Evaluation of a New Rotator Cuff Trainer Based on Oscillating Hydraulic Damping
Abstract
:1. Introduction
Design
2. Materials and Methods
2.1. Subjects
2.2. Apparatus
2.2.1. Rotator Cuff Training Equipment RCT
RCT
Dumbbell
Elastic Bands
2.2.2. Data Acquisition Equipment
2.3. Experimental Procedure
2.3.1. Warming up and Selection of Training Loads
2.3.2. Selection of Target Muscles
2.3.3. MVC Tests of Target Muscles
2.3.4. Experiment of Shoulder Rotation
2.4. Data Processing
3. Results
3.1. Muscle Force Generation Sequence
3.2. The Percentage of Muscle Work
3.3. Muscle Activation Intensity
4. Discussion
4.1. Discussion on the Sequence Analysis of Muscle Force Generation
4.2. Discussion on the Sequence Percentage of Muscle Work
4.3. Discussion on the Muscle Activation Intensity
5. Conclusions and Future Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ebaugh, D.D.; McClure, P.W.; Karduna, A.R. Scapulothoracic and glenohumeral kinematics following an external rotation fatigue protocol. J. Orthop. Sports Phys. Ther. 2006, 36, 557–571. [Google Scholar] [CrossRef]
- Kibler, W.B.; Uhl, T.L.; Maddux, J.W.; Brooks, P.V.; Zeller, B.; McMullen, J. Qualitative clinical evaluation of scapular dysfunction: A reliability study. J. Shoulder Elbow Surg. 2002, 11, 550–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, G.; Bhandary, S.; Khandige, G.; Kabra, U. MR imaging of rotator cuff tears: Correlation with arthroscopy. J. Clin. Diagn. Res. 2017, 11, TC24–TC27. [Google Scholar] [CrossRef] [PubMed]
- Escamilla, R.F.; Yamashiro, K.; Paulos, L.; Andrews, J.R. Shoulder muscle activity and function in common shoulder rehabilitation exercise. Sports Med. 2009, 39, 663–685. [Google Scholar] [CrossRef] [PubMed]
- Jain, N.B.; Luz, J.; Higgins, L.D.; Dong, Y.; Warner, J.J.P.; Matzkin, E.; Katz, J.N. The diagnostic accuracy of special tests for rotator cuff tear: The ROW cohort study. Am. J. Phys. Med. Rehabil. 2017, 96, 176–183. [Google Scholar] [CrossRef] [Green Version]
- Li, S.X.; Sun, H.; Luo, X.M.; Wang, K.; Wu, G.F.; Zhou, J.; Wang, P.; Sun, X.L. The clinical effect of rehabilitation following arthroscopic rotator cuff repair: A meta-analysis of early versus delayed passive motion. Medicine (Baltimore) 2018, 97, 1–10. [Google Scholar] [CrossRef]
- Malliou, P.C.; Giannakopoulos, K.; Beneka, A.G.; Gioftsidou, A.; Godolias, G. Effective ways of restoring muscular imbalances of the rotator cuff muscle group: A comparative study of various training methods. Br. J. Sports Med. 2004, 38, 766–772. [Google Scholar] [CrossRef] [Green Version]
- Marco, B.; Massimo, G.; Stefano, G.; Adriano, B.; Cossio, A.; Paolo, G.; Edoardo, C.M. Shoulder evaluation with isokinetic strength testing after arthroscopic rotator cuff repairs. J. Shoulder Elbow Surg. 2009, 18, 179–183. [Google Scholar]
- Editing group of Exercise physiology. Exercise Physiology; Beijing Sport University Press: Beijing, China, 2013. [Google Scholar]
- Chen, B. Study on the effect of muscle strengthening exercise on table tennis players’ shoulder damage muscles group. Master’s Thesis, Jilin University, Changchun, China, March 2017. [Google Scholar]
- Wang, A.L.; Huang, P. The research progress and practice of rotator cuff injury prevention. China School Phys. Education. 2015, 2, 76–82. [Google Scholar]
