The Relevance of Chronological and Biological Aging in the Progression of Multiple Sclerosis
Abstract
1. Introduction
2. Impact of Chronological Age on Multiple Sclerosis
3. Biological Age in Multiple Sclerosis: What We Know
3.1. Telomere Length
3.2. Epigenetic Clocks
3.3. Biomarker Composites
4. MS Progression and Aging
5. Senomorphic and Senolytic Drugs in Multiple Sclerosis
6. Lifestyle Habits and Biological Age
7. Conclusions and Final Remarks: Unveiling Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jylhävä, J.; Pedersen, N.L.; Hägg, S. Biological Age Predictors. EBioMedicine 2017, 21, 29–36. [Google Scholar] [CrossRef]
- Lowsky, D.J.; Olshansky, S.J.; Bhattacharya, J.; Goldman, D.P. Heterogeneity in healthy aging. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 640–649. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.S.; Singer, B.D.; Vaughan, D.E. Molecular and physiological manifestations and measurement of aging in humans. Aging Cell 2017, 16, 624–633. [Google Scholar] [CrossRef] [PubMed]
- Rae, M.J.; Butler, R.N.; Campisi, J.; de Grey, A.D.; Finch, C.E.; Gough, M.; Martin, G.M.; Vijg, J.; Perrott, K.M.; Logan, B.J. The demographic and biomedical case for late-life interventions in aging. Sci. Transl. Med. 2010, 2, 40cm21. [Google Scholar] [CrossRef] [PubMed]
- Browne, P.; Chandraratna, D.; Angood, C.; Tremlett, H.; Baker, C.; Taylor, B.V.; Thompson, A.J.; Degenhardt, A.; Flachenecker, P.; Ramagopalan, S.V.; et al. Atlas of Multiple Sclerosis 2013: A growing global problem with wide-spread inequity. Neurology 2014, 83, 1022–1024. [Google Scholar] [CrossRef]
- Krupp, L.B.; Tardieu, M.; Amato, M.P.; Banwell, B.; Chitnis, T.; Dale, R.C.; Ghezzi, A.; Kornberg, A.; Pohl, D.; Rostasy, K.; et al. International Pediatric Multiple Sclerosis Study Group criteria for pediatric multiple sclerosis and immune-mediated central nervous system demyelinating disorders: Revisions to the 2007 definitions. Mult. Scler. J. 2013, 19, 1261–1267. [Google Scholar] [CrossRef]
- Solaro, C.; Ponzio, M.; Moran, E.; Tanganelli, P.; Pizio, R.; Venturi, M.; Mancardi, G.L.; Battaglia, M.A.; Farinotti, M.; Capra, R.; et al. The changing face of multiple sclerosis: Prevalence and incidence in an aging population. Mult. Scler. 2015, 21, 1244–1250. [Google Scholar] [CrossRef]
- Renoux, C.; Vukusic, S.; Mikaeloff, Y.; Edan, G.; Clanet, M.; Dubois, B.; Debouverie, M.; Brochet, B.; Lebrun-Frenay, C.; Pelletier, J.; et al. Natural history of multiple sclerosis with childhood onset. N. Engl. J. Med. 2007, 356, 2603–2613. [Google Scholar] [CrossRef]
- Stankoff, B.; Mrejen, S.; Tourbah, A.; Fontaine, B.; Lyon-Caen, O.; Lubetzki, C.; Confavreux, C.; Clanet, M.; Pelletier, J.; Vukusic, S.; et al. Age at onset determines the occurrence of the progressive phase of multiple sclerosis. Neurology 2007, 68, 779–781. [Google Scholar] [CrossRef]
- Scalfari, A.; Lederer, C.; Daumer, M.; Nicholas, R.; Ebers, G.C.; Muraro, P.A.; Palace, J.; Giovannoni, G.; Confavreux, C.; Sormani, M.P.; et al. The relationship of age with the clinical phenotype in multiple sclerosis. Mult. Scler. J. 2016, 22, 1750–1758. [Google Scholar] [CrossRef]
