Sex-Specific Associations of Total Bilirubin, ALBI, and PALBI with Lung Cancer Risk: Interactions with Smoking and Alcohol
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Cancer Case Ascertainment
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Conclusions
4.2. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bade, B.C.; Dela Cruz, C.S. Lung cancer 2020: Epidemiology, etiology, and prevention. Clin. Chest Med. 2020, 41, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Yang, D.; He, J.; Krasna, M.J. Epidemiology of lung cancer. Surg. Oncol. Clin. N. Am. 2016, 25, 439–445. [Google Scholar] [CrossRef]
- Grunnet, M.; Sorensen, J.B. Carcinoembryonic antigen (CEA) as tumor marker in lung cancer. Lung Cancer 2012, 76, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Gan, T.; An, W.; Long, Y.; Wang, J.; Zhang, H.; Liao, M. Correlation between carcinoembryonic antigen (CEA) expression and EGFR mutations in non-small-cell lung cancer: A meta-analysis. Clin. Transl. Oncol. 2024, 26, 991–1000. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Zhang, X.; Zhang, Q.; Ruan, G.T.; Liu, T.; Xie, H.L.; Ge, Y.Z.; Song, M.M.; Deng, L.; Shi, H.P. The value of CRP-albumin-lymphocyte index (CALLY index) as a prognostic biomarker in patients with non-small cell lung cancer. Support Care Cancer 2023, 31, 533. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Guo, M.; Fan, J.; Lv, Z.; Huang, Q.; Han, J.; Wu, F.; Hu, G.; Xu, J.; Jin, Y. Prognostic significance of serum LDH in small cell lung cancer: A systematic review with meta-analysis. Cancer Biomark. 2016, 16, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Mandaliya, H.; Jones, M.; Oldmeadow, C.; Nordman, I.I. Prognostic biomarkers in stage IV non-small cell lung cancer (NSCLC): Neutrophil to lymphocyte ratio (NLR), lymphocyte to monocyte ratio (LMR), platelet to lymphocyte ratio (PLR) and advanced lung cancer inflammation index (ALI). Transl. Lung Cancer Res. 2019, 8, 886–894. [Google Scholar] [CrossRef] [PubMed]
- Lawless, M.W.; O’Byrne, K.J.; Gray, S.G. Oxidative stress induced lung cancer and COPD: Opportunities for epigenetic therapy. J. Cell. Mol. Med. 2009, 13, 2800–2821. [Google Scholar] [CrossRef]
- Stocker, R.; Yamamoto, Y.; McDonagh, A.F.; Glazer, A.N.; Ames, B.N. Bilirubin is an antioxidant of possible physiological importance. Science 1987, 235, 1043–1046. [Google Scholar] [CrossRef]
- Kapitulnik, J. Bilirubin: An endogenous product of heme degradation with both cytotoxic and cytoprotective properties. Mol. Pharmacol. 2004, 66, 773–779. [Google Scholar] [CrossRef]
- Vítek, L. The role of bilirubin in diabetes, metabolic syndrome, and cardiovascular diseases. Front. Pharmacol. 2012, 3, 55. [Google Scholar] [CrossRef] [PubMed]
- Soto Conti, C.P. Bilirubin: The toxic mechanisms of an antioxidant molecule. Arch. Argent. Pediatr. 2021, 119, e18–e25. [Google Scholar] [CrossRef] [PubMed]
- Maruhashi, T.; Kihara, Y.; Higashi, Y. Bilirubin and endothelial function. J. Atheroscler. Thromb. 2019, 26, 688–696. [Google Scholar] [CrossRef]
- Freisling, H.; Seyed Khoei, N.; Viallon, V.; Wagner, K.-H. Gilbert’s syndrome, circulating bilirubin, and lung cancer: A genetic advantage? Thorax 2020, 75, 916–917. [Google Scholar] [CrossRef]
