ferrucci, L.; Bandinelli, S.; Antonelli Incalzi, R.; Picardi, A. Low alanine aminotransferase levels in the elderly population: Frailty, disability, sarcopenia, and reduced survival. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 925–930. [Google Scholar] [CrossRef]
- Irina, G.; Refaela, C.; Adi, B.; Avia, D.; Liron, H.; Chen, A.; Gad, S. Low blood ALT activity and high FRAIL questionnaire scores correlate with increased mortality and with each other. A prospective study in the Internal Medicine Department. J. Clin. Med. 2018, 7, E386. [Google Scholar] [CrossRef]
- Panteghini, M. Aspartate aminotransferase isoenzymes. Clin. Biochem. 1990, 23, 311–319. [Google Scholar] [CrossRef]
- Nathwani, R.A.; Pais, S.; Reynolds, T.B.; Kaplowitz, N. Serum alanine aminotransferase in skeletal muscle diseases. Hepatology 2005, 41, 380–382. [Google Scholar] [CrossRef]
- Malakouti, M.; Kataria, A.; Ali, S.K.; Schenker, S. Elevated liver enzymes in asymptomatic patients—What should I do? J. Clin. Transl. Hepatol. 2017, 5, 394–403. [Google Scholar] [CrossRef]
- Shibata, M.; Nakajima, K.; Higuchi, R.; Iwane, T.; Sugiyama, M.; Nakamura, T. High Concentration of Serum Aspartate Aminotransferase in Older Underweight People: Results of the Kanagawa Investigation of the Total Check-Up Data from the National Database-2 (KITCHEN-2). J Clin Med. 2019, 8, 1282. [Google Scholar] [CrossRef]
- Shibata, M.; Nakajima, K. Elevated serum aspartate aminotransferase levels concomitant with normal alanine aminotransferase levels in older low body weight people: Preliminary findings from a community-based epidemiological study. BioRxiv 2019, in press. [Google Scholar] [CrossRef]
- Hosten, A.O. BUN and creatinine. In Clinical Methods: The History, Physical, and Laboratory Examinations, 3rd ed.; Butterworths: Boston, MA, USA, 1990; Chapter 193. [Google Scholar]
- Thongprayoon, C.; Cheungpasitporn, W.; Kashani, K. Serum creatinine level, a surrogate of muscle mass, predicts mortality in critically ill patients. J. Thorac. Dis. 2016, 8, E305–E311. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, K.; Iwane, T.; Higuchi, R.; Shibata, M.; Takada, K.; Uda, J.; Anan, M.; Sugiyama, M.; Nakamura, T. Kanagawa investigation of the total check-up data from the national database (KITCHEN): Protocol for data-driven population-based repeated cross-sectional and 6-year cohort studies. BMJ Open 2019, 9, e23323. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health, Labour and Welfare. Health Examination and Guidance Program for Japanese Adults. 2008. Available online: https://www.mhlw.go.jp/bunya/shakaihosho/iryouseido01/info02a.html (accessed on 24 March 2020).
- Elia, M. Obesity in the elderly. Obes. Res. 2001, 9 (Suppl. 4), 244S–248S. [Google Scholar] [CrossRef] [PubMed]
- Dorner, T.; Leitner, B.; Stadlmann, H.; Fischer, W.; Neidhart, B.; Lawrence, K.; Kiefer, I.; Rathmanner, T.; Kunze, M.; Rieder, A. Prevalence of overweight and obesity in Austrian male and female farmers. Soz. Praventivmed. 2004, 49, 243–246. [Google Scholar] [CrossRef]
- Low, S.; Chin, M.C.; Deurenberg-Yap, M. Review on epidemic of obesity. Ann. Acad. Med. Singap. 2009, 38, 57–59. [Google Scholar]
- Wallace, J.I.; Schwartz, R.S.; LaCroix, A.Z.; Uhlmann, R.F.; Pearlman, R.A. Involuntary weight loss in older outpatients: Incidence and clinical significance. J. Am. Geriatr. Soc. 1995, 43, 329–337. [Google Scholar] [CrossRef]
- Collins, N. Protein-Energy malnutrition and involuntary weight loss: Nutritional and pharmacological strategies to enhance wound healing. Expert Opin. Pharmacother. 2003, 4, 1121–1140. [Google Scholar] [CrossRef]
- Chapman, I.M. Weight loss in older persons. Med. Clin. N. Am. 2011, 95, 579–593. [Google Scholar] [CrossRef] [PubMed]
- Criteria of abnormal levels of serum AST and ALT in the standard checkup and healthcare. December 2006. (In Japanese). Available online: https://www.mhlw.go.jp/bunya/kenkou/seikatsu/pdf/02b_0016.pdf (accessed on 25 March 2020).