- Ghezzi, A.; Deplano, V.; Faroni, J.; Grasso, M.G.; Liguori, M.; Moiola, L.; Pozzilli, C.; Trojano, M.; Marrosu, M.G.; Confavreux, C.; et al. Multiple sclerosis in childhood: Clinical features of 149 cases. Mult. Scler. J. 1997, 3, 43–46. [Google Scholar] [CrossRef]
- Simone, I.L.; Carrara, D.; Tortorella, C.; Ceccarelli, A.; Giannini, M.; Livrea, P.; Paolicelli, D.; Fuiani, A.; Scarpelli, M.; Mascolo, M.; et al. Course and prognosis in early-onset MS: Comparison with adult-onset forms. Neurology 2002, 59, 1922–1928. [Google Scholar] [CrossRef] [PubMed]
- Sanai, S.A.; Saini, V.; Benedict, R.H.; Zivadinov, R.; Teter, B.E.; Weinstock-Guttman, B.; Rudick, R.A.; Bermel, R.A.; Bisecco, A.; Rocca, M.A.; et al. Aging and multiple sclerosis. Mult. Scler. J. 2016, 22, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Trojano, M.; Liguori, M.; Bosco Zimatore, G.; Paolicelli, D.; Fuiani, A.; D’Onghia, M.; Santonico, P.; Lucchese, G.; Santucci, N.; Livrea, P.; et al. Age-related disability in multiple sclerosis. Ann. Neurol. 2002, 51, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, V.; Rodegher, M.; Moiola, L.; Comi, G. Late onset multiple sclerosis: Clinical characteristics, prognostic factors and differential diagnosis. Neurol. Sci. 2004, 25 (Suppl. 4), S350–S355. [Google Scholar] [CrossRef]
- Kalincik, T.; Buzzard, K.; Jokubaitis, V.; Trojano, M.; Duquette, P.; Izquierdo, G.; Lechner-Scott, J.; Grand’Maison, F.; Havrdova, E.; Spelman, T.; et al. Risk of relapse phenotype recurrence in multiple sclerosis. Mult. Scler. J. 2014, 20, 1511–1522. [Google Scholar] [CrossRef]
- Kresovich, J.K.; Xu, Z.; O’Brien, K.M.; Weinberg, C.R.; Sandler, D.P.; Taylor, J.A.; Liao, L.M.; Li, C.; Hu, W.; Huang, Y.; et al. Methylation-Based Biological Age and Breast Cancer Risk. JNCI J. Natl. Cancer Inst. 2019, 111, 1051–1058. [Google Scholar] [CrossRef]
- McMurran, C.E.; Wang, Y.; Mak, J.K.L.; Nicholas, J.M.; Lane, C.A.; Keshavan, A.; Firth, N.C.; Beck, J.; Ryan, N.S.; Schott, J.M.; et al. Advanced biological ageing predicts future risk for neurological diagnoses and clinical examination findings. Brain 2023, 146, 4891–4902. [Google Scholar] [CrossRef]
- Soriano-Tárraga, C.; Giralt-Steinhauer, E.; Mola-Caminal, M.; Vivanco-Hidalgo, R.M.; Ois, A.; Rodríguez-Campello, A.; Cuadrado-Godia, E.; Fernández-Cadenas, I.; Montaner, J.; Roquer, J.; et al. Biological Age is a predictor of mortality in Ischemic Stroke. Sci. Rep. 2018, 8, 4148. [Google Scholar] [CrossRef]
- Chen, B.H.; Marioni, R.E.; Colicino, E.; Peters, M.J.; Ward-Caviness, C.K.; Tsai, P.C.; Roetker, N.S.; Just, A.C.; Demerath, E.W.; Guan, W.; et al. DNA methylation-based measures of biological age: Meta-analysis predicting time to death. Aging 2016, 8, 1844–1865. [Google Scholar] [CrossRef]
- Oblak, L.; van der Zaag, J.; Higgins-Chen, A.T.; Levine, M.E.; Boks, M.P.; Barton, S.J.; Lin, D.T.S.; Snieder, H.; van der Harst, P.; Broer, L.; et al. A systematic review of biological, social and environmental factors associated with epigenetic clock acceleration. Ageing Res. Rev. 2021, 69, 101348. [Google Scholar]
- Marioni, R.E.; Harris, S.E.; Shah, S.; McRae, A.F.; von Zglinicki, T.; Martin-Ruiz, C.; Wray, N.R.; Visscher, P.M.; Deary, I.J.; Starr, J.M.; et al. The epigenetic clock and telomere length are independently associated with chronological age and mortality. Int. J. Epidemiol. 2018, 47, 356. [Google Scholar] [CrossRef]
