Apply Machine Learning to Predict Risk for Adolescent Depression in a Cohort of Kenyan Adolescents
Abstract
1. Introduction
- (1)
- Examine how four domains of stress and adverse factors predict adolescents’ risk of depression: We used a variety of ML methods and traditional regression approaches to develop predictive models. Four domains of risks were studied separately and jointly. The risk factors included (i) adverse childhood and adolescent experiences (ACEs); (ii) poverty/financial stress; (iii) community and school adverse experiences; and (iv) adolescent developmental stress. Hypothesis: (1) The multidomain approach of prediction would have better predictability than a single-domain approach to prediction. (2) The ML approach would have better performance than the traditional parametric linear regression approach, and certain non-linear ML approaches would outperform other ML approaches.
- (2)
- Identify the top-ranking risks that best predict adolescent risks of depression and evaluate their predictive power.
2. Materials and Methods
2.1. Study Population
2.2. Data Collection and Study Procedures
2.3. Study Measures
2.4. Statistical Analysis
3. Results
3.1. Study Sample Characteristics
3.2. Prediction for Adolescent Depression
3.2.1. Using Adverse and Stress Experiences to Predict Adolescent Depression
3.2.2. Identifying Top-Ranking Risks in Predicting Adolescent Depression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Study Measures Adaption
Appendix B
Models | Domains | AUC | Accuracy | Sensitivity | Specificity | Brier Score | ECE |
---|---|---|---|---|---|---|---|
Naive Bayes Classifier | (i) | 0.7655 (0.0501) | 0.7355 (0.0560) | 0.5742 (0.1134) | 0.8229 (0.0628) | 0.1948 (0.0371) | 0.1683 (0.0416) |
(ii) | 0.6198 (0.0671) | 0.6067 (0.0743) | 0.1960 (0.1128) | 0.8180 (0.0816) | 0.2255 (0.0302) | 0.1433 (0.0549) | |
(iii) | 0.7722 (0.0587) | 0.7174 (0.0571) | 0.5151 (0.1020) | 0.8206 (0.0589) | 0.1869 (0.0333) | 0.1496 (0.0391) | |
(iv) | 0.7169 (0.0542) | 0.6670 (0.0487) | 0.6081 (0.1087) | 0.6958 (0.0639) | 0.2667 (0.0379) | 0.2645 (0.0431) | |
(i)+ (ii) | 0.7594 (0.0537) | 0.7311 (0.0570) | 0.6010 (0.1049) | 0.8030 (0.0590) | 0.2028 (0.0380) | 0.1794 (0.0415) | |
(i) + (ii) + (iii) | 0.7920 (0.0541) | 0.7451 (0.0510) | 0.6489 (0.1036) | 0.7967 (0.0520) | 0.2021 (0.0389) | 0.1955 (0.0379) | |
(i) + (ii) + (iii) + (iv) | 0.8110 (0.0455) | 0.7377 (0.0512) | 0.7298 (0.1028) | 0.7414 (0.0655) | 0.2200 (0.0436) | 0.2299 (0.0428) | |
Support Vector Machine with RBF Kernel | (i) | 0.7196 (0.0750) | 0.6812 (0.0680) | 0.3237 (0.1132) | 0.8673 (0.0608) | 0.2008 (0.0318) | 0.1414 (0.0401) |
(ii) | 0.5711 (0.1145) | 0.6387 (0.0630) | 0.0510 (0.0930) | 0.9413 (0.1021) | 0.2284 (0.0213) | 0.0815 (0.0490) | |
