Audiological Methods for Early Detection of Hearing Loss in Healthcare Worker
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Hearing Evaluations
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Sampieri, G.; Namavarian, A.; Levin, M.; Philteos, J.; Lee, J.W.; Koskinen, A.; Lin, V.; Lee, J. Noise in Otolaryngology—Head and Neck Surgery operating rooms: A systematic review. J. Otolaryngol.—Head Neck Surg. 2021, 50, 8. [Google Scholar] [CrossRef]
- Arabacı, A.; Önler, E. The Effect of Noise Levels in the Operating Room on the Stress Levels and Workload of the Operating Room Team. J. PeriAnesthesia Nurs. 2021, 36, 54–58. [Google Scholar] [CrossRef]
- de Lima Andrade, E.; da Cunha e Silva, D.C.; de Lima, E.A.; de Oliveira, R.A.; Zannin, P.H.T.; Martins, A.C.G. Environmental noise in hospitals: A systematic review. Environ. Sci. Pollut. Res. Int. 2021, 28, 19629–19642. [Google Scholar] [CrossRef]
- Berglund, B.; Lindvall, T.; Schwela, D. Guidelines for Community Noise [Internet]. 1999. Available online: https://www.who.int/publications-detail-redirect/a68672 (accessed on 18 February 2024).
- Maidl-Putz, C.; McAndrew, N.S.; Leske, J.S. Noise in the ICU: Sound levels can be harmful. Nursing2020 Crit. Care 2014, 9, 29. [Google Scholar] [CrossRef]
- Katz, J.D. Noise in the Operating Room. Anesthesiology 2014, 121, 894–898. [Google Scholar] [CrossRef]
- Nott, M.R.; West, P.D.B. Orthopaedic theatre noise: A potential hazard to patients. Anaesthesia 2003, 58, 784–787. [Google Scholar] [CrossRef]
- Cannizzaro, E.; Cannizzaro, C.; Plescia, F.; Martines, F.; Soleo, L.; Pira, E.; Lo Coco, D. Exposure to ototoxic agents and hearing loss: A review of current knowledge. Hear. Balance Commun. 2014, 12, 166–175. [Google Scholar] [CrossRef]
- Wang, T.C. Hearing Loss: From Multidisciplinary Teamwork to Public Health [Internet]; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Fernandes, N.M.; Pelissari, I.G.; Cogo, L.A.; Santos Filha, V.A.V.D. Workplace Activity in Health Professionals Exposed to Chemotherapy Drugs: An Otoneurological Perspective. Int. Arch. Otorhinolaryngol. 2016, 20, 331–338. [Google Scholar] [CrossRef]
- Rivetti, S.; Romano, A.; Mastrangelo, S.; Attinà, G.; Maurizi, P.; Ruggiero, A. Aminoglycosides-Related Ototoxicity: Mechanisms, Risk Factors, and Prevention in Pediatric Patients. Pharmaceuticals 2023, 16, 1353. [Google Scholar] [CrossRef]
- Schacht, J.; Talaska, A.E.; Rybak, L.P. Cisplatin and Aminoglycoside Antibiotics: Hearing Loss and Its Prevention. Anat. Rec. 2012, 295, 1837–1850. [Google Scholar] [CrossRef]
- Gedik Toker, Ö.; Kuru, E. The effect of occupational exposure to noise and chemical agents on hearing abilities. Arch. Environ. Occup. Health 2024, 79, 1–10. [Google Scholar] [CrossRef]
- Campo, P.; Morata, T.C.; Hong, O. Chemical exposure and hearing loss. Disease-a-Month 2013, 59, 119–138. [Google Scholar] [CrossRef]
- European Agency for safety and Health at Work. Combined Exposure to Noise and Ototoxic Substances|Safety and Health at Work EU-OSHA [Internet]. 2009. Available online: https://osha.europa.eu/en/publications/combined-exposure-noise-and-ototoxic-substances (accessed on 26 February 2024).