- Zhou, C.C. Foundational Knowledge in Hydraulics (Second Edition); China Machine Press: Beijing, China, 2011. [Google Scholar]
- Lin, B.; Zhang, H.S.; Guo, Z.M.; Hong, J.Y.; Guo, L.X.; Zhao, W.D. The character of normal acromioclavicular joint’s motion in Chinese body. Clin. Orthop. Relat. Res. 2009, 12, 451–454. [Google Scholar]
- Suzuki, Y.; Muraki, T.; Sekiguchi, Y.; Ishikawa, H.; Yaguchi, H.; Suzuki, Y.; Morise, S.; Honda, K.; Izumi, S. Influence of thoracic posture on scapulothoracic and glenohumeral motions during eccentric shoulder external rotation. Gait Posture. 2019, 67, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Liaghat, B.; Juul-Kristensen, B.; Frydendal, T.; Lsrsen, C.M.; Sogaard, K.; Salo, A.L.T. Competitive swimmers with hypermobility have strength and fatigue deficits in shoulder medial rotation. J. Electromyogr. Kinesiol. 2018, 39, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.C.; Wu, J.F.; Tang, Z.C. The characteristics and developmental designing prospects of common strength equipment in China’s fitness path. Packaging Eng. 2017, 38, 43–47. [Google Scholar]
- Kibler, W.B. Rehabilitation of rotator cuff tendinopathy. Clin. Sports Med. 2003, 22, 837–847. [Google Scholar] [CrossRef]
- Human Dimensions of Chinese Adults (GB10000-1988); China; China State Bureau of Technology Supervision: Beijing, China, 1989; Available online: https://wenku.baidu.com/view/4e23160a79563c1ec5da719c.html (accessed on 10 January 2020).
- Sarah, C.; Jennifer, F.; Heather, H.; Gabby, M.; Amber, F.; Betty, S. Reliability and validity of the Halo digital goniometer for shoulder range of motion in healthy subjects. Int. J. Sports Phys. Ther. 2018, 13, 707–714. [Google Scholar]
- Escamilla, R.F.; Andrews, J.R. Shoulder muscle recruitment patterns and related biomechanics during upper extremity sports. Sports Med. 2009, 39, 569–590. [Google Scholar] [CrossRef] [PubMed]
- Lugo, R.; Kung, P.; Benjamin, C. Shoulder biomechanics. Eur. J. Radiol. 2008, 68, 16–24. [Google Scholar] [CrossRef]
- Ha, S.M.; Kwon, O.Y.; Cynn, H.S.; Lee, W.H.; Kim, S.J.; Park, K.N. Selective activation of the infraspinatus muscle. J. Athl. Train. 2013, 48, 346–352. [Google Scholar] [CrossRef] [Green Version]
- Rebecca, L.B. Electromyography evaluation of rotator cuff manual muscle tests. Master’s Thesis, University of Waterloo, Ontario, Canada, 2008. [Google Scholar]
- Saif, A.; Fereydoun, A. Electromyography analysis: Comparison of maximum voluntary contraction methods for anterior deltoid and trapezius muscles. Procedia Manufacturing. 2015, 3, 4578–4583. [Google Scholar]
- Jawad, H.; Kenneth, S.; Indra, D.S.; Chee, K.L. Analysis of fatigue in the three heads of the triceps brachii during isometric contractions at various effort levels. J. Musculoskelet. Neuronal. Interact. 2019, 19, 276–285. [Google Scholar]
- Johnson, P.W.; Ciriello, V.M.; Kerin, K.J.; Dennerlein, J.D. Using electrical stimulation to measure physiological changes in the human extensor carpi ulnaris muscle after prolonged low-level repetitive ulnar deviation. Appl. Ergon. 2013, 44, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Quan, Y.; Yang, L.; He, J.P. An adaptive algorithm for the determination of the onset and offset of muscle contraction by EMG signal processing. IEEE Trans. Neural. Syst. Rehabil. Eng. 2013, 21, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. Some advances in the research of sEMG signal analysis and its application. J. Sports Sci. 2000, 20, 56–60. [Google Scholar]