- Zocchetti, C.; Consonni, D.; Bertazzi, P.A. Relationship between prevalence rate ratios and odds ratios in cross-sectional studies. Int. J. Epidemiol. 1997, 26, 220–223. [Google Scholar] [CrossRef]
- Weibrecht, K.; Dayno, M.; Darling, C.; Bird, S.B. Liver aminotransferases are elevated with rhabdomyolysis in the absence of significant liver injury. J. Med. Toxicol. 2010, 6, 294–300. [Google Scholar] [CrossRef]
- Nie, J.; Tong, T.K.; George, K.; Fu, F.H.; Lin, H.; Shi, Q. Resting and post-exercise serum biomarkers of cardiac and skeletal muscle damage in adolescent runners. Scand. J. Med. Sci. Sport. 2011, 21, 625–629. [Google Scholar] [CrossRef]
- Aronow, W.S.; Silent, M.I. Prevalence and prognosis in older patients diagnosed by routine electrocardiograms. Geriatrics 2003, 58, 24–26. [Google Scholar] [PubMed]
- Valensi, P.; Lorgis, L.; Cottin, Y. Prevalence, incidence, predictive factors and prognosis of silent myocardial infarction: A review of the literature. Arch. Cardiovasc. Dis. 2011, 104, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Collamati, A.; Marzetti, E.; Calvani, R.; Tosato, M.; D’Angelo, E.; Sisto, A.N.; Landi, F. Sarcopenia in heart failure: Mechanisms and therapeutic strategies. J. Geriatr. Cardiol. 2016, 13, 615–624. [Google Scholar] [PubMed]
- Carbone, S.; Billingsley, H.E.; Rodriguez-Miguelez, P.; Kirkman, D.L.; Garten, R.; Franco, R.L.; Lee, D.C.; Lavie, C.J. Lean mass abnormalities in heart failure: The role of sarcopenia, sarcopenic obesity, and cachexia. Curr. Probl. Cardiol. 2019, 100417. [Google Scholar] [CrossRef]
- Don, B.R.; Kaysen, G. Serum albumin: Relationship to inflammation and nutrition. Semin. Dial. 2004, 17, 432–437. [Google Scholar] [CrossRef]
- Kuzuya, M.; Izawa, S.; Enoki, H.; Okada, K.; Iguchi, A. Is serum albumin a good marker for malnutrition in the physically impaired elderly? Clin. Nutr. 2007, 26, 84–90. [Google Scholar] [CrossRef]
- Baron, M.; Hudson, M.; Steele, R.; Canadian Scleroderma Research Group (CSRG). Is serum albumin a marker of malnutrition in chronic disease? The scleroderma paradigm. J. Am. Coll. Nutr. 2010, 29, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Lott, J.A.; Landesman, P.W. The enzymology of skeletal muscle disorders. Crit. Rev. Clin. Lab. Sci. 1984, 20, 153–190. [Google Scholar] [CrossRef] [PubMed]
- Koch, A.J.; Pereira, R.; Machado, M. The creatine kinase response to resistance exercise. J. Musculoskelet. Neuronal Interact. 2014, 14, 68–77. [Google Scholar] [PubMed]