(iii) | 0.6914 (0.0863) | 0.7345 (0.0557) | 0.4272 (0.1285) | 0.8955 (0.0495) | 0.1927 (0.0251) | 0.1034 (0.0381) | |
(iv) | 0.7395 (0.0523) | 0.6923 (0.0470) | 0.3208 (0.1078) | 0.8857 (0.0547) | 0.1934 (0.0171) | 0.1283 (0.0344) | |
(i) + (ii) | 0.7358 (0.0652) | 0.7057 (0.0652) | 0.3841 (0.1322) | 0.8702 (0.0610) | 0.1954 (0.0325) | 0.1295 (0.0417) | |
(i) + (ii) + (iii) | 0.7827 (0.0625) | 0.7273 (0.0645) | 0.4598 (0.1147) | 0.8670 (0.0501) | 0.1793 (0.0295) | 0.1288 (0.0314) | |
(i) + (ii) + (iii) + (iv) | 0.8185 (0.0428) | 0.7711 (0.0442) | 0.6108 (0.1020) | 0.8535 (0.0469) | 0.1581 (0.0224) | 0.1301 (0.0322) | |
Explainable Boosting Machines | (i) | 0.7400 (0.0654) | 0.7102 (0.0709) | 0.3955 (0.1268) | 0.8749 (0.0643) | 0.1956 (0.0336) | 0.1363 (0.0409) |
(ii) | 0.6525 (0.0623) | 0.6433 (0.0688) | 0.0784 (0.0770) | 0.9327 (0.0888) | 0.2103 (0.0232) | 0.1018 (0.0436) | |
(iii) | 0.7754 (0.0638) | 0.7226 (0.0476) | 0.4241 (0.1280) | 0.8771 (0.0551) | 0.1813 (0.0261) | 0.1193 (0.0302) | |
(iv) | 0.7077 (0.0672) | 0.6953 (0.0463) | 0.4106 (0.1128) | 0.8393 (0.0561) | 0.2100 (0.0284) | 0.1650 (0.0432) | |
(i) + (ii) | 0.7340 (0.0637) | 0.7079 (0.0653) | 0.4320 (0.1337) | 0.8544 (0.0528) | 0.1970 (0.0380) | 0.1396 (0.0424) | |
(i) + (ii) + (iii) | 0.7860 (0.0711) | 0.7353 (0.0728) | 0.5193 (0.1443) | 0.8492 (0.0498) | 0.1810 (0.0423) | 0.1506 (0.0432) | |
(i) + (ii) + (iii) + (iv) | 0.8136 (0.0392) | 0.7592 (0.0414) | 0.5724 (0.1178) | 0.8546 (0.0407) | 0.1799 (0.0308) | 0.1673 (0.0403) | |
Histogram-based Gradient Boosting Machine | (i) | 0.7206 (0.0531) | 0.6723 (0.0642) | 0.4344 (0.1135) | 0.7970 (0.0447) | 0.2069 (0.0361) | 0.1588 (0.0506) |
(ii) | 0.6692 (0.0632) | 0.6276 (0.0600) | 0.2438 (0.1612) | 0.8322 (0.1112) | 0.2119 (0.0247) | 0.1193 (0.0366) | |
(iii) | 0.7692 (0.0632) | 0.7174 (0.0573) | 0.4795 (0.1288) | 0.8411 (0.0576) | 0.1830 (0.0289) | 0.1423 (0.0362) | |
(iv) | 0.7133 (0.0557) | 0.6989 (0.0435) | 0.4077 (0.1302) | 0.8474 (0.0484) | 0.2158 (0.0255) | 0.1928 (0.0380) | |
(i) + (ii) | 0.7209 (0.0632) | 0.6997 (0.0691) | 0.4758 (0.1391) | 0.8137 (0.0696) | 0.2063 (0.0391) | 0.1790 (0.0475) | |
(i) + (ii) + (iii) | 0.7678 (0.0641) | 0.7115 (0.0629) | 0.5301 (0.1438) | 0.8078 (0.0604) | 0.1909 (0.0392) | 0.1569 (0.0412) | |
(i) + (ii) + (iii) + (iv) | 0.7951 (0.0457) | 0.7413 (0.0541) | 0.5452 (0.1452) | 0.8449 (0.0558) | 0.1869 (0.0342) | 0.1654 (0.0471) | |
XGBoost | (i) | 0.6504 (0.0688) | 0.6626 (0.0583) | 0.4316 (0.0930) | 0.7823 (0.0486) | 0.2604 (0.0461) | 0.2378 (0.0510) |
(ii) | 0.6638 (0.0570) | 0.6142 (0.0585) | 0.2434 (0.1654) | 0.8099 (0.1113) | 0.2139 (0.0250) | 0.1267 (0.0354) | |
(iii) | 0.7405 (0.0559) | 0.7264 (0.0566) | 0.5045 (0.1087) | 0.8441 (0.0539) | 0.1970 (0.0327) | 0.1568 (0.0330) | |
