Sedentary Behavior and Low Back Pain in Children and Adolescents: A Systematic Review and Meta-Analysis
Highlights
- Dose–response meta-analysis shows a 26% increase in the odds of low back pain (LBP) for each additional hour of daily screen time in children and adolescents.
- Pairwise meta-analyses did not show a statistically significant association between screen time and LBP.
- Reducing screen-based sedentary behavior may help lower the risk of LBP in pediatric populations.
- High heterogeneity and risk of bias in existing studies highlight the need for standardized, high-quality research to better understand the relationship.
Abstract
1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Data Sources and Search
2.3. Study Selection Process
2.4. Data Extraction Process
2.5. Assessment of Methodological Quality and Risk of Bias
2.6. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.2.1. Sample
3.2.2. Screen-Based Sedentary Behavior Assessment
3.3. Risk of Bias Assessment
3.4. Narrative Synthesis of Study Findings
3.5. Univariate Meta-Analysis
3.6. Dose–Response Meta-Analysis
4. Discussion
4.1. Risk of Bias
4.2. Strengths and Limitations
4.3. Implications for Practice and Public Health
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| LBP | Low back pain |
References
- Calvo-Muñoz, I.; Gómez-Conesa, A.; Sánchez-Meca, J. Prevalence of Low Back Pain in Children and Adolescents: A Meta-Analysis. BMC Pediatr. 2013, 13, 14. [Google Scholar] [CrossRef]
- Jeffries, L.J.; Milanese, S.F.; Grimmer-Somers, K.A. Epidemiology of Adolescent Spinal Pain: A Systematic Overview of the Research Literature. Spine 2007, 32, 2630–2637. [Google Scholar] [CrossRef]
- Ståhl, M.K.; El-Metwally, A.A.S.; Rimpelä, A.H. Time trends in single versus concomitant neck and back pain in finnish adolescents: Results from national cross-sectional surveys from 1991 to 2011. BMC Musculoskelet. Disord. 2014, 15, 296. [Google Scholar] [CrossRef]
- WHO. Low Back Pain. Fact Sheet; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Calvo-Muñoz, I.; Kovacs, F.M.; Roqué, M.; Fernández, I.G.; Calvo, J.S. Risk Factors for Low Back Pain in Childhood and Adolescence: A Systematic Review. Clin. J. Pain 2018, 34, 468–484. [Google Scholar] [CrossRef]
- Tremblay, M.S.; Aubert, S.; Barnes, J.D.; Saunders, T.J.; Carson, V.; Latimer-Cheung, A.E.; Chastin, S.F.M.; Altenburg, T.M.; Chinapaw, M.J.M.; SBRN Terminology Consensus Project Participants. Sedentary Behaviour Research Network (SBRN)—Terminology Consensus Project: Definition of Sedentary Behaviour. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 75. [Google Scholar] [CrossRef] [PubMed]
- Hakala, P.; Rimpelä, A.; Salminen, J.J.; Virtanen, S.M.; Rimpelä, M. Back, Neck, and Shoulder Pain in Finnish Adolescents. BMJ 2002, 325, 743. [Google Scholar] [CrossRef]
- Guerra, P.H.; Martelo, R.; da Silva, M.N.; de Andrade, G.F.; Christofaro, D.G.D.; Loch, M.R. Screen Time and Low Back Pain in Children and Adolescents: A Systematic Review. Prev. Med. 2019, 121, 61–67. [Google Scholar]
- Stiglic, N.; Viner, R.M. Effects of Screentime on the Health and Well-Being of Children and Adolescents: A Systematic Review of Reviews. BMJ Open 2019, 9, e023191. [Google Scholar] [CrossRef]
- Pfefferbaum, B.; Van Horn, R.L. Physical Activity and Sedentary Behavior in Children During the COVID-19 Pandemic: Implications for Mental Health. Curr. Psychiatry Rep. 2022, 24, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Torsheim, T.; Eriksson, L.; Schnohr, C.W.; Hansen, F.; Bjarnason, T.; Välimaa, R. Screen-Based Activities and Physical Complaints among Adolescents from the Nordic Countries. BMC Public Health 2010, 10, 324. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Moher, D. Updating Guidance for Reporting Systematic Reviews: The PRISMA 2020 Statement. J. Clin. Epidemiol. 2021, 134, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Lipsey, M.W. Identifying Interesting Variables and Analysis Opportunities. In The Handbook of Research Synthesis and Meta-Analysis, 2nd ed.; Russell Sage Foundation: New York, NY, USA, 2019. [Google Scholar]
- Orwin, R.G.; Vevea, J.L. Evaluating Coding Decisions. In The Handbook of Research Synthesis and Meta-Analysis, 2nd ed.; Russell Sage Foundation: New York, NY, USA, 2009. [Google Scholar]
- Higgins, J.P.T.; Morgan, R.L.; Rooney, A.A.; Taylor, K.W.; Thayer, K.A.; Silva, R.A.; Lemeris, C.; Akl, E.A.; Bateson, T.F.; Berkman, N.D.; et al. A Tool to Assess Risk of Bias in Non-Randomized Follow-Up Studies of Exposure Effects (ROBINS-E). Environ. Int. 2024, 186, 108602. [Google Scholar] [CrossRef]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.; Rothstein, H.R. Introduction to Meta-Analysis; John Wiley & Sons: Chichester, UK, 2021. [Google Scholar]
- Hartung, J.; Knapp, G. A refined method for the meta-analysis of controlled clinical trials with binary outcome. Stat. Med. 2001, 20, 3875–3889. [Google Scholar] [CrossRef]
- Greenland, S.; Longnecker, M.P. Methods for trend estimation from summarized dose–response data, with applications to meta-analysis. Am. J. Epidemiol. 1992, 135, 1301–1309. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025. Available online: https://www.R-project.org/ (accessed on 17 September 2025).
- Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef]
- Crippa, A.; Orsini, N. Multivariate dose-response meta-analysis: The dosresmeta R package. J. Stat. Softw. 2016, 72, 1–15. [Google Scholar] [CrossRef]
- Balagué, F.; Dutoit, G.; Waldburger, M. Low back pain in schoolchildren: An epidemiological study. Scand. J. Rehabil. Med. 1988, 20, 175–179. [Google Scholar] [PubMed]
- Balagué, F.; Nordin, M.; Skovron, M.L.; Dutoit, G.; Yee, A.; Waldburger, M. Non-specific low-back pain among schoolchildren: A field survey with analysis of some associated factors. J. Spinal Disord. 1994, 7, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Sjolie, A.N. Associations between activities and low back pain in adolescents. Scand. J. Med. Sci. Sports. 2004, 14, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Diepenmaat, A.C.; van der Wal, M.F.; de Vet, H.C.; Hirasing, R.A. Neck/shoulder, low back, and arm pain in relation to computer use, physical activity, stress, and depression among Dutch adolescents. Pediatrics 2006, 117, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Hakala, P.T.; Rimpelä, A.H.; Saarni, L.A.; Salminen, J.J. Frequent computer-related activities increase the risk of neck-shoulder and low back pain in adolescents. Eur. J. Public Health 2006, 16, 536–541. [Google Scholar] [CrossRef] [PubMed]
- Mohseni-Bandpei, M.A.; Bagheri-Nesami, M.; Shayesteh-Azar, M. Nonspecific low back pain in 5000 Iranian school-age children. J. Pediatr. Orthop. 2007, 27, 126–129. [Google Scholar] [CrossRef] [PubMed]
- Skoffer, B.; Foldspang, A. Physical activity and low-back pain in schoolchildren. Eur. Spine J. 2008, 17, 373–379. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hakala, P.T.; Rimpelä, A.H.; Saarni, L.A.; Salminen, J.J. Computer-associated health complaints and sources of ergonomic instructions in computer-related issues among Finnish adolescents: A cross-sectional study. BMC Public Health 2010, 10, 11. [Google Scholar] [CrossRef]
- Erne, C.; Elfering, A. Low back pain at school: Unique risk deriving from unsatisfactory grades in maths and school-type recommendation. Eur. Spine J. 2011, 20, 2126–2133. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Turk, Z.; Vauhnik, R.; Micetić-Turk, D. Prevalence of nonspecific low back pain in schoolchildren in north-eastern Slovenia. Coll. Antropol. 2011, 35, 1031–1035. [Google Scholar] [PubMed]
- Hakala, P.T.; Saarni, L.A.; Punamäki, R.L.; Wallenius, M.A.; Nygård, C.H.; Rimpelä, A.H. Musculoskeletal symptoms and computer use among Finnish adolescents: Pain intensity and inconvenience to everyday life. BMC Musculoskelet. Disord. 2012, 13, 41. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Graup, S.; de Araújo Bergmann, M.L.; Bergmann, G.G. Prevalence of nonspecific lumbar pain and associated factors among adolescents in Uruguaiana. Rev. Bras. Ortop. 2014, 49, 661–667. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Minghelli, B.; Oliveira, R.; Nunes, C. Postural habits and weight of backpacks of Portuguese adolescents: Are they associated with scoliosis and low back pain? Work 2016, 54, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, J.A.; Genebra, C.V.; Maciel, N.M.; Fiorelli, A.; de Conti, M.H.; De Vitta, A. Low back pain in schoolchildren: A cross-sectional study in a western city of São Paulo State, Brazil. Acta Ortop. Bras. 2015, 23, 235–238. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rossi, M.; Pasanen, K.; Kokko, S.; Alanko, L.; Heinonen, O.J.; Korpelainen, R.; Savonen, K.; Selänne, H.; Vasankari, T.; Kannas, L.; et al. Low back and neck and shoulder pain in sports club members and non-members: The FHPSC study. BMC Musculoskelet. Disord. 