- Belsky, D.W.; Moffitt, T.E.; Cohen, A.A.; Corcoran, D.L.; Levine, M.E.; Prinz, J.A.; Schaefer, J.D.; Sugden, K.; Williams, B.; Poulton, R.; et al. Eleven Telomere, Epigenetic Clock, and Biomarker-Composite Quantifications of Biological Aging: Do They Measure the Same Thing? Am. J. Epidemiol. 2018, 187, 1220–1230. [Google Scholar] [CrossRef]
- Bühring, J.; Hecker, M.; Fitzner, B.; Meister, S.; Zettl, U.K.; Hecker, A.; Koch, J.; Paul, F.; Klotz, L.; Wiendl, H.; et al. Review of Studies on Telomere Length in Patients with Multiple Sclerosis. Aging Dis. 2021, 12, 1272–1286. [Google Scholar] [CrossRef]
- Guan, J.Z.; Guan, W.P.; Maeda, T.; Makino, N.; Nakagawa, Y.; Uchida, T.; Oshida, Y.; Masaki, H.; Watanabe, Y.; Ito, M.; et al. Patients with multiple sclerosis show increased oxidative stress markers and somatic telomere length shortening. Mol. Cell. Biochem. 2015, 400, 183–187. [Google Scholar] [CrossRef]
- Krysko, K.M.; Henry, R.G.; Cree, B.A.C.; Lin, J.; Manouchehrinia, A.; Zhu, A.H.; Cutter, G.; Hauser, S.L.; Bove, R.M.; Gelfand, J.M.; et al. Telomere Length Is Associated with Disability Progression in Multiple Sclerosis. Ann. Neurol. 2019, 86, 671–682. [Google Scholar] [CrossRef] [PubMed]
- Habib, R.; Ocklenburg, S.; Hoffjan, S.; Haghikia, A.; Gold, R.; Then Bergh, F.; Zettl, U.K.; Stangel, M.; Wiendl, H.; Hecker, M.; et al. Association between shorter leukocyte telomeres and multiple sclerosis. J. Neuroimmunol. 2020, 341, 577187. [Google Scholar] [CrossRef] [PubMed]
- Kular, L.; Klose, D.; Urdánoz-Casado, A.; Narciso, E.; Bos, S.D.; de Andrés, C.; Wittig, M.; Nischwitz, S.; Zettl, U.K.; Leppert, D.; et al. Epigenetic clock indicates accelerated aging in glial cells of progressive multiple sclerosis patients. Front. Aging Neurosci. 2022, 14, 926468. [Google Scholar] [CrossRef] [PubMed]
- Theodoropoulou, E.; Alfredsson, L.; Piehl, F.; Kular, L.; Klose, D.; Urdánoz-Casado, A.; Leppert, D.; Bos, S.D.; Zettl, U.K.; Baranzini, S.E.; et al. Different epigenetic clocks reflect distinct pathophysiological features of multiple sclerosis. Epigenomics 2019, 11, 1429–1439. [Google Scholar] [CrossRef]
- Goyne, C.; Fair, A.E.; Yilmaz, D.; Brown, M.; Baker, J.; Taylor, B.V.; Lechner-Scott, J.; van der Walt, A.; Spelman, T.; Tremlett, H.; et al. Epigenetic Aging in Pediatric-Onset Multiple Sclerosis. Neurology 2025, 104, e213673. [Google Scholar] [CrossRef]
- Miner, A.E.; Yang, J.H.; Kinkel, R.P.; Graves, J.S. The NHANES Biological Age Index demonstrates accelerated aging in MS patients. Mult. Scler. Relat. Disord. 2023, 77, 104859. [Google Scholar] [CrossRef]
- Shay, J.W. Telomeres and aging. Curr. Opin. Cell Biol. 2018, 52, 1–7. [Google Scholar] [CrossRef]
- Blackburn, E. Structure and function of telomeres. Nature 1991, 350, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Rubtsova, M.P.; Vasilkova, D.P.; Malyavko, A.N.; Naraikina, Y.V.; Zvereva, M.I.; Dontsova, O.A. Telomere lengthening and other functions of telomerase. Acta Nat. 2012, 4, 44–61. [Google Scholar] [CrossRef]