(iv) | 0.7040 (0.0551) | 0.6751 (0.0415) | 0.4214 (0.1127) | 0.8025 (0.0529) | 0.2354 (0.0352) | 0.2239 (0.0444) | |
(i)+ (ii) | 0.6739 (0.0677) | 0.6782 (0.0669) | 0.4596 (0.1142) | 0.7914 (0.0570) | 0.2459 (0.0499) | 0.2277 (0.0569) | |
(i) + (ii) + (iii) | 0.7299 (0.0796) | 0.7071 (0.0831) | 0.5298 (0.1699) | 0.8021 (0.0542) | 0.2213 (0.0547) | 0.2087 (0.0525) | |
(i) + (ii) + (iii) + (iv) | 0.7925 (0.0481) | 0.7294 (0.0529) | 0.5377 (0.1226) | 0.8301 (0.0578) | 0.2018 (0.0381) | 0.1912 (0.0427) | |
Random Forests | (i) | 0.7361 (0.0427) | 0.6690 (0.0471) | 0.5125 (0.1366) | 0.7950 (0.0623) | 0.1992 (0.0315) | 0.1340 (0.0354) |
(ii) | 0.6532 (0.0393) | 0.5984 (0.0391) | 0.2522 (0.1471) | 0.8186 (0.1071) | 0.2118 (0.0229) | 0.1109 (0.0407) | |
(iii) | 0.7435 (0.0847) | 0.6915 (0.0630) | 0.5300 (0.1248) | 0.8549 (0.0571) | 0.1781 (0.0269) | 0.1279 (0.0300) | |
(iv) | 0.7210 (0.0651) | 0.6173 (0.0857) | 0.3757 (0.1301) | 0.8387 (0.0624) | 0.1973 (0.0206) | 0.1371 (0.0315) | |
(i) + (ii) | 0.7527 (0.0409) | 0.6895 (0.0429) | 0.5299 (0.1443) | 0.8142 (0.0579) | 0.1923 (0.0330) | 0.1444 (0.0367) | |
(i) + (ii) + (iii) | 0.7734 (0.0403) | 0.7306 (0.0433) | 0.5423 (0.1706) | 0.8212 (0.0551) | 0.1856 (0.0305) | 0.1405 (0.0403) | |
(i) + (ii) + (iii) + (iv) | 0.8361 (0.0438) | 0.7825 (0.0421) | 0.5175 (0.1263) | 0.8453 (0.0589) | 0.1750 (0.0261) | 0.1337 (0.0418) |
References
- Nagata, J.M.; Ferguson, B.J.; Ross, D.A. Research Priorities for Eight Areas of Adolescent Health in Low- and Middle-Income Countries. J. Adolesc. Health 2016, 59, 50–60. [Google Scholar] [CrossRef] [PubMed]
- WHO. Adolescent Mental Health: Mapping Actions of Nongovernmental Organizations and Other International Development Organizations; WHO: Geneva, Switzerland, 2012. [Google Scholar]
- WHO. Health for the World’s Adolescents: A Second Chance in the Second Decade. Available online: https://www.who.int/publications/i/item/WHO-FWC-MCA-14.05 (accessed on 1 August 2025).
- Osok, J.; Kigamwa, P.; Stoep, A.V.; Huang, K.Y.; Kumar, M. Depression and its psychosocial risk factors in pregnant Kenyan adolescents: A cross-sectional study in a community health Centre of Nairobi. BMC Psychiatry 2018, 18, 136. [Google Scholar] [CrossRef]
- Magai, D.N.; Malik, J.A.; Koot, H.M. Emotional and Behavioral Problems in Children and Adolescents in Central Kenya. Child Psychiatry Hum. Dev. 2018, 49, 659–671. [Google Scholar] [CrossRef]
- Ongeri, L.; McCulloch, C.E.; Neylan, T.C.; Bukusi, E.; Macfarlane, S.B.; Othieno, C.; Ngugi, A.K.; Meffert, S.M. Suicidality and associated risk factors in outpatients attending a general medical facility in rural Kenya. J. Affect. Disord. 2018, 225, 413–421. [Google Scholar] [CrossRef]
- UNICEF. Kenya Statistics. Available online: https://data.unicef.org/countdown-2030/country/Kenya/1/ (accessed on 1 August 2025).