- Shin, J.W.; Jung, K.J.; Ryu, M.; Kim, J.; Kimm, H.; Jee, S.H. Causal association between serum bilirubin and ischemic stroke: Multivariable Mendelian randomization. Epidemiol. Health 2024, 46, e2024070. [Google Scholar] [CrossRef] [PubMed]
- Horsfall, L.J.; Burgess, S.; Hall, I.; Nazareth, I. Genetically raised serum bilirubin levels and lung cancer: A cohort study and Mendelian randomisation using UK Biobank. Thorax 2020, 75, 955–964. [Google Scholar] [CrossRef]
- Shin, J.W.; Kim, N.; Minh, N.T.; Chapagain, D.D.; Jee, S.H. Serum bilirubin subgroups and cancer risk: Insights with a focus on lung cancer. Cancer Epidemiol. 2025, 94, 102727. [Google Scholar] [CrossRef]
- Shin, J.-W.; Nguyen, T.-M.; Jee, S.-H. Association Between Creatinine and Lung Cancer Risk in Men Smokers: A Comparative Analysis with Antioxidant Biomarkers from the KCPS-II Cohort. Antioxidants 2025, 14, 584. [Google Scholar] [CrossRef]
- Monroy-Iglesias, M.J.; Moss, C.; Beckmann, K.; Hammar, N.; Walldius, G.; Bosco, C.; Van Hemelrijck, M.; Santaolalla, A. Serum total bilirubin and risk of cancer: A Swedish cohort study and meta-analysis. Cancers 2021, 13, 5540. [Google Scholar] [CrossRef]
- Inoguchi, T.; Nohara, Y.; Nojiri, C.; Nakashima, N. Association of serum bilirubin levels with risk of cancer development and total death. Sci. Rep. 2021, 11, 13224. [Google Scholar] [CrossRef]
- Roche, M.; Rondeau, P.; Singh, N.R.; Tarnus, E.; Bourdon, E. The antioxidant properties of serum albumin. FEBS Lett. 2008, 582, 1783–1787. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Huang, B.; Ye, T.; Wang, Y.; Xia, D.; Qian, J. Physiological concentrations of bilirubin control inflammatory response by inhibiting NF-κB and inflammasome activation. Int. Immunopharmacol. 2020, 84, 106520. [Google Scholar] [CrossRef] [PubMed]
- Inoue, J.I.; Gohda, J.; Akiyama, T.; Semba, K. NF-κB activation in development and progression of cancer. Cancer Sci. 2007, 98, 268–274. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, S.; Li, X.; Wen, X.; Liu, S.; Zu, R.; Ren, H.; Li, T.; Yang, C.; Luo, H. Research progress on the interaction between oxidative stress and platelets: Another avenue for cancer? Pharmacol. Res. 2023, 191, 106777. [Google Scholar] [CrossRef]
- Lordan, R.; Tsoupras, A.; Zabetakis, I. The potential role of dietary platelet-activating factor inhibitors in cancer prevention and treatment. Adv. Nutr. 2019, 10, 148–164. [Google Scholar] [CrossRef]
- Denizot, Y.; Desplat, V.; Drouet, M.; Bertin, F.; Melloni, B. Is there a role of platelet-activating factor in human lung cancer? Lung Cancer 2001, 34, S65–S69. [Google Scholar] [CrossRef] [PubMed]
- Masselli, E.; Pozzi, G.; Vaccarezza, M.; Mirandola, P.; Galli, D.; Vitale, M.; Carubbi, C.; Gobbi, G. ROS in platelet biology: Functional aspects and methodological insights. Int. J. Mol. Sci. 2020, 21, 4866. [Google Scholar] [CrossRef]
- Johnson, P.J.; Berhane, S.; Kagebayashi, C.; Satomura, S.; Teng, M.; Reeves, H.L.; O’Beirne, J. Assessment of liver function in patients with hepatocellular carcinoma: A new evidence-based approach—The ALBI grade. J. Clin. Oncol. 2015, 33, 550–558. [Google Scholar] [CrossRef]