- Shammas, M.A. Telomeres, lifestyle, cancer, and aging. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Strandberg, T.E.; Saijonmaa, O.; Tilvis, R.S.; Pitkälä, K.H.; Strandberg, A.Y.; Miettinen, T.A.; Fyhrquist, F. Association of telomere length in older men with mortality and midlife body mass index and smoking. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2011, 66, 815–820. [Google Scholar] [CrossRef]
- Haycock, P.C.; Heydon, E.E.; Kaptoge, S.; Butterworth, A.S.; Thompson, A.; Willeit, P.; Willeit, J.; Scharnagl, H.; Santer, P.; Mayr, A.; et al. Leucocyte telomere length risk of cardiovascular disease: Systematic review meta-analysis. BMJ 2014, 349, g4227. [Google Scholar] [CrossRef]
- Cao, Z.; Hou, Y.; Xu, C. Leucocyte telomere length, brain volume and risk of dementia: A prospective cohort study. Gen. Psychiatry 2023, 36, e101120. [Google Scholar] [CrossRef]
- Georgin-Lavialle, S.; Aouba, A.; Mouthon, L. The telomere/telomerase system in autoimmune and systemic immune-mediated diseases. Autoimmun. Rev. 2010, 9, 646–651. [Google Scholar] [CrossRef]
- Hecker, M.; Bühring, J.; Fitzner, B.; Meister, S.; Ruck, T.; Wiendl, H.; Klotz, L.; Zettl, U.K.; Paul, F.; Stangel, M.; et al. Genetic, Environmental and Lifestyle Determinants of Accelerated Telomere Attrition as Contributors to Risk and Severity of Multiple Sclerosis. Biomolecules 2021, 11, 1510. [Google Scholar] [CrossRef]
- Liao, Q.; He, J.; Tian, F.F.; Bi, F.F.; Huang, K. A causal relationship between leukocyte telomere length and multiple sclerosis: A Mendelian randomization study. Front. Immunol. 2022, 13, 922922. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wang, M.; Chen, X.; Ruan, W.; Yao, J.; Lian, X. Telomere length and multiple sclerosis: A Mendelian randomization study. Int. J. Neurosci. 2024, 134, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Shu, M.J.; Li, J.; Zhu, Y.C. Genetically predicted telomere length and multiple sclerosis. Mult. Scler. Relat. Disord. 2022, 60, 103731. [Google Scholar] [CrossRef] [PubMed]
- Horvath, S.; Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 2018, 19, 371–384. [Google Scholar] [CrossRef]
- Maltby, V.; Xavier, A.; Ewing, E.; Bjornevik, K.; Kular, L.; Klose, D.; Urdánoz-Casado, A.; Baranzini, S.E.; Piehl, F.; Leppert, D.; et al. Evaluation of Cell-Specific Epigenetic Age Acceleration in People with Multiple Sclerosis. Neurology 2023, 101, e679–e689. [Google Scholar] [CrossRef]
- Cohen, A.A.; Milot, E.; Li, Q.; Bergeron, P.; Poirier, R.; Dusseault-Bélanger, F.; Ferrucci, L. Detection of a novel, integrative aging process suggests complex physiological integration. PLoS ONE 2015, 10, 10e0116489. [Google Scholar] [CrossRef]
- Tur, C.; Carbonell-Mirabent, P.; Cobo-Calvo, Á. Association of Early Progression Independent of Relapse Activity with Long-term Disability After a First Demyelinating Event in Multiple Sclerosis. JAMA Neurol. 2023, 80, 151–160. [Google Scholar] [CrossRef]
- Tintoré, M.; Rovira, À.; Río, J.; Nos, C.; Tellez, N.; Pelayo, R.; Simó, M.; Barkhof, F.; Filippi, M.; Montalban, X.; et al. Defining high, medium and low impact prognostic factors for developing multiple sclerosis. Brain 2015, 138 Pt 7, 1863–1874. [Google Scholar] [CrossRef]
- Ma, S.; Wang, C.; Mao, X. B cell dysfunction associated with aging and autoimmune diseases. Front. Immunol. 2019, 10, 318. [Google Scholar] [CrossRef]