- UNICEF. UNICEF Annual Report 2012. Available online: https://www.refworld.org/reference/annualreport/unicef/2013/en/97436 (accessed on 1 August 2025).
- Francis, O.; Odwe, G.; Birungi, H. Adolescent Sexual and Reproductive Health Situation in Kenya: Insights from the 2014 Kenya Demographic and Health Survey; Population Council: STEP UP Research Programme Research Consortium: Nairobi, Kenya, 2016. [Google Scholar]
- Kiburi, S.K.; Molebatsi, K.; Obondo, A.; Kuria, M.W. Adverse childhood experiences among patients with substance use disorders at a referral psychiatric hospital in Kenya. BMC Psychiatry 2018, 18, 197. [Google Scholar] [CrossRef]
- Auerbach, R.P.; Admon, R.; Pizzagalli, D.A. Adolescent depression: Stress and reward dysfunction. Harv. Rev. Psychiatry 2014, 22, 139–148. [Google Scholar] [CrossRef]
- Barry, M.A.; Clarke, A.M.; Jenkins, R.; Patel, V. A systematic review of the effectiveness of mental health promotion interventions for young people in low and middle income countries. BMC Public Health 2013, 13, 835. [Google Scholar] [CrossRef]
- Beyene, A.S.; Chojenta, C.; Roba, H.S.; Melka, A.S.; Loxton, D. Gender-based violence among female youths in educational institutions of Sub-Saharan Africa: A systematic review and meta-analysis. Syst. Rev. 2019, 8, 59. [Google Scholar] [CrossRef]
- Burns, P.A.; Zunt, J.R.; Hernandez, B.; Wagenaar, B.H.; Kumar, M.; Omolo, D.; Breinbauer, C. Intimate Partner Violence, Poverty, and Maternal Health Care-Seeking Among Young Women in Kenya: A Cross-Sectional Analysis Informing the New Sustainable Development Goals. Glob. Soc. Welf. 2018, 7, 1–13. [Google Scholar] [CrossRef]
- Cabanis, M.; Outadi, A.; Choi, F. Early childhood trauma, substance use and complex concurrent disorders among adolescents. Curr. Opin. Psychiatry 2021, 34, 393–399. [Google Scholar] [CrossRef]
- Hankin, B.L. Depression from childhood through adolescence: Risk mechanisms across multiple systems and levels of analysis. Curr. Opin. Psychol. 2015, 4, 13–20. [Google Scholar] [CrossRef]
- Dhondt, N.; Healy, C.; Clarke, M.; Cannon, M. Childhood adversity and adolescent psychopathology: Evidence for mediation in a national longitudinal cohort study. Br. J. Psychiatry J. Ment. Sci. 2019, 215, 559–564. [Google Scholar] [CrossRef] [PubMed]
- de Lacy, N.; Ramshaw, M.J.; McCauley, E.; Kerr, K.F.; Kaufman, J.; Nathan Kutz, J. Predicting individual cases of major adolescent psychiatric conditions with artificial intelligence. Transl. Psychiatry 2023, 13, 314. [Google Scholar] [CrossRef] [PubMed]
- Moon, Y.; Woo, H. Key risk factors of generalized anxiety disorder in adolescents: Machine learning study. Front. Public Health 2024, 12, 1504739. [Google Scholar] [CrossRef] [PubMed]
- Tate, A.E.; McCabe, R.C.; Larsson, H.; Lundström, S.; Lichtenstein, P.; Kuja-Halkola, R. Predicting mental health problems in adolescence using machine learning techniques. PLoS ONE 2020, 15, e0230389. [Google Scholar] [CrossRef]