- Liu, P.H.; Hsu, C.Y.; Hsia, C.Y.; Lee, Y.H.; Su, C.W.; Huang, Y.H.; Lee, F.Y.; Lin, H.C.; Huo, T.I.; Lee, R.C. ALBI and PALBI grades predict liver reserve in patients with hepatocellular carcinoma treated with radiotherapy. Radiother. Oncol. 2016, 119, 266–273. [Google Scholar] [CrossRef]
- Chen, L.; Tan, C.; Li, Q.; Ma, Z.; Wu, M.; Tan, X.; Wu, T.; Liu, J.; Wang, J. Assessment of the albumin-bilirubin score in breast cancer patients with liver metastasis after surgery. Heliyon 2023, 9, e21772. [Google Scholar] [CrossRef]
- Kut, E.; Menekse, S. Prognostic significance of pretreatment albumin–bilirubin (ALBI) grade and platelet–albumin–bilirubin (PALBI) grade in patients with small cell lung cancer. Sci. Rep. 2024, 14, 1371. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Lee, J.-H.; Cho, E.-S.; Shin, S.-J.; Lee, H.S.; Koh, H.-H.; Lee, K.Y.; Kang, J. Clinical significance of combining preoperative and postoperative albumin-bilirubin score in colorectal cancer. Cancer Res. Treat. 2023, 55, 1261–1269. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Zhang, S.; Bao, B.; Cong, H.; Lu, X.; Shi, A. Albumin-bilirubin score: A promising predictor of postoperative distant metastasis in patients with colorectal cancer. Biomark. Med. 2025, 21, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Jee, Y.H.; Emberson, J.; Jung, K.J.; Lee, S.J.; Lee, S.; Back, J.H.; Hong, S.; Kimm, H.; Sherliker, P.; Jee, S.H.; et al. Cohort Profile: The Korean Cancer Prevention Study-II (KCPS-II) Biobank. Int. J. Epidemiol. 2018, 47, 385–386. [Google Scholar] [CrossRef]
- Duan, P.; Hu, C.; Quan, C.; Yi, X.; Zhou, W.; Yuan, M.; Yu, T.; Kourouma, A.; Yang, K. Body mass index and risk of lung cancer: Systematic review and dose-response meta-analysis. Sci. Rep. 2015, 5, 16938. [Google Scholar] [CrossRef]
- Hecht, F.; Zocchi, M.; Alimohammadi, F.; Harris, I.S. Regulation of antioxidants in cancer. Mol Cell. 2024, 84, 23–33. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bala, J.; Agrawal, Y.; Chugh, K.; Kumari, M.; Goyal, V.; Kumar, P. Variation in the serum bilirubin levels in newborns according to gender and seasonal changes. Arch. Med. Health Sci. 2015, 3, 50–55. [Google Scholar] [CrossRef]
- Weaving, G.; Batstone, G.F.; Jones, R.G. Age and sex variation in serum albumin concentration: An observational study. Ann. Clin. Biochem. 2016, 53, 106–111. [Google Scholar] [CrossRef]
- Christakoudi, S.; Tsilidis, K.K.; Evangelou, E.; Riboli, E. Sex differences in the associations of body size and body shape with platelets in the UK Biobank cohort. Biol Sex Differ. 2023, 14, 12. [Google Scholar] [CrossRef]
- Gu, Y.; Tang, Y.Y.; Wan, J.X.; Zou, J.Y.; Lu, C.G.; Zhu, H.S.; Sheng, S.Y.; Wang, Y.F.; Liu, H.C.; Yang, J.; et al. Sex difference in the expression of PD-1 of non-small cell lung cancer. Front. Immunol. 2022, 13, 1026214. [Google Scholar] [CrossRef]
- Park, H.M.; Kim, H.; Lee, H.S.; Lee, Y.J. Inverse association between serum bilirubin level and testosterone deficiency in middle-aged and older men. Sci. Rep. 2021, 11, 8026. [Google Scholar] [CrossRef]
- Ling, C.; Liu, Y.; Yao, M.; Tian, L. Positive association between serum bilirubin within the physiological range and serum testosterone levels. BMC Endocr. Disord. 2024, 24, 119. [Google Scholar] [CrossRef] [PubMed]