2016, 17, 263. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dianat, I.; Alipour, A.; Asghari Jafarabadi, M. Prevalence and risk factors of low back pain among school-age children in Iran. Health Promot. Perspect. 2017, 7, 223–229. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yabe, Y.; Hagiwara, Y.; Sekiguchi, T.; Momma, H.; Tsuchiya, M.; Kuroki, K.; Kanazawa, K.; Koide, M.; Itaya, N.; Itoi, E.; et al. Late bedtimes, short sleep time, and video-game playing are associated with low back pain in school-aged athletes. Eur. Spine J. 2018, 27, 1112–1118. [Google Scholar] [CrossRef] [PubMed]
- Ben Ayed, H.; Yaich, S.; Trigui, M.; Ben Hmida, M.; Ben Jemaa, M.; Ammar, A.; Jedidi, J.; Karray, R.; Feki, H.; Mejdoub, Y.; et al. Prevalence, risk factors and outcomes of neck, shoulder and low-back pain in secondary-school children. J. Res. Health Sci. 2019, 19, e00440. [Google Scholar] [PubMed] [PubMed Central]
- Bento, T.P.F.; Cornelio, G.P.; Perrucini, P.d.O.; Simeão, S.F.A.P.; de Conti, M.H.S.; de Vitta, A. Low back pain in adolescents: Association with sociodemographic factors, electronic devices, physical activity and mental health. J. Pediatr. 2020, 96, 717–724. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Buabbas, A.J.; Al-Mass, M.A.; Al-Tawari, B.A.; Buabbas, M.A. The detrimental impacts of smart technology device overuse among school students in Kuwait: A cross-sectional survey. BMC Pediatr. 2020, 20, 524. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Minghelli, B. Musculoskeletal spine pain in adolescents: Epidemiology and risk factors. J. Orthop. Sci. 2020, 25, 776–780. [Google Scholar] [CrossRef] [PubMed]
- Rezapur-Shahkolai, F.; Gheysvandi, E.; Tapak, L.; Dianat, I.; Karimi-Shahanjarini, A.; Heidarimoghadam, R. Risk factors for low back pain among elementary school students in western Iran using penalized logistic regression. Epidemiol. Health 2020, 42, e2020039. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schwertner, D.S.; Oliveira, R.A.; Koerich, M.H.; Motta, A.F.; Pimenta, A.L.; Gioda, F.R. Prevalence of low back pain in young Brazilians and associated factors. J. Back Musculoskelet. Rehabil. 2020, 33, 233–244. [Google Scholar] [CrossRef] [PubMed]
- de Vitta, A.; Bento, T.P.F.; Cornelio, G.P.; Perrucini, P.D.d.O.; Felippe, L.A.; de Conti, M.H.S. Incidence and factors associated with low back pain in adolescents: A prospective study. Braz. J. Phys. Ther. 2021, 25, 864–873. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Joergensen, A.C.; Strandberg-Larsen, K.; Andersen, P.K.; Hestbaek, L.; Andersen, A.N. Spinal pain in pre-adolescence and relation with screen time and physical activity. BMC Musculoskelet. Disord. 2021, 22, 393. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- da Costa, L.; Lemes, I.R.; Tebar, W.R.; Oliveira, C.B.; Guerra, P.H.; Soidán, J.L.G.; Mota, J.; Christofaro, D. Sedentary behavior is associated with musculoskeletal pain in adolescents: A cross-sectional study. Braz. J. Phys. Ther. 2022, 26, 100452. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lemes, Í.R.; Oliveira, C.B.; Silva, G.C.R.; Pinto, R.Z.; Tebar, W.R.; Christofaro, D.G. Association of sedentary behavior and early engagement in physical activity with low back pain in adolescents. Eur. Spine J. 2022, 31, 152–158. [Google Scholar] [CrossRef] [PubMed]
- van den Heuvel, M.M.; Chiarotto, A.; Oei, E.H.G.; van Middelkoop, M. Low back pain in adolescents: Associations with demographics, physical and psychosocial factors, and MRI findings. Spine 2023, 48, E216–E218. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Obeidat, M.S.; Al-Shalabi, F.H. Addressing the impact of smartphone use on children’s health: A comprehensive analysis. Theor. Issues Erg. Sci. 2025, 26, 690–711. [Google Scholar] [CrossRef]