- Kumar, M.; Amugune, B.; Madeghe, B.; Wambua, G.N.; Osok, J.; Polkonikova-Wamoto, A.; Bukusi, D.; Were, F.; Huang, K.Y. Mechanisms associated with maternal adverse childhood experiences on offspring’s mental health in Nairobi informal settlements: A mediational model testing approach. BMC Psychiatry 2018, 18, 381. [Google Scholar] [CrossRef]
- Byrne, D.G.; Davenport, S.C.; Mazanov, J. Profiles of adolescent stress: The development of the adolescent stress questionnaire (ASQ). J. Adolesc. 2007, 30, 393–416. [Google Scholar] [CrossRef]
- Richardson, L.P.; McCauley, E.; Grossman, D.C.; McCarty, C.A.; Richards, J.; Russo, J.E.; Rockhill, C.; Katon, W. Evaluation of the Patient Health Questionnaire-9 Item for detecting major depression among adolescents. Pediatrics 2010, 126, 1117–1123. [Google Scholar] [CrossRef]
- Tele, A.K.; Carvajal-Velez, L.; Nyongesa, V.; Ahs, J.W.; Mwaniga, S.; Kathono, J.; Yator, O.; Njuguna, S.; Kanyanya, I.; Amin, N.; et al. Validation of the English and Swahili Adaptation of the Patient Health Questionnaire-9 for Use Among Adolescents in Kenya. J. Adolesc. Health 2023, 72, S61–S70. [Google Scholar] [CrossRef]
- Taylor Salisbury, T.; Maguele, M.S.B.; Chissale, F.; de Melo, M.; Hanselmann, M.; Lamahewa, K.; Lang’at, E.; Mandlate, F.; Nyaga, L.; Seward, N.; et al. Supporting the mental health of adolescent mothers in Kenya and Mozambique: Pilot protocol for the Thriving Mamas programme. Pilot Feasibility Stud. 2025, 11, 83. [Google Scholar] [CrossRef]
- Nyongesa, V.; Kathono, J.; Mwaniga, S.; Yator, O.; Madeghe, B.; Kanana, S.; Amugune, B.; Anyango, N.; Nyamai, D.; Wambua, G.N.; et al. Cultural and contextual adaptation of mental health measures in Kenya: An adolescent-centered transcultural adaptation of measures study. PLoS ONE 2022, 17, e0277619. [Google Scholar] [CrossRef] [PubMed]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Caruana, R.; Lou, Y.; Gehrke, J.; Koch, P.; Sturm, M.; Elhadad, N. Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmission. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, Australia, 10–13 August 2015; pp. 1721–1730. [Google Scholar]
- Garriga, R.; Mas, J.; Abraha, S.; Nolan, J.; Harrison, O.; Tadros, G.; Matic, A. Machine learning model to predict mental health crises from electronic health records. Nat. Med. 2022, 28, 1240–1248. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013. [Google Scholar]
- Youden, W.J. Index for rating diagnostic tests. Cancer 1950, 3, 32–35. [Google Scholar] [CrossRef]
- Ajith, M.; Aycock, D.M.; Tone, E.B.; Liu, J.; Misiura, M.B.; Ellis, R.; Plis, S.M.; King, T.Z.; Dotson, V.M.; Calhoun, V. A deep learning approach for mental health quality prediction using functional network connectivity and assessment data. Brain Imaging Behav. 2024, 18, 630–645. [Google Scholar] [CrossRef]
- Coley, R.Y.; Boggs, J.M.; Beck, A.; Simon, G.E. Predicting outcomes of psychotherapy for depression with electronic health record data. J. Affect. Disord. Rep. 2021, 6, 100198. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4765–4774. [Google Scholar]