- Czub, M.P.; Venkataramany, B.S.; Majorek, K.A.; Handing, K.B.; Porebski, P.J.; Beeram, S.R.; Suh, K.; Woolfork, A.G.; Hage, D.S.; Shabalin, I.G.; et al. Testosterone meets albumin—The molecular mechanism of sex hormone transport by serum albumins. Chem. Sci. 2018, 10, 1607–1618. [Google Scholar] [CrossRef] [PubMed]
- Manni, A.; M, W.; Cefalu, W.; Nisula, B.C.; Bardin, C.W.; Santner, S.J.; Santen, R.J. Bioavailability of albumin-bound testosterone. J. Clin. Endocrinol. Metab. 1985, 61, 705–710. [Google Scholar] [CrossRef]
- Hyde, Z.; Flicker, L.; McCaul, K.A.; Almeida, O.P.; Hankey, G.J.; Chubb, S.P.; Yeap, B.B. Associations between testosterone levels and incident prostate, lung, and colorectal cancer: A population-based study. Cancer Epidemiol. Biomark. Prev. 2012, 21, 1319–1329. [Google Scholar] [CrossRef]
- Ørsted, D.D.; Nordestgaard, B.G.; Bojesen, S.E. Plasma testosterone in the general population, cancer prognosis and cancer risk: A prospective cohort study. Ann. Oncol. 2014, 25, 712–718. [Google Scholar] [CrossRef]
- Kao, T.-L.; Chen, Y.-L.; Kuan, Y.-P.; Chang, W.-C.; Ho, Y.-C.; Yeh, S.; Jeng, L.-B.; Ma, W.-L. Estrogen-Estrogen Receptor α Signaling Facilitates Bilirubin Metabolism in Regenerating Liver Through Regulating Cytochrome P450 2A6 Expression. Cell Transplant. 2017, 26, 1822–1829. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, Y.; Dai, B.; Bai, M.; Lu, S.; Lin, N.; Zhou, H.; Jiang, H. Bilirubin Reduces the Uptake of Estrogen Precursors and the Followed Synthesis of Estradiol in Human Placental Syncytiotrophoblasts via Inhibition and Downregulation of Organic Anion Transporter 4. Drug Metab. Dispos. 2022, 50, 341–350. [Google Scholar] [CrossRef]
- Sonnenschein, C.; Soto, A.M.; Michaelson, C.L. Human serum albumin shares the properties of estrocolyone-I, the inhibitor of the proliferation of estrogen-target cells. J. Steroid. Biochem. Mol. Biol. 1996, 59, 147–154. [Google Scholar] [CrossRef]
- May, F.E.; Ryffel, G.U.; Weber, R.; Westley, B.R. Estrogen dramatically decreases albumin mRNA levels and albumin synthesis in Xenopus laevis liver. J. Biol. Chem. 1982, 257, 13919–13923. [Google Scholar] [CrossRef]
- Chakraborty, S.; Ganti, A.K.; Marr, A.; Batra, S.K. Lung cancer in women: Role of estrogens. Expert. Rev. Respir Med. 2010, 4, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Hsu, L.H.; Chu, N.M.; Kao, S.H. Estrogen, Estrogen Receptor and Lung Cancer. Int. J. Mol. Sci. 2017, 18, 1713. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.E.; Chung, S.T.; Crowley, S.J.; Atkinson, M.A. An Overview of Lung Cancer in Women and the Impact of Estrogen in Lung Carcinogenesis and Lung Cancer Treatment. Front. Med. 2021, 8, 600121. [Google Scholar] [CrossRef]
- Sabetta, A.; Lombardi, L.; Stefanini, L. Sex differences at the platelet-vascular interface. Intern. Emerg. Med. 2022, 17, 1267–1276. [Google Scholar] [CrossRef]
- Cowman, J.; Dunne, E.; Oglesby, I.; Byrne, B.; Ralph, A.; Voisin, B.; Müllers, S.; Ricco, A.J.; Kenny, D. Age-related changes in platelet function are more profound in women than in men. Sci. Rep. 2015, 5, 12235. [Google Scholar] [CrossRef]
- Jayachandran, M.; Karnicki, K.; Miller, R.S.; Owen, W.G.; Korach, K.S.; Miller, V.M. Platelet characteristics change with aging: Role of estrogen receptor beta. J. Gerontol. Biol. Sci. Med. Sci. 2005, 60, 815–819. [Google Scholar] [CrossRef]