- Rahmani, N.; Binaei, F.; Mohseni Bandpei, M.A.; Soleimani, F.; Mohseni, F.; Nobakht, Z. The association between low back pain and lifestyle factors in adolescents. J. Bodyw. Mov. Ther. 2025, 42, 1135–1140. [Google Scholar] [CrossRef] [PubMed]
- Baradaran Mahdavi, S.; Riahi, R.; Vahdatpour, B.; Kelishadi, R. Association between sedentary behavior and low back pain: A systematic review and meta-analysis. Health Promot. Perspect. 2021, 11, 393–410. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Montgomery, L.R.C.; Swain, M.; Dario, A.B.; O’KEeffe, M.; Yamato, T.P.; Hartvigsen, J.; French, S.; Williams, C.; Kamper, S. Does sedentary behaviour cause spinal pain in children and adolescents? A systematic review with meta-analysis. Br. J. Sports Med. 2025, 59, 409–422. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yue, C.; Wenyao, G.; Xudong, Y.; Shuang, S.; Zhuying, S.; Yizheng, Z.; Linlin, Z.; Jinxin, C.; Xingqi, W.; Yujia, L. Dose–response relationship between daily screen time and the risk of low back pain among children and adolescents: A meta-analysis of 57,831 participants. Environ. Health Prev. Med. 2023, 28, 64. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tremblay, M.S.; Carson, V.; Chaput, J.-P.; Gorber, S.C.; Dinh, T.; Duggan, M.; Faulkner, G.; Gray, C.E.; Gruber, R.; Janson, K.; et al. Canadian 24-hour movement guidelines for children and youth: An integration of physical activity, sedentary behaviour, and sleep. Appl. Physiol. Nutr. Metab. 2016, 41, S311–S327. [Google Scholar] [CrossRef] [PubMed]
- Hernán, M.A.; Hernández-Díaz, S.; Robins, J.M. A structural approach to selection bias. Epidemiology 2004, 15, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Tennant, P.W.G.; Murray, E.J.; Arnold, K.F.; Berrie, L.; Fox, M.P.; Gadd, S.C.; Harrison, W.J.; Keeble, C.; Ranker, L.R.; Textor, J.; et al. Use of directed acyclic graphs (DAGs) to identify confounders in applied health research: Review and recommendations. Int. J. Epidemiol. 2021, 50, 620–632. [Google Scholar] [CrossRef] [PubMed]


| Study | Study Design | Country | Age Category | % Female | Recruitment Setting | Type of Prevalence | Period Prevalence (Months) | Type of Screen Exposure |
|---|---|---|---|---|---|---|---|---|
| Balague et al. 1988 [22] | Cross-sectional | Switzerland | Mixed | 51% | Educational institution | Period | 0.25 | TV |
| Balagué et al. 1994 [23] | Cross-sectional | Switzerland | Mixed | 50.6% | Educational institution | Lifetime | NA | TV |
| Sjolie 2004 [24] | Cross-sectional | Norway | Adolescent | 43% | Educational institution | Period | 12 | TV PC |
| Diepenmaat et al. 2006 [25] | Cross-sectional | Netherlands | Adolescent | 50.5% | Educational institution | Period | 1 | TV PC |
| Hakala et al. 2006 [26] | Cross-sectional | Finland | Adolescent | 55.6% | Community | Period | 6 | TV PC Smartphone |
| Mohseni-Bandpei et al. 2007 [27] | Cross-sectional | Iran | Mixed | 52.3% | Educational institution | Period | 1 | TV PC |
| Skoffer and Foldspang 2008 [28] | Cross-sectional | Denmark | Adolescent | 46.7% | Educational institution | Period | 3 | TV |
| Hakala et al. 2010 [29] | Cross-sectional | Finland | Adolescent | 55.3% | Community | Lifetime | NA | PC |
| Erne and Elfering 2011 [30] | Cross-sectional | Switzerland | Mixed | 55% | Educational institution | Period | 1 | TV Video Computer |
| Turk et al. 2011 [31] | Cross-sectional | Slovenia | Mixed | 49.5% | Educational institution | Period | 3 | PC TV |