- Papadopoulos, D.; Magliozzi, R.; Mitsikostas, D.D.; Crivello, A.; Reynolds, R.; Grau-López, L.; Van der Vuurst de Vries, R.; Bos, S.D.; Kuhle, J.; Antel, J.P.; et al. Aging, Cellular Senescence, and Progressive Multiple Sclerosis. Front. Cell Neurosci. 2020, 14, 178. [Google Scholar] [CrossRef]
- Nicaise, A.M.; Wagstaff, L.J.; Willis, C.M.; Paisie, C.; Chandok, H.; Robillard, K.; Fossati, V.; Williams, A.; Plemel, J.R.; Franklin, R.J.M.; et al. Cellular senescence in progenitor cells contributes to diminished remyelination potential in progressive multiple sclerosis. Proc. Natl. Acad. Sci. USA 2019, 116, 9030–9039. [Google Scholar] [CrossRef]
- Scalfari, A.; Neuhaus, A.; Daumer, M.; Ebers, G.C.; Muraro, P.A.; Nicholas, R.; Palace, J.; Giovannoni, G.; Confavreux, C.; Sormani, M.P.; et al. Age and disability accumulation in multiple sclerosis. Neurology 2011, 77, 1246–1252. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Meng, P.; Ling, X.; Zhou, L. Advancements in therapeutic drugs targeting of senescence. Ther. Adv. Chronic Dis. 2020, 11, 2040622320964125. [Google Scholar] [CrossRef] [PubMed]
- Sutter, P.A.; McKenna, M.G.; Imitola, J. Therapeutic opportunities for targeting cellular senescence in progressive multiple sclerosis. Curr. Opin. Pharmacol. 2022, 63, 102184. [Google Scholar] [CrossRef] [PubMed]
- Mao, P.; Manczak, M.; Shirendeb, U.P. MitoQ, a mitochondria-targeted antioxidant, delays disease progression and alleviates pathogenesis in an experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. Biochim. Biophys. Acta(BBA)-Mol. Basis Dis. 2013, 1832, 2322–2331. [Google Scholar] [CrossRef]
- Fetisova, E.K.; Muntyan, M.S.; Lyamzaev, K.G.; Chernyak, B.V. Therapeutic effect of the mitochondria targeted antioxidant SkQ1 on the culture model of multiple sclerosis. Oxid. Med. Cell Longev. 2019, 2019, 2082561. [Google Scholar]
- Abo Taleb, H.A.; Alghamdi, B.S. Neuroprotective effects of melatonin during demyelination and remyelination stages in a mouse model of multiple sclerosis. J. Mol. Neurosci. 2020, 70, 386–402. [Google Scholar] [CrossRef]
- Sanadgol, N.; Abdolmaleki, P.; Mohammadi, A.; Gharaylou, Z.; Khoshdel, A.; Harirchian, M.H.; Amini, H.; Sheibani, V.; Etemadifar, M.; Tavakolpour, S.; et al. Metformin accelerates myelin recovery and ameliorates behavioral deficits in the animal model of multiple sclerosis via adjustment of AMPK/Nrf2/mTOR signaling and maintenance of endogenous oligodendrogenesis during brain self-repairing period. Pharmacol. Rep. 2020, 72, 641–658. [Google Scholar] [CrossRef]
- Chaib, S.; Tchkonia, T.; Kirkland, J.L. Cellular senescence and senolytics: The path to the clinic. Nat. Med. 2022, 28, 1556–1568. [Google Scholar] [CrossRef]
- Available online: https://clinicaltrials.gov (accessed on 5 June 2025).
- Drake, S.; Zaman, A.; Gianfelice, C.; Li, T.; Sullivan, R.; Murray, M.; Zhao, Y.; Rittchen, S.; Greenhalgh, A.D.; Davalos, D.; et al. Senolytic treatment depletes microglia and decreases severity of experimental autoimmune encephalomyelitis. J. Neuroinflammation 2024, 21, 283. [Google Scholar] [CrossRef]
- Available online: https://www.ema.europa.eu/es/documents/product-information/sprycel-epar-product-information_es.pdf (accessed on 5 June 2025).