- Jayachandran, M.; Preston, C.C.; Hunter, L.W.; Jahangir, A.; Owen, W.G.; Korach, K.S.; Miller, V.M. Loss of estrogen receptor beta decreases mitochondrial energetic potential and increases thrombogenicity of platelets in aged female mice. Age 2010, 32, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.E.; Kimm, H.; Jee, S.H. Combined effects of smoking and bilirubin levels on the risk of lung cancer in Korea: The Severance cohort study. PLoS ONE 2014, 9, e103972. [Google Scholar] [CrossRef]
- Yoon, H.-S.; Shu, X.-O.; Shidal, C.; Wu, J.; Blot, W.J.; Zheng, W.; Cai, Q. Associations of pre-diagnostic serum levels of total bilirubin and albumin with lung cancer risk: Results from the Southern Community Cohort Study. Front. Oncol. 2022, 12, 895479. [Google Scholar] [CrossRef]
- Bunjaku, J.; Lama, A.; Pesanayi, T.; Shatri, J.; Chamberlin, M.; Hoxha, I. Lung cancer and lifestyle factors: Umbrella review. Hematol. Oncol. Clin. N. Am. 2024, 38, 171–184. [Google Scholar] [CrossRef]
- Bandera, E.V.; Freudenheim, J.L.; Vena, J.E. Alcohol consumption and lung cancer: A review of the epidemiologic evidence. Cancer Epidemiol. Biomark. Prev. 2001, 10, 813–821. [Google Scholar]
- Freudenheim, J.L.; Ritz, J.; Smith-Warner, S.A.; Albanes, D.; Bandera, E.V.; van den Brandt, P.A.; Colditz, G.; Feskanich, D.; Goldbohm, R.A.; Harnack, L.; et al. Alcohol consumption and risk of lung cancer: A pooled analysis of cohort studies. Am. J. Clin. Nutr. 2005, 82, 657–667. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Men (n = 83,371) | Women (n = 50,225) | p-Value |
---|---|---|---|
Age, years | 41.6 (9.5) | 39.7 (10.7) | <0.0001 |
Body mass index † | 24.4 (2.9) | 22.0 (3.0) | <0.0001 |
Total bilirubin, mg/dL | 0.95 (0.38) | 0.75 (0.30) | <0.0001 |
Direct bilirubin, mg/dL | 0.36 (0.14) | 0.29 (0.12) | <0.0001 |
Albumin, g/dL | 4.58 (0.25) | 4.45 (0.25) | <0.0001 |
Platelets, 103/µL | 246.27 (52.72) | 257.82 (57.81) | <0.0001 |
Alcohol drinking, g/dL | 22.67 (29.45) | 5.98 (13.77) | <0.0001 |
Smoking status, % | |||
Never | 22.7 | 89.4 | <0.0001 |
Previous | 32.7 | 6.4 | <0.0001 |
Current | 44.6 | 4.2 | <0.0001 |
Any alcohol use, % | |||
Never | 5.8 | 30.8 | <0.0001 |
Previous | 7.9 | 16.5 | <0.0001 |
Current | 86.3 | 52.7 | <0.0001 |
Indicators | Case (Median Follow-Up Time, IQR) | Q1HR (95% CI) § | Q2HR (95% CI) § | Q3HR (95% CI) § | Q4HR (95% CI) § | p-Value for Trend | |
---|---|---|---|---|---|---|---|
Men | Total Bilirubin | 553 (14.0, 13.4–14.6) | 1 | 0.98 (0.78–1.22) | 0.79 (0.62–1.00) | 0.71 (0.56–0.91) | 0.0014 |
ALBI | 553 (14.0, 13.4–14.6) | 1 | 1.00 (0.79–1.26) | 0.78 (0.61–0.99) | 0.73 (0.57–0.93) | 0.0021 | |
PALBI | 523 (14.0, 13.4–14.6) | 1 | 0.87 (0.68–1.12) | 1.38 (1.09–1.74) | 1.40 (1.10–1.79) | 0.0003 | |
Women | Total Bilirubin | 168 (14.0, 13.4–14.6) | 1 | 1.40 (0.97–2.03) | 1.27 (0.81–2.01) | 1.63 (1.03–2.58) | 0.0420 |
ALBI | 168 (14.0, 13.4–14.6) | 1 | 1.52 (1.03–2.22) | 1.40 (0.91–2.15) | 1.63 (1.01–2.63) | 0.0433 | |
PALBI | 153 (14.0, 13.4–14.6) | 1 | 0.98 (0.56–1.60) | 0.67 (0.41–1.11) | 0.60 (0.37–0.97) | 0.0082 |
Indicators | Smoking Status | Case | HR (95% CI) § | p-Value |