| Hakala et al. 2012 [32] | Cross-sectional | Finland | Adolescent | 53.7% | Educational institution | Period | 6 | PC |
| Graup et al. 2014 [33] | Cross-sectional | Brazil | Mixed | 50.9% | Educational institution | Lifetime | NA | TV Video games PC |
| Minghelli et al. 2014 [34] | Cross-sectional | Portugal | Mixed | 54.8% | Educational institution | Period | 12 | TV Computer |
| Fernandes et al. 2015 [35] | Cross-sectional | Brazil | Mixed | 48.4% | Educational institution | Period | 12 | TV PC |
| Rossi et al. 2016 [36] | Cross-sectional | Finland | Adolescent | 52.8% | Educational institution + Sports organization | Period | 3 | TV PC Video games Mobile phone Tablet |
| Dianat et al. 2017 [37] | Cross-sectional | Iran | Mixed | 53.4% | Educational institution | Period | 1 | PC Video games TV |
| Yabe et al. 2018 [38] | Cross-sectional | Japan | Mixed | 28.6% | Sports organization | Point | NA | TV Video games |
| Ben Ayed et al. 2019 [39] | Cross-sectional | Tunisia | Adolescent | 59.7% | Educational institution | Period | 3 | TV PC Video games |
| Bento et al. 2020 [40] | Cross-sectional | Brazil | Adolescent | 51% | Educational institution | Period | 12 | TV PC Tablet Smartphone |
| Buabbas et al. 2020 [41] | Cross-sectional | Kuwait | Mixed | 53.6% | Educational institution | Point | NA | Smartphone Tablets |
| Minghelli 2020 [42] | Cross-sectional | Portugal | Mixed | 52.6% | Educational institution | Period | 12 | TV Mobile phone Video games |
| Rezapur-Shahkolai et al. 2020 [43] | Cross-sectional | Iran | Children | 54.1% | Educational institution | Period | 1 | TV Smartphone Tablet PC Video games |
| Schwertner et al. 2020 [44] | Cross-sectional | Brazil | Adolescent | 74% | Educational institution | Period, point, and lifetime | 3 | PC TV |
| de Vitta et al. 2021 [45] | Cohort | Brazil | Adolescent | 43.8% | Educational institution | Period | 12 | TV PC Smartphone Tablet |
| Joergensen et al. 2021 [46] | Cross-sectional | Denmark | Children | 52.3% | Community | Point | NA | TV PC |
| da Costa et al. 2022 [47] | Cross-sectional | Brazil | Mixed | 55.1% | Educational institution | Period | 0.25 | TV Video games PC Smartphone |
| Lemes et al. 2022 [48] | Cross-sectional | Brazil | Mixed | 55.4% | Educational institution | Period | 0.25 | Smartphone |
| van den Heuvel et al. 2023 [49] | Cross-sectional | Netherlands | Adolescent | 52% | Community | Period | 1.5 | TV Video games |
| Obeidat and AL-Shalabi 2025 [50] | Cross-sectional | Jordan | Children | NI | Community | NI | NA | Smartphone |
| Rahmani et al. 2025 [51] | Cross-sectional | Iran | Adolescent | 50% | Educational institution | Period | 3 | TV PC |
| Study | R-E1 | R-E2 | R-E3 | R-E4 | R-E5 | R-E6 | R-E7 | R-Overall |
|---|---|---|---|---|---|---|---|---|
| Balague et al. 1988 [22] | High | Low | Low | Low | Low | Low | Low | High |
| Balagué et al. 1994 [23] | Low | Low | Low | Low | Low | Low | Low | Low |
| Sjolie 2004 [24] | Low | Low | Low | Low | Low | Low | Low | Low |
| Diepenmaat et al. 2006 [25] | High | Low | Low | Low | Low | Low | Low | High |
| Hakala et al. 2006 [26] | High | Low | Low | Low | Low | Low | Low | High |
| Mohseni-Bandpei et al. 2007 [27] | High | Low | Low | Low | Low | Low | Some concerns | High |
| Skoffer and Foldspang 2008 [28] | Low | Some concerns | Low | Low | Low | Low | Low | Some concerns |
| Hakala et al. 2010 [29] | Some concerns | Some concerns | Low | Low | Low | Low | Low | High |
| Erne and Elfering 2011 [30] | Low | Some concerns | Low | Low | Low | Low | Low | Some concerns |