- Werner, C.; Fürster, T.; Widmann, T.; Poss, J.; Roggia, C.; Hanhoun, M.; Scharhag, J.; Meyer, T.; Kindermann, W.; Haendeler, J.; et al. Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation 2009, 120, 2438–2447. [Google Scholar] [CrossRef]
- Ludlow, A.T.; Ludlow, L.W.; Roth, S.M. Do telomeres adapt to physiological stress? Exploring the effect of exercise on telomere length and telomere-related proteins. Biomed Res. Int. 2013, 2013, 601368. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-González, J.L.; Sánchez-Rodríguez, J.L.; Varela-Rodríguez, S.; López-Chicharro, J.; Fernández-Cuevas, I.; Álvarez-Herms, J.; Lorenzo-Cáceres, A.; Marcos-Serrano, M.; García-Benito, C.; Casado, A.; et al. Effects of Physical Exercise on Telomere Length in Healthy Adults: Systematic Review, Meta-Analysis, and Meta-Regression. JMIR Public Health Surveill. 2024, 10, e46019. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Zhu, J.; Liu, X.D.; Li, Y.; Zhang, H.; Zhang, C.; Xu, J.; Wang, Y.; Lu, Y.; Zhang, J.; et al. Roles of physical exercise in neurodegeneration: Reversal of epigenetic clock. Transl. Neurodegener. 2021, 10, 30. [Google Scholar] [CrossRef] [PubMed]
- Sundström, P.; Nyström, L. Smoking worsens the prognosis in multiple sclerosis. Mult. Scler. J. 2008, 14, 1031–1035. [Google Scholar] [CrossRef]
- Astuti, Y.; Wardhana, A.; Watkins, J.; Wulaningsih, W. Cigarette smoking and telomere length: A systematic review of 84 studies and meta-analysis. Environ. Res. 2017, 158, 480–489. [Google Scholar] [CrossRef]
- Klose, D.; Needhamsen, M.; Ringh, M.V.; Urdánoz-Casado, A.; Kular, L.; Leppert, D.; Piehl, F.; Bos, S.D.; Zettl, U.K.; Klose, R.J.; et al. Smoking affects epigenetic ageing of lung bronchoalveolar lavage cells in Multiple Sclerosis. Mult. Scler. Relat. Disord. 2023, 79, 104991. [Google Scholar] [CrossRef]
- Raftopoulou, C.; Paltoglou, G.; Charmandari, E. Association between Telomere Length and Pediatric Obesity: A Systematic Review. Nutrients 2022, 14, 1244. [Google Scholar] [CrossRef]
Biological Age Biomarker | Current Evidence in MS | References |
---|---|---|
Telomere length |
| Bühring, 2021 [24] |
| Guan, 2015 [25] | |
| Krysko, 2019 [26] | |
| Habib, 2020 [27] | |
Epigenetic clocks | First-generation clocks: | |
| Kular, 2022 [28] | |
Second-generation clocks: | ||
| Theodoropoulou, 2019 [29] | |
| Goyne, 2025 [30] | |
Biomarker composites |
| Miner, 2023 [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mulero, P.; Chavarría-Miranda, A.; Téllez, N. The Relevance of Chronological and Biological Aging in the Progression of Multiple Sclerosis. Healthcare 2025, 13, 2619. https://doi.org/10.3390/healthcare13202619
Mulero P, Chavarría-Miranda A, Téllez N. The Relevance of Chronological and Biological Aging in the Progression of Multiple Sclerosis. Healthcare. 2025; 13(20):2619. https://doi.org/10.3390/healthcare13202619
Chicago/Turabian StyleMulero, Patricia, Alba Chavarría-Miranda, and Nieves Téllez. 2025. "The Relevance of Chronological and Biological Aging in the Progression of Multiple Sclerosis" Healthcare 13, no. 20: 2619. https://doi.org/10.3390/healthcare13202619
APA StyleMulero, P., Chavarría-Miranda, A., & Téllez, N. (2025). The Relevance of Chronological and Biological Aging in the Progression of Multiple Sclerosis. Healthcare, 13(20), 2619. https://doi.org/10.3390/healthcare13202619