- Patel, S.S.; Molnar, M.Z.; Tayek, J.A.; Ix, J.H.; Noori, N.; Benner, D.; Heymsfield, S.; Kopple, J.D.; Kovesdy, C.P.; Kalantar-Zadeh, K. Serum creatinine as a marker of muscle mass in chronic kidney disease: Results of a cross-sectional study and review of literature. J. Cachexia Sarcopenia Muscle 2013, 4, 19–29. [Google Scholar] [CrossRef]
- Yeomans, M.R.; Hails, N.J.; Nesic, J.S. Alcohol and the appetizer effect. Behav. Pharmacol. 1999, 10, 151–161. [Google Scholar] [CrossRef]
- Gee, C. Does alcohol stimulate appetite and energy intake? Br. J. Community Nurs. 2006, 11, 298–302. [Google Scholar] [CrossRef]
- Yeomans, M.R. Alcohol, appetite and energy balance: Is alcohol intake a risk factor for obesity? Physiol. Behav. 2010, 100, 82–89. [Google Scholar] [CrossRef]
- Howard-Alpe, G.; Foëx, P.; Biccard, B. Cardiovascular protection by anti-inflammatory statin therapy. Best Pract. Res. Clin. Anaesthesiol. 2008, 22, 111–133. [Google Scholar] [CrossRef]
- Montecucco, F.; Mach, F. Update on statin-mediated anti-inflammatory activities in atherosclerosis. Semin. Immunopathol. 2009, 31, 127–142. [Google Scholar] [CrossRef]
- Kwak, H.B. Statin-Induced myopathy in skeletal muscle: The role of exercise. J. Lifestyle Med. 2014, 4, 71–79. [Google Scholar] [CrossRef]
- Backes, J.M.; Ruisinger, J.F.; Gibson, C.A.; Moriarty, P.M. Statin-Associated muscle symptoms—Managing the highly intolerant. J. Clin. Lipidol. 2017, 11, 24–33. [Google Scholar] [CrossRef] [PubMed]
Serum AST Level: | ≤19 U/L | 20–29 U/L | ≥30 U/L |
---|---|---|---|
N (%) | 74,728 (57.9) | 51,485 (39.9) | 2864 (2.2) |
Male, n (%) | 35,227 (47.1) | 32,208 (62.6) | 1981 (69.2) |
Substitutional age (years) | 46.1 ± 4.0 | 47.0 ± 4.1 | 47.5 ± 4.1 |
Body mass index (kg/m²) | 21.6 ± 1.7 | 21.8 ± 1.7 | 21.6 ± 1.7 |
Body weight (kg) | 58.5 ± 8.3 | 60.1 ± 8.4 | 60.1 ± 8.1 |
Aspartate aminotransferase (U/L) | 16.4 ± 2.0 | 22.6 ± 2.4 | 33.9 ± 6.8 |
Alanine aminotransferase (U/L) | 14.2 ± 4.2 | 19.5 ± 4.7 | 23.0 ± 4.5 |
γ-glutamyl transferase (U/L) | 22.7 ± 15.6 | 33.3 ± 24.7 | 47.7 ± 37.9 |
Triglyceride (mg/dL) | 75 (55–106) | 80 (58–117) | 80 (55–122) |
High-density lipoprotein cholesterol (mg/dL) | 66.3 ± 15.6 | 68.8 ± 17.0 | 73.7 ± 18.9 |
Systolic blood pressure (mmHg) | 115.3 ± 14.6 | 118.4 ± 15.0 | 121.3 ± 15.6 |
Diastolic blood pressure (mmHg) | 71.7 ± 10.6 | 74.3 ± 10.9 | 76.4 ± 11.3 |
HbA1c (%) | 5.4 ± 0.4 | 5.3 ± 0.4 | 5.3 ± 0.4 |
Available n | 60,408 | 41,305 | 2251 |
Pharmacotherapy for | |||
Hypertension, n (%) | 2441 (3.3) | 2382 (4.6) | 199 (7.0) |
Diabetes, n (%) | 532 (0.7) | 304 (0.6) | 26 (0.9) |
Dyslipidemia, n (%) | 1127 (1.5) | 1338 (2.6) | 84 (2.9) |