| Turk et al. 2011 [31] | High | Low | Low | Low | Low | Low | Low | High |
| Hakala et al. 2012 [32] | High | Low | Low | Low | Low | Low | Low | High |
| Graup et al. 2014 [33] | High | Low | Low | Low | Low | Low | Low | High |
| Minghelli et al. 2014 [34] | High | Low | Low | Low | Low | Low | Low | High |
| Fernandes et al. 2015 [35] | High | Low | Low | Low | Low | Low | Low | High |
| Rossi et al. 2016 [36] | Low | Low | Low | Low | Low | Low | Low | Low |
| Dianat et al. 2017 [37] | High | Some concerns | Low | Low | Low | Low | Low | High |
| Yabe et al. 2018 [38] | Low | Low | Low | Low | Low | Low | Low | Low |
| Ben Ayed et al. 2019 [39] | Some concerns | Some concerns | Low | Low | Low | Low | Low | High |
| Bento et al. 2020 [40] | High | Some concerns | Low | Low | Low | Low | Low | High |
| Buabbas et al. 2020 [41] | High | Low | Low | Low | Low | Low | Low | High |
| Minghelli 2020 [42] | Some concerns | Low | Low | Low | Low | Low | High | High |
| Rezapur-Shahkolai et al. 2020 [43] | Some concerns | Low | Low | Low | Low | Low | Low | Some concerns |
| Schwertner et al. 2020 [44] | High | Some concerns | Low | Low | Low | Low | Some concerns | High |
| de Vitta et al. 2021 [45] | High | Low | Low | Low | Low | Low | Low | High |
| Joergensen et al. 2021 [46] | Low | Low | Low | Low | Low | Low | Low | Low |
| da Costa et al. 2022 [47] | Low | Some concerns | Low | Low | Low | Low | Low | Some concerns |
| Lemes et al. 2022 [48] | Low | Low | Low | Low | Low | Low | Low | Low |
| van den Heuvel et al. 2023 [49] | High | Low | Low | Low | High | Low | Low | Very high |
| Obeidat and AL-Shalabi 2025 [50] | High | Low | High | Low | High | Low | Low | Very high |
| Rahmani et al. 2025 [51] | High | Low | Low | Low | Low | Low | Low | High |
| Study | Exposure Variable and Categories | Type of Analysis | Effect Measure (95% CI) |
|---|---|---|---|
| Balague et al. 1988 [22] | TV: 0–<1 h/d, 1–2 h/d, >2 h/d (vs. 0 h/d [Reference]) | N/A | OR 0–<1 h/d: 0.89 (0.45–1.74); 1–2 h/d: 1.66 (0.86–3.22); >2 h/d: 3.05 (1.49–6.28) * |
| Balagué et al. 1994 [23] | TV: 0 h/d, <1 h/d, 1–2 h/d, >3 h/d | Multivariate ordinal logistic regression | OR 1.23 (1.0–1.52) a |
| Sjolie 2004 [24] | TV and PC: 0.3–1.4 h/d, 1.6–2.1 h/d, 2.3–2.9 h/d, and 3–6.4 h/d (vs. 0.3–1.4 h/d [Reference]) | Multivariate ordinal logistic regression | OR 1.70 (1.20–2.50) b |
| N/A | OR 1.6–2.1 h/d: 1.09 (0.36–3.29); 2.3–2.9 h/d: 2.54 (0.67–9.65); 3–6.4 h/d: 4.33 (1.21–15.44) * | ||
| Diepenmaat et al. 2006 [25] | TV: 1.51–2.5 h/d, 2.51–4 h/d, ≥4 h/d (vs. 0–1.5 h/d [Reference]) | Bivariate logistic regression | OR 1.51–2.5 h/d: 0.60 (0.40–0.90); 2.51–4 h/d: 0.8 (0.60–1.10); ≥4 h/d: 0.8 (0.60–1.20) |
| PC: 0.51–1.5 h/d, 1.51–3 h/d, ≥3.01 h/d (vs. 0–0.5 h/d [Reference]) | Bivariate logistic regression | OR 0.51–1.5 h/d: 0.80 (0.60–1.20); 1.51–3 h/d: 0.90 (0.70–1.30); ≥3.01 h/d: 0.90 (0.60–1.30) | |
| Hakala et al. 2006 [26] | TV, video and DVD: ≤1 h/d, 2–3 h/d, 4–5 h/d, and >5 h/d (vs. 0 h/d [Reference]) | Multivariate logistic regression | OR ≤ 1 h/d: 0.90 (0.60–1.20); 2–3 h/d: 0.90 (0.70–1.20); 4–5 h/d: 1.00 (0.70–1.40); >5 h/d: 1.30 (0.70–2.30) c |
| Smartphone: ≤1 h/d, 2–3 h/d, 4–5 h/d, and >5 h/d (vs. 0 h/d [Reference]) | Multivariate logistic regression | OR ≤ 1 h/d: 0.90 (0.70–1.10); 2–3 h/d: 1.00 (0.70–1.50); 4–5 h/d: 1.20 (0.50–2.60); >5 h/d: 1.00 (0.50–2.30) c | |
| PC: ≤1 h/d, 2–3 h/d, 4–5 h/d, and >5 h/d (vs. 0 h/d [Reference]) | Multivariate logistic regression | OR ≤ 1 h/d: 0.90 (0.70–1.20); 2–3 h/d: 0.90 (0.60–1.30); 4–5 h/d: 0.70 (0.30–1.60); >5 h/d: 2.00 (1.00–4.20) c | |