---|---|---|---|---|
Total Bilirubin | Never-Smokers | 57 | 0.85 (0.64–1.12) | 0.2465 |
Former Smokers | 196 | 0.83 (0.71–0.97) | 0.0177 | |
Current Smokers | 300 | 0.85 (0.74–0.97) | 0.0154 | |
Ever-Smokers * | 496 | 0.79 (0.71–0.87) | <0.0001 | |
ALBI | Never-Smokers | 57 | 0.85 (0.65–1.12) | 0.2515 |
Former Smokers | 196 | 0.84 (0.72–0.97) | 0.0205 | |
Current Smokers | 300 | 0.90 (0.80–1.01) | 0.0749 | |
Ever-Smokers * | 496 | 0.82 (0.75–0.90) | <0.0001 | |
PALBI | Never-Smokers | 57 | 1.04 (0.81–1.35) | 0.7480 |
Former Smokers | 179 | 1.23 (1.05–1.44) | 0.0091 | |
Current Smokers | 287 | 1.14 (1.00–1.29) | 0.0494 | |
Ever-Smokers * | 466 | 1.26 (1.14–1.38) | <0.0001 |
Indicators | Alcohol Consumption Status | Case | HR (95% CI) § | p-Value |
---|---|---|---|---|
Total Bilirubin | Never-Drinkers | 63 | 0.90 (0.66–1.21) | 0.4742 |
Former Drinkers | 48 | 0.76 (0.53–1.07) | 0.1191 | |
Current Drinkers | 442 | 0.83 (0.75–0.92) | 0.0006 | |
Ever-Drinkers * | 490 | 0.82 (0.74–0.91) | 0.0002 | |
ALBI | Never-Drinkers | 63 | 1.00 (0.78–1.29) | 0.9933 |
Former Drinkers | 48 | 0.78 (0.58–1.06) | 0.1129 | |
Current Drinkers | 442 | 0.85 (0.77–0.94) | 0.0015 | |
Ever-Drinkers * | 490 | 0.84 (0.77–0.93) | 0.0004 | |
PALBI | Never-Drinkers | 60 | 0.93 (0.71–1.23) | 0.6203 |
Former Drinkers | 47 | 1.20 (0.88–1.65) | 0.2534 | |
Current Drinkers | 416 | 1.20 (1.09–1.33) | 0.0004 | |
Ever-Drinkers * | 463 | 1.20 (1.09–1.33) | 0.0002 |
Indicators | Alcohol Consumption Status | Case | HR (95% CI) § | p-Value |
---|---|---|---|---|
Total Bilirubin | Never-Drinkers | 84 | 1.25 (1.00–1.56) | 0.0548 |
Former Drinkers | 22 | 1.23 (0.76–1.98) | 0.3949 | |
Current Drinkers | 62 | 1.09 (0.82–1.45) | 0.5541 | |
Ever-Drinkers * | 84 | 1.12 (0.87–1.43) | 0.3798 | |
ALBI | Never-Drinkers | 84 | 1.23 (0.98–1.54) | 0.0798 |
Former Drinkers | 22 | 1.19 (0.76–1.86) | 0.4393 | |
Current Drinkers | 62 | 1.16 (0.89–1.50) | 0.2800 | |
Ever-Drinkers * | 84 | 1.16 (0.93–1.45) | 0.1978 | |
PALBI | Never-Drinkers | 74 | 0.83 (0.64–1.06) | 0.1326 |
Former Drinkers | 21 | 0.73 (0.47–1.15) | 0.1761 | |
Current Drinkers | 58 | 0.83 (0.63–1.09) | 0.1782 | |
Ever-Drinkers * | 79 | 0.81 (0.64–1.02) | 0.0757 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, J.W.; Minh, N.T.; Jee, S.H. Sex-Specific Associations of Total Bilirubin, ALBI, and PALBI with Lung Cancer Risk: Interactions with Smoking and Alcohol. Healthcare 2025, 13, 1321. https://doi.org/10.3390/healthcare13111321
Shin JW, Minh NT, Jee SH. Sex-Specific Associations of Total Bilirubin, ALBI, and PALBI with Lung Cancer Risk: Interactions with Smoking and Alcohol. Healthcare. 2025; 13(11):1321. https://doi.org/10.3390/healthcare13111321
Chicago/Turabian StyleShin, Jong Won, Nguyen Thien Minh, and Sun Ha Jee. 2025. "Sex-Specific Associations of Total Bilirubin, ALBI, and PALBI with Lung Cancer Risk: Interactions with Smoking and Alcohol" Healthcare 13, no. 11: 1321. https://doi.org/10.3390/healthcare13111321
APA StyleShin, J. W., Minh, N. T., & Jee, S. H. (2025). Sex-Specific Associations of Total Bilirubin, ALBI, and PALBI with Lung Cancer Risk: Interactions with Smoking and Alcohol. Healthcare, 13(11), 1321. https://doi.org/10.3390/healthcare13111321