Medical history | |||
Cardiovascular disease, n (%) | 848 (1.1) | 727 (1.4) | 46 (1.6) |
Cerebrovascular disease, n (%) | 348 (0.5) | 263 (0.5) | 10 (0.4) |
Available n | 74,698 | 51,467 | 2862 |
Current smoker, n (%) | 20,513 (27.5) | 13,612 (26.4) | 893 (31.2) |
Alcohol intake | |||
Daily, n (%) | 18,199 (24.4) | 19,280 (37.5) | 1508 (52.7) |
High quantity (≥ 69 g ethanol/day), n (%) | 2243 (3.0) | 2549 (5.0) | 258 (9.0) |
Regular exercise (≥ 30 min per sessionat least twice/week), n (%) | 14,538 (19.5) | 13,239 (25.7) | 1028 (35.9) |
Physical activity (≥ 1 hour/day), n (%) | 27,485 (36.8) | 20,474 (39.8) | 1302 (45.5) |
Serum AST Level: | ≤19 U/L | 20–29 U/L | ≥30 U/L |
---|---|---|---|
N (%) | 39,319 (35.9) | 64,892 (59.3) | 5248 (4.8) |
Male, n (%) | 17,295 (44.0) | 24,745 (38.1) | 2308 (44.0) |
Age (years) | 61.7 ± 4.1 | 62.4 ± 4.0 | 62.9 ± 4.0 |
Body mass index (kg/m²) | 21.9 ± 1.7 ** | 21.8 ± 1.7 ** | 21.6 ± 1.7 |
Body weight (kg) | 56.4 ± 7.9 ** | 55.2 ± 7.8 ** | 55.0 ± 7.7 * |
Aspartate aminotransferase (U/L) | 17.1 ± 1.8 | 23.1 ± 2.5 | 33.6 ± 6.4 |
Alanine aminotransferase (U/L) | 14.7 ± 3.8 | 18.8 ± 4.4 | 22.8 ± 4.3 |
γ-glutamyl transferase (U/L) | 24.6 ± 16.0 | 29.5 ± 21.6 | 39.4 ± 31.0 |
Triglyceride (mg/dL) | 93 (69–127) | 89 (66–123) | 85 (62–121) |
High-density lipoprotein cholesterol (mg/dL) | 64.6 ± 15.8 | 68.6 ± 16.6 | 72.8 ± 18.3 |
Systolic blood pressure (mmHg) | 125.3 ± 16.6 | 126.5 ± 16.7 | 127.9 ± 16.9 |
Diastolic blood pressure (mmHg) | 76.3 ± 10.6 | 76.6 ± 10.5 | 77.1 ± 10.6 |
HbA1c (%) | 5.6 ± 0.5 | 5.5 ± 0.4 | 5.5 ± 0.4 |
Available n | 34,531 | 57,707 | 4713 |
Pharmacotherapy for | |||
Hypertension, n (%) | 7535 (19.2) | 12,432 (19.2) | 1079 (20.6) |
Diabetes, n (%) | 1273 (3.2) | 1351 (2.1) | 106 (2.0) |
Dyslipidemia, n (%) | 3960 (10.1) | 8825 (13.6) | 768 (14.6) |
Medical history | |||
Cardiovascular disease, n (%) | 1515 (3.9) | 2642 (4.1) | 246 (4.7) |
Cerebrovascular disease, n (%) | 801 (2.0) | 1242 (1.9) | 100 (1.9) |
Available n | 39,282 | 64,848 | 5246 |
Current smoker, n (%) | 7859 (20.0) | 8514 (13.1) | 729 (13.9) |
Alcohol intake | |||
Daily, n (%) | 9505 (24.2) | 17,708 (27.3) | 2011 (38.3) |
High quantity (≥69 g ethanol/day), n (%) | 540 (1.4) | 1036 (1.6) | 172 (3.3) |
Regular exercise (≥30 min per sessionat least twice/week), n (%) | 14,245 (36.2) | 27,128 (41.8) | 2544 (48.5) |
Physical activity (≥1 h/day), n (%) | 18,744 (47.7) | 34,150 (52.6) | 3030 (57.7) |
Baseline Serum AST Category | Total | ≤19 U/L | 20–29 U/L | ≥30 U/L |
---|---|---|---|---|
Younger group | ||||