- Nascimento, V.Y.S.; Torres, R.J.B.; Beltrão, N.B.; Santos, P.S.; Pirauá, A.L.T.; Oliveira, V.M.A.; Pitangui, A.C.R.; & Araújo, R.C. Shoulder muscle activation levels during exercises with axial and rotational load on stable and unstable surfaces. J. Appl. Biomech. 2017, 33, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Yu, Y.; Wang, Y.; Cui, L.G.; Liao, L.P.; Li, Y.; Wang, A.L. Analysis of muscle mobilization order of smash after rotator cuff injury in volleyball players and causes of injury. J. Beijing Sport Univ. 2017, 40, 59–65. [Google Scholar]
- Fernandez-Fernandez, J.; Lopez-Valencianob, A.; Del Cosoc, J.; Gallo-Salazarc, C.; Barbadob, D.; Sabido-Solanab, R.; Ruiz-Perezb, I.; Moreno-Perezb, V.; Dominguez-Diezb, M.; Cabello-Manrique, D. The effects of playing two consecutive matches in the shoulder rotational profiles of elite youth badminton players. Phys. Ther. Sport. 2019, 35, 56–62. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, H.R.; Zhang, Q.W.; Wu, Y. Kinematic and relatively muscle sEMG analysis on the punch-impact phase in back straight punch of Chinese male elite boxers. China Sport Sci. Technol. 2012, 48, 57–62. [Google Scholar]
- Lin, J.C.; Weintraub, N.; Aragaki, D.R. Nonsurgical treatment for rotator cuff injury in the elderly. J. Am. Med. Dir. Assoc. 2008, 48, 57–62. [Google Scholar] [CrossRef]
- Krishnamoorthy, V.; Scholz, J.P.; Latash, M.L. The use of flexible arm muscle synergies to perform an isometric stabilization task. Clin. Neurophysiol. 2007, 9, 626–632. [Google Scholar] [CrossRef] [Green Version]
- Editing group of Sport anatomy. Sport Anatomy; Beijing Sport University Press: Beijing, China, 2013. [Google Scholar]
- Orizio, C.; Perini, R.; Veicsteinas, A. Changes of muscular sound during sustained isometric contraction up to exhaustion. J. Appl. Physiol. 1989, 66, 1593–1598. [Google Scholar] [CrossRef]
Name of the Target Muscle | Infraspinatus (IS) | Teres Minor (TM) | Anterior Deltoid (AD) | Triceps Brachii (TB) | Extensor Carpi Ulnaris (ECU) |
---|---|---|---|---|---|
Electrode location | | | | | |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wu, J.; Yang, H.; Tang, Z.; Chai, G. Evaluation of a New Rotator Cuff Trainer Based on Oscillating Hydraulic Damping. Healthcare 2020, 8, 24. https://doi.org/10.3390/healthcare8010024
Wang Y, Wu J, Yang H, Tang Z, Chai G. Evaluation of a New Rotator Cuff Trainer Based on Oscillating Hydraulic Damping. Healthcare. 2020; 8(1):24. https://doi.org/10.3390/healthcare8010024
Chicago/Turabian StyleWang, Yinghao, Jianfeng Wu, Hongchun Yang, Zhichuan Tang, and Guozhong Chai. 2020. "Evaluation of a New Rotator Cuff Trainer Based on Oscillating Hydraulic Damping" Healthcare 8, no. 1: 24. https://doi.org/10.3390/healthcare8010024
APA StyleWang, Y., Wu, J., Yang, H., Tang, Z., & Chai, G. (2020). Evaluation of a New Rotator Cuff Trainer Based on Oscillating Hydraulic Damping. Healthcare, 8(1), 24. https://doi.org/10.3390/healthcare8010024