- Uhlhaas, P.J.; Davey, C.G.; Mehta, U.M.; Shah, J.; Torous, J.; Allen, N.B.; Avenevoli, S.; Bella-Awusah, T.; Chanen, A.; Chen, E.Y.H.; et al. Towards a youth mental health paradigm: A perspective and roadmap. Mol. Psychiatry 2023, 28, 3171–3181. [Google Scholar] [CrossRef]
- Kirkbride, J.B.; Anglin, D.M.; Colman, I.; Dykxhoorn, J.; Jones, P.B.; Patalay, P.; Pitman, A.; Soneson, E.; Steare, T.; Wright, T.; et al. The social determinants of mental health and disorder: Evidence, prevention and recommendations. World Psychiatry 2024, 23, 58–90. [Google Scholar] [CrossRef]
- Shatte, A.B.R.; Hutchinson, D.M.; Teague, S.J. Machine learning in mental health: A scoping review of methods and applications. Psychol. Med. 2019, 49, 1426–1448. [Google Scholar] [CrossRef]
- Mohr, D.C.; Zhang, M.; Schueller, S.M. Personal Sensing: Understanding Mental Health Using Ubiquitous Sensors and Machine Learning. Annu. Rev. Clin. Psychol. 2017, 13, 23–47. [Google Scholar] [CrossRef]
- Yaun, J.A.; Rogers, L.W.; Marshall, A.; McCullers, J.A.; Madubuonwu, S. Whole Child Well-Child Visits: Implementing ACEs and SDOH Screenings in Primary Care. Clin. Pediatr. 2022, 61, 542–550. [Google Scholar] [CrossRef]
- Pace, C.S.; Muzi, S.; Rogier, G.; Meinero, L.L.; Marcenaro, S. The Adverse Childhood Experiences—International Questionnaire (ACE-IQ) in community samples around the world: A systematic review (part I). Child Abus. Negl. 2022, 129, 105640. [Google Scholar] [CrossRef]
Total (n = 269) | Male (n = 136) | Female (n = 133) | p | |
---|---|---|---|---|
Demographic | M (SD) or % | M (SD) or % | M (SD) or % | |
Age | 12.17 (1.04) | 12.15 (0.99) | 12.19 (1.08) | 0.791 |
Religion | 0.598 | |||
Muslim | 5.7% | 6.7% | 0.7% | |
Christian | 94.3% | 93.3% | 95.3% | |
Grade | 0.338 | |||
5th Grade | 30.5% | 34.6% | 26.3% | |
6th Grade | 33.1% | 30.9% | 35.3% | |
7th Grade | 36.4% | 34.6% | 38.3% | |
Has Access to Internet | 0.007 | |||
Yes | 64.2% | 56.3% | 72.3% | |
No | 35.8% | 43.7% | 27.7% | |
Have an Email account | 0.447 | |||
Yes | 2.6% | 3.7% | 1.5% | |
No | 97.4% | 96.3% | 98.5% | |
Childhood Adversity Experiences | M (SD) or % | M (SD) or % | M (SD) or % | |
(Count on the Number of Stress) | ||||
ACEs-Home Adversity (0–10) | 2.55 (2.08) | 2.58 (2.18) | 2.51 (2.00) | 0.785 |
ACEs-Financial Adversity (0–3) | 1.05 (1.02) | 0.99 (1.02) | 1.11 (1.02) | 0.368 |
ACEs-Community Adversity (0–4) | 1.13 (1.03) | 1.09 (1.03) | 1.19 (1.03) | 0.394 |
ACEs-School Adversity (0–2) | 0.56 (0.65) | 0.60 (0.66) | 0.52 (0.65) | 0.310 |
ADS-Count Developmental Stress # (0–30) | 11.70 (6.69) | 11.58 (0.69) | 11.82 (6.47) | 0.772 |
ADS-Adolescent Stress Level (1–5) (Mean) | 2.45 (0.73) | 2.43 (0.75) | 2.47 (0.70) | 0.643 |
Mental Health-Depression | ||||
PHQ9-A Total (Sum)(0–27) | 7.71 (4.79) | 9.40 (3.64) | 10.44 (3.45) | 0.339 |
PHQ9-A groups | 0.420 | |||
Normal/minimal to Mild (0–9) | 66.2% | 69.1% | 63.2% | |
Moderate (10–14) | 23.8% | 22.1% | 25.6% | |
Moderately Severe (15–19) | 9.3% | 8.8% | 9.8% | |
Severe (20–27) | 0.7% | 0% | 1.5% |