| Mohseni-Bandpei et al. 2007 [27] | TV (continuous) | Bivariate logistic regression | OR 0.66 (0.51–0.86) |
| PC (continuous) | Bivariate logistic regression | OR 0.86 (0.58–1.28) | |
| Skoffer and Foldspang 2008 [28] | TV or video (h/d), (continuous), weekend before research | Multivariate logistic regression | OR 1.07 (1.01–1.14) d |
| TV or video (h/d), (continuous), two days before research | Multivariate logistic regression | OR 1.18 (1.05–1.34) d | |
| Hakala et al. 2010 [29] | PC: <1 h/d, 1–3 h/d, ≥4 h/d vs. (vs. Not daily [Reference]) | Multivariate logistic regression | OR <1 h/d: 0.8 (0.4–1.4); 1–3 h/d: 1.1 (0.7–1.7); ≥4 h/d: 2.6 (1.1–6.1) e |
| Erne and Elfering 2011 [30] | TV, PC and video: <0.5 h/d, 0.5–1 h/d, 1–1.5 h/d, >1.5 h/d | Multivariate ordinal logistic regression | OR 0.48 (0.27–0.85) f |
| Hakala et al. 2012 [32] | PC: 0.5–2 h/d, ≥2 h/d (vs. <0.5 h/d [Reference]) | Multivariate logistic regression | OR Severe/Moderate LBP: 0.5–2 h/d: 1.60 (0.70–3.80); ≥2 h/d: 3.50 (1.50–8.30) g |
| Multivariate logistic regression | OR Mild LBP: 0.5–2 h/d: 2.40 (1.20–4.80); ≥2 h/d: 3.10 (1.50–6.70) g | ||
| Graup et al. 2014 [33] | TV, PC and video games: >0.43 h/d vs. ≤0.43 h/d (Reference) | N/A | OR 1.17 (0.87–1.58) * |
| Minghelli et al. 2014 [34] | TV: >1.4 h/d vs. <1.4 h/d (Reference) | N/A | OR 1.09 (0.80–1.47) * |
| PC and video games: >1.4 h/d vs. <1.4 h/d (Reference) | N/A | OR 0.90 (0,63–1.31) * | |
| Fernandes et al. 2015 [35] | TV: >2 h/d vs. <2 h/d (Reference) | N/A | OR 2 h/d: 1.27 (0.92–1.76) * |
| PC: >2 h/d vs. <2 h/d (Reference) | N/A | OR 2 h/d: 0.89 (0.64–1.24) * | |
| Rossi et al. 2016 [36] | TV, PC, smartphone, video games, and tablet (h/d) (continuous) | Multivariate logistic regression | OR Boys: 1.07 (1.01–1.12) h |
| OR Girls: 1.06 (1.01–1.10) h | |||
| Dianat et al. 2017 [37] | TV: 0.43–1.71 h/d, >1.71 h/d (vs. <0.43 h/d [Reference]) | Bivariate logistic regression | OR 0.43–1.71 h/d: 1.02 (0.79–1.31); >1.71 h/d: 1.17 (0.91–1.50) |
| PC: 0.14–0.57 h/d, >0.57 h/d (vs. <0.14 h/d [Reference]) | Bivariate logistic regression | OR 0.14–0.57 h/d: 1.05 (0.83–1.35); >0.57 h/d: 1.03 (0.8–1.34) | |
| Video games: 0.14–0.28 h/d, >0.28 h/d (vs. <0.14 h/d [Reference]) | Bivariate logistic regression | OR 0.14–0.28 h/d: 1.20 (0.92–1.55); >0.28 h/d: 0.96 (0.75–1.22) | |
| Yabe et al. 2018 [38] | TV: 1–<2 h/d, 2–<3 h/d, ≥3 h/d (vs. <1 h/d [Reference]) | Multivariate logistic regression | OR 1–<2 h/d: 0.91 (0.59–1.41); 2–<3 h/d: 0.84 (0.54–1.29); ≥3 h/d: 1.00 (0.66–1.51) i |
| Video games: 1–<2 h/d, 2–<3 h/d, ≥3 h/d (vs. <1 h/d [Reference]) | Multivariate logistic regression | OR 1–<2 h/d: 1.36 (1.01–1.84); 2–<3 h/d: 1.46 (1.01–2.10); ≥3 h/d: 2.18 (1.49–3.20) j | |
| Ben Ayed et al. 2019 [39] | TV: 0.43–1.71 h/d, >1.71 h/d (vs. <0.43 h/d [Reference]) | Multivariate logistic regression | OR 0.43–1.71 h/d: 1.00 (0.80–1.40); >1.71 h/d: 1.50 (1.10–2.10) k |
| PC: 0.14–0.57 h/d, >0.57 h/d (vs. <0.14 h/d [Reference]) | Multivariate logistic regression | OR 0.14–0.57 h/d: 1.10 (0.80–1.43); >0.57 h/d: 1.56 (1.17–2.10) k | |
| Video games: 0.14–0.28 h/d, >0.28 h/d (vs. <0.14 h/d [Reference]) | Multivariate logistic regression | OR 0.14–0.28 h/d: 1.16 (0.83–1.60); >0.28 h/d: 1.83 (1.34–2.50) k | |
| Bento et al. 2020 [40] | TV: ≥3 h/d vs. <2 h/d (Reference) | Multivariate logistic regression | PR 1.17 (1.01–1.36) l |
| PC: ≥3 h/d vs. <2 h/d (Reference) | Bivariate logistic regression | PR 1.02 (0.91–1.14) | |
| Smartphone: ≥3 h/d vs. <2 h/d (Reference) | Multivariate logistic regression | PR 1.36 (1.11–1.68) l | |
| Tablet: ≥3 h/d vs. <2 h/d (Reference) | Multivariate logistic regression | PR 1.46 (1.21–1.76) l | |