Change in body weight (kg) | 0.4 (−1.6 to 2.4) | 0.6 (−1.4 to 2.6) | 0.2 (−1.8 to 2.1) | −0.1 (−2.0 to 1.9) |
UW, n (%) | 4733 (3.7) | 2758 (3.7) | 1844 (3.6) | 131 (4.6) |
≥5% WL, n (%) | 18,017 (14.0) | 9757 (13.1) | 7805 (15.2) | 455 (15.9) |
UWWL, n (%) | 3166 (2.5) | 1841 (2.5) | 1243 (2.4) | 82 (2.9) |
Older group | ||||
Change in body weight (kg) | −0.4 (−2.2 to 1.4) | −0.3 (−2.2 to 1.5) | −0.5 (−2.2 to 1.3) | −0.6 (−2.3 to 1.1) |
UW, n (%) | 4593 (4.2) | 1423 (3.6) | 2882 (4.4) | 288 (5.5) |
≥ 5% WL, n (%) | 21,521 (19.7) | 7423 (18.9) | 13,001 (20.0) | 1097 (20.9) |
UWWL, n (%) | 3459 (3.2) | 1086 (2.8) | 2159 (3.3) | 214 (4.1) |
Baseline Serum AST Category | ≤19 U/L | 20–29 U/L | ≥30 U/L |
---|---|---|---|
Younger group | |||
UW | |||
Model 1 | 1 (ref) | 0.97 (0.91–1.03) | 1.25 (1.05–1.50) * |
Model 2 | 1 (ref) | 1.07 (0.98–1.15) | 1.20 (0.97–1.48) |
≥5% WL | |||
Model 1 | 1 (ref) | 1.19 (1.15–1.23) *** | 1.26 (1.14–1.39) *** |
Model 2 | 1 (ref) | 1.11 (1.07–1.15) *** | 1.14 (1.02–1.27) * |
UWWL | |||
Model 1 | 1 (ref) | 0.98 (0.91–1.05) | 1.17 (0.93–1.46) |
Model 2a | 1 (ref) | 1.07 (0.98–1.17) | 1.14 (0.88–1.46) |
Model 2 | 1 (ref) | 1.08 (0.99–1.18) | 1.16 (0.90–1.49) |
Older group | |||
UW | |||
Model 1 | 1 (ref) | 1.24 (1.16–1.32) *** | 1.55 (1.36–1.76) *** |
Model 2 | 1 (ref) | 1.10 (1.02–1.19) * | 1.28 (1.09–1.50) ** |
≥5% WL | |||
Model 1 | 1 (ref) | 1.08 (1.04–1.11) *** | 1.14 (1.06–1.22) ** |
Model 2 | 1 (ref) | 1.06 (1.02–1.10) ** | 1.14 (1.05–1.23) ** |
UWWL | |||
Model 1 | 1 (ref) | 1.21 (1.13–1.31) *** | 1.50 (1.29–1.74) *** |
Model 2a | 1 (ref) | 1.07 (0.98–1.17) | 1.21 (1.02–1.44) * |
Model 2 | 1 (ref) | 1.10 (1.01–1.20) * | 1.27 (1.07–1.52) ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shibata, M.; Nakajima, K. High Serum Aspartate Aminotransferase, Underweight, and Weight Loss in Older People: Results of the KITCHEN-4. Healthcare 2020, 8, 69. https://doi.org/10.3390/healthcare8020069
Shibata M, Nakajima K. High Serum Aspartate Aminotransferase, Underweight, and Weight Loss in Older People: Results of the KITCHEN-4. Healthcare. 2020; 8(2):69. https://doi.org/10.3390/healthcare8020069
Chicago/Turabian StyleShibata, Michi, and Kei Nakajima. 2020. "High Serum Aspartate Aminotransferase, Underweight, and Weight Loss in Older People: Results of the KITCHEN-4" Healthcare 8, no. 2: 69. https://doi.org/10.3390/healthcare8020069
APA StyleShibata, M., & Nakajima, K. (2020). High Serum Aspartate Aminotransferase, Underweight, and Weight Loss in Older People: Results of the KITCHEN-4. Healthcare, 8(2), 69. https://doi.org/10.3390/healthcare8020069