Models | Domains | AUC | Accuracy | Sensitivity | Specificity | Brier Score | ECE |
---|---|---|---|---|---|---|---|
Logistic Regression | (i) Home-ACEs | 0.7543 (0.0678) | 0.7009 (0.0580) | 0.6537 (0.1164) | 0.7259 (0.0806) | 0.1915 (0.0319) | 0.1382 (0.0365) |
(ii) Poverty-ACEs | 0.6031 (0.0726) | 0.5937 (0.0533) | 0.6127 (0.1515) | 0.5851 (0.0810) | 0.2223 (0.0212) | 0.1239 (0.0482) | |
(iii) Community/School ACEs | 0.7624 (0.0629) | 0.7212 (0.0634) | 0.6776 (0.1039) | 0.7426 (0.0770) | 0.1868 (0.0280) | 0.1282 (0.0430) | |
(iv) Ado. Developmental Stress | 0.7088 (0.0717) | 0.6584 (0.0623) | 0.5830 (0.1185) | 0.6968 (0.0856) | 0.2131 (0.0302) | 0.1770 (0.0398) | |
(i) + (ii) | 0.7434 (0.0610) | 0.6893 (0.0551) | 0.6560 (0.1248) | 0.7071 (0.0696) | 0.1957 (0.0306) | 0.1489 (0.0373) | |
(i) + (ii) + (iii) | 0.7760 (0.0542) | 0.6999 (0.0574) | 0.6674 (0.1174) | 0.7163 (0.0716) | 0.1862 (0.0307) | 0.1459 (0.0388) | |
(i) + (ii) + (iii) + (iv) | 0.8026 (0.0487) | 0.7443 (0.0562) | 0.6986 (0.1107) | 0.7699 (0.0679) | 0.1885 (0.0351) | 0.1799 (0.0434) | |
Random Forests | (i) | 0.7361 (0.0427) | 0.6690 (0.0471) | 0.5125 (0.1366) | 0.7950 (0.0623) | 0.1992 (0.0315) | 0.1340 (0.0354) |
(ii) | 0.6532 (0.0393) | 0.5984 (0.0391) | 0.2522 (0.1471) | 0.8186 (0.1071) | 0.2118 (0.0229) | 0.1109 (0.0407) | |
(iii) | 0.7435 (0.0847) | 0.6915 (0.0630) | 0.5300 (0.1248) | 0.8549 (0.0571) | 0.1781 (0.0269) | 0.1279 (0.0300) | |
(iv) | 0.7210 (0.0651) | 0.6173 (0.0857) | 0.3757 (0.1301) | 0.8387 (0.0624) | 0.1973 (0.0206) | 0.1371 (0.0315) | |
(i) + (ii) | 0.7527 (0.0409) | 0.6895 (0.0429) | 0.5299 (0.1443) | 0.8142 (0.0579) | 0.1923 (0.0330) | 0.1444 (0.0367) | |
(i) + (ii) + (iii) | 0.7734 (0.0403) | 0.7306 (0.0433) | 0.5423 (0.1706) | 0.8212 (0.0551) | 0.1856 (0.0305) | 0.1405 (0.0403) | |
(i) + (ii) + (iii) + (iv) | 0.8361 (0.0438) | 0.7825 (0.0421) | 0.5175 (0.1263) | 0.8453 (0.0589) | 0.1750 (0.0261) | 0.1337 (0.0418) |
(a) Top 20. Risks Ranking (the Global Importance Approach). | |||||
Predictor Ranking | Item-Level Predictor Description | ||||
1 | ACEs-Childhood Neglect | ACE3. Did you often feel that no one in your family loved you or thought you were important or special? Or your family didn’t look out for each other, feel close to each other, or support each other? | |||
2 | ACEs-Neighborhood Adversity | ACE20. Do you agree that people in your neighborhood commonly disregard rules and laws, or do not care about what goes on in the neighborhood? | |||
3 | AS-Academic Stress | ASQ2. Keeping up with schoolwork | |||
4 | AS-Physical Appearance | ASQ7. Concern or worry about your body changes (changing too fast, too slow, or unexpected) | |||
5 | AS-Physical Health | ASQ11. Having physical health concerns or challenges | |||
6 | AS-Financial Pressure | ASQ26. Not enough money to buy the things you want | |||
7 | ACEs-IPV | ACE17. In a romantic relationship, and being physically hurt, verbally or emotionally insulted, cursed, or threatened by your partner | |||