| Buabbas et al. 2020 [41] | Smartphone and tablet: 2–4 h/d, >4 h/d (vs. <2 h/d [Reference]) | N/A | OR 2–4 h/d: 1.50 (1.05–2.16); >4 h/d: 2.40 (1.75–3.31) * |
| Minghelli 2020 [42] | TV: <1.4 h/d vs. >1.4 h/d (Reference) | Bivariate logistic regression | OR 1.09 (0.60–1.98) |
| Smartphone: <1.4 h/d vs. >1.4 h/d (Reference) | Multivariate logistic regression | OR 2.39 (1.41–4.08) m | |
| Video games: <1.4 h/d vs. >1.4 h/d (Reference) | Bivariate logistic regression | OR 1.13 (0.59–2.14) | |
| Rezapur-Shahkolai et al. 2020 [43] | TV: 0.14–0.43 h/d, >0.43 h/d (vs. <0.14 h/d [Reference]) | Penalized logistic regression | OR 0.14–0.43 h/d: 0.85 (0.50–1.44); >0.43 h/d: 2.62 (1.46–4.68) n |
| de Vitta et al. 2021 [45] | TV: ≥3 h/d vs. <3 h/d (Reference) | Bivariate logistic regression | OR 0.90 (0.65–1.25) |
| PC: ≥3 h/d vs. <3 h/d (Reference) | Bivariate logistic regression | OR 1.06 (0.75–1.49) | |
| Smartphone: ≥3 h/d vs. <3 h/d (Reference) | Multivariate logistic regression | OR 1.49 (1.11–2.00) o | |
| Tablet: ≥3 h/d vs. <3 h/d (Reference) | Multivariate logistic regression | OR 3.21 (1.41–7.30) o | |
| Joergensen et al. 2021 [46] | TV, PC and video games: 2–<4 h/d, 4–<6 h/d, ≥6 h/d vs. <2 h/d [Reference]) | Multivariate logistic regression | RR Boys (moderate LBP): 2–<4 h/d: 1.09 (0.95–1.25), 4–<6 h/d: 1.05 (0.90–1.22), ≥6 h/d: 1.22 (1.02–1.46) p |
| RR Boys (severe LBP): 2–<4 h/d: 1.02 (0.79–1.32), 4–<6 h/d: 1.16 (0.88–1.53), ≥6 h/d: 1.42 (1.03–1.94) p | |||
| RR Girls (moderate LBP): 2–<4 h/d: 1.17 (1.06–1.29), 4–<6 h/d: 1.30 (1.15–1.47), ≥6 h/d: 1.50 (1.26–1.78) p | |||
| RR Girls (severe LBP): 2–<4 h/d: 1.19 (1.01–1.39, 4–<6 h/d: 1.39 (1.15–1.69), ≥6 h/d: 2.64 (2.10–3.31) p | |||
| da Costa et al. 2022 [47] | TV, PC, smartphone, and video games: 3.26–7.59 h/d, ≥7.60 h/d vs. <3.25 h/d [Reference]) | Multivariate logistic regression | OR Boys: 3.26–7.59 h/d: 1.86 (0.92–3.77); ≥7.60 h/d: 1.71 (0.80–3.65) q |
| OR Girls: 3.26–7.59 h/d: 2.73 (1.45–5.02; ≥7.60 h/d: 2.49 (1.30–4.76) q | |||
| Lemes et al. 2022 [48] | Smartphone: >2 h/d vs. <2 h/d (Reference) | Multivariate logistic regression | OR > 2 h/d: 1.42 (0.79–2.55) r |
| van den Heuvel et al. 2023 [49] | TV (h/d) (continuous) | Bivariate logistic regression | OR 1.26 (0.97–1.64) |
| Video games (h/d) (continuous) | Bivariate logistic regression | OR 0.92 (0.78–1.08) | |
| Obeidat and AL-Shalabi 2025 [50] | Smartphone: >3 h/d vs. <3 h/d (Reference) | Bivariate logistic regression | OR > 3 h/d: 1.86 (1.34–2.60) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Calvo-Muñoz, I.; García-Moreno, J.M.; Gómez-Conesa, A.; López-López, J.A. Sedentary Behavior and Low Back Pain in Children and Adolescents: A Systematic Review and Meta-Analysis. Healthcare 2026, 14, 233. https://doi.org/10.3390/healthcare14020233
Calvo-Muñoz I, García-Moreno JM, Gómez-Conesa A, López-López JA. Sedentary Behavior and Low Back Pain in Children and Adolescents: A Systematic Review and Meta-Analysis. Healthcare. 2026; 14(2):233. https://doi.org/10.3390/healthcare14020233
Chicago/Turabian StyleCalvo-Muñoz, Inmaculada, José Manuel García-Moreno, Antonia Gómez-Conesa, and José Antonio López-López. 2026. "Sedentary Behavior and Low Back Pain in Children and Adolescents: A Systematic Review and Meta-Analysis" Healthcare 14, no. 2: 233. https://doi.org/10.3390/healthcare14020233
APA StyleCalvo-Muñoz, I., García-Moreno, J. M., Gómez-Conesa, A., & López-López, J. A. (2026). Sedentary Behavior and Low Back Pain in Children and Adolescents: A Systematic Review and Meta-Analysis. Healthcare, 14(2), 233. https://doi.org/10.3390/healthcare14020233