8 | ACEs-Childhood Abuse (Emotion) | ACE1. Did a parent/guardian or other adult in the household often swear at you, insult you, put you down, or humiliate you, or act in a way that made you afraid you might be physically hurt | |||
9 | ACEs-Community violence (Harassment) | ACE15. Were you ever verbally, physically, or sexually harassed (touched in an unwanted way)? | |||
10 | AS-Romanic Relationship | ASQ21. Getting along with your boy/girlfriends in your romantic relationship | |||
11 | AS-Role Responsibility | ASQ29. Having to take on added family responsibilities with growing older | |||
12 | AS-Romantic Relationship | ASQ22. Making the relationship with your boy/girlfriend work | |||
13 | ACEs-School Adversity | ACE18. Were you not in education or training in the past two years? | |||
14 | AS-Peer Rejection Stress | ASQ18. Being ignored or rejected by peers, or not feeling part of the group | |||
15 | AS-Future Uncertainty | ASQ24. Concern about your future | |||
16 | AS-Social Relationship | ASQ17. Not getting along with your peers or friends | |||
17 | AS-Leisure/Hobbies | ASQ4. Not getting enough time for leisure/fun or hobbies | |||
18 | AS-Academic/School | ASQ3. Pressure for good grades | |||
19 | AS-Peer/Social Stress | ASQ20. Experiencing bullying, cyberbullying, or discrimination | |||
20 | AS-Peer Pressure | ASQ9. Not having things that other peers have | |||
(b) Risk Ranking Model Performance | |||||
Predictors | AUC | Accuracy | Sensitivity | Specificity | |
Top 5 | 0.7452 (0.0534) | 0.6955 (0.0483) | 0.7447 (0.1103) | 0.6720 (0.0630) | |
Top 10 | 0.8135 (0.0485) | 0.6848 (0.0593) | 0.8860 (0.0658) | 0.5846 (0.0772) | |
Top 15 | 0.8359 (0.0491) | 0.7476 (0.0537) | 0.8136 (0.0932) | 0.7158 (0.0745) | |
Top 20 | 0.8376 (0.0493) | 0.7509 (0.0602) | 0.8245 (0.0747) | 0.7141 (0.0733) | |
All (items from 4 domains) | 0.8361 (0.0438) | 0.7825 (0.0421) | 0.8043 (0.1158) | 0.7718 (0.0329) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Do, H.; Huang, K.-Y.; Cheng, S.; Njiru, L.N.; Mwavua, S.M.; Obondo, A.A.; Kumar, M. Apply Machine Learning to Predict Risk for Adolescent Depression in a Cohort of Kenyan Adolescents. Healthcare 2025, 13, 2620. https://doi.org/10.3390/healthcare13202620
Do H, Huang K-Y, Cheng S, Njiru LN, Mwavua SM, Obondo AA, Kumar M. Apply Machine Learning to Predict Risk for Adolescent Depression in a Cohort of Kenyan Adolescents. Healthcare. 2025; 13(20):2620. https://doi.org/10.3390/healthcare13202620
Chicago/Turabian StyleDo, Hyungrok, Keng-Yen Huang, Sabrina Cheng, Leonard Njeru Njiru, Shilla Mwaniga Mwavua, Anne Atie Obondo, and Manasi Kumar. 2025. "Apply Machine Learning to Predict Risk for Adolescent Depression in a Cohort of Kenyan Adolescents" Healthcare 13, no. 20: 2620. https://doi.org/10.3390/healthcare13202620
APA StyleDo, H., Huang, K.-Y., Cheng, S., Njiru, L. N., Mwavua, S. M., Obondo, A. A., & Kumar, M. (2025). Apply Machine Learning to Predict Risk for Adolescent Depression in a Cohort of Kenyan Adolescents. Healthcare, 13(20), 2620. https://doi.org/10.3390/healthcare13202620