- Laffoon, S.M.; Stewart, M.; Zheng, Y.; Meinke, D.K. Conventional audiometry, extended high-frequency audiometry, and DPOAEs in youth recreational firearm users. Int. J. Audiol. 2019, 58, S40–S48. [Google Scholar] [CrossRef]
- Antonioli, C.A.S.; Momensohn-Santos, T.M.; Benaglia, T.A.S. High-frequency Audiometry Hearing on Monitoring of Individuals Exposed to Occupational Noise: A Systematic Review. Int. Arch. Otorhinolaryngol. 2016, 20, 281–289. [Google Scholar]
- Škerková, M.; Kovalová, M.; Mrázková, E. High-frequency audiometry for early detection of hearing loss: A narrative review. Int. J. Environ. Res. Public Health 2021, 18, 4702. [Google Scholar] [CrossRef]
- Moepeng, M.; Soer, M.; Vinck, B. Distortion product otoacoustic emissions as a health surveillance technique for hearing screening in workers in the steel manufacturing industry. Occup. Health South. Afr. 2017, 23, 8–13. [Google Scholar]
- Poling, G.L.; Vlosich, B.; Dreisbach, L.E. Emerging Distortion Product Otoacoustic Emission Techniques to Identify Preclinical Warning Signs of Basal Cochlear Dysfunction Due to Ototoxicity. Appl. Sci. 2019, 9, 3132. [Google Scholar] [CrossRef]
- Kujawa, S.G.; Liberman, M.C. Adding insult to injury: Cochlear nerve degeneration after “temporary” noise-induced hearing loss. J. Neurosci. 2009, 29, 14077–14085. [Google Scholar] [CrossRef]
- Brooks, B.; Knight, K. Ototoxicity monitoring in children treated with platinum chemotherapy. Int. J. Audiol. 2018, 57, S62–S68. [Google Scholar] [CrossRef]
- Reavis, K.M.; McMillan, G.; Austin, D.; Gallun, F.; Fausti, S.A.; Gordon, J.S.; Helt, W.J.; Konrad-Martin, D. Distortion-Product Otoacoustic Emission Test Performance for Ototoxicity Monitoring. Ear Hear. 2011, 32, 61–74. [Google Scholar] [CrossRef]
- Meng, Z.L.; Chen, F.; Zhao, F.; Gu, H.L.; Zheng, Y. Early detection of noise-induced hearing loss. World J. Clin. Cases. 2022, 10, 1815–1825. [Google Scholar] [CrossRef] [PubMed]
- Ramos, J.A.; Kristensen, S.G.B.; Beck, D.L. An Overview of OAEs and Normative Data for DPOAEs. Hear. Rev. 2013, 20, 30–33. [Google Scholar]
- R Core Team. R: The R Project for Statistical Computing [Internet]; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.r-project.org/ (accessed on 26 April 2025).
- Chongsuvivatwong, V. Epicalc: Epidemiological Calculator [Internet]. 2024. Available online: https://cran.rproject.org/web/packages/epicalc/index.html (accessed on 26 April 2025).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis [Internet]; Springer: New York, NY, USA, 2009; Available online: https://link.springer.com/10.1007/978-0-387-98141-3 (accessed on 26 April 2025).
- Hope, R.M. Rmisc: Ryan Miscellaneous [Internet]. 2022. Available online: https://cran.rproject.org/web/packages/Rmisc/index.html (accessed on 26 April 2025).
- Bowl, M.R.; Dawson, S.J. Age-Related Hearing Loss. Cold Spring Harb. Perspect. Med. 2019, 9, a033217. [Google Scholar] [CrossRef]
- Lin, F.R. Age-Related Hearing Loss. New Engl. J. Med. 2024, 390, 1505–1512. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.Y.; Liu, C.S.; Huang, K.H.; Chen, R.Y.; Lai, J.S.; Bao, B.Y. High-frequency hearing loss, occupational noise exposure and hypertension: A cross-sectional study in male workers. Environ. Health 2011, 10, 35. [Google Scholar] [CrossRef]
- May, J.J. Occupational hearing loss. Am. J. Ind. Med. 2000, 37, 112–120. [Google Scholar] [CrossRef]
- McBride, D.I.; Williams, S. Audiometric notch as a sign of noise induced hearing loss. Occup. Environ. Med. 2001, 58, 46–51. [Google Scholar] [CrossRef]
- Keithley, E.M. Pathology and mechanisms of cochlear aging. J. Neurosci. Res. 2020, 98, 1674–1684. [Google Scholar] [CrossRef]
- Abu-Eta, R.; Gavriel, H.; Pitaro, J. Extended High Frequency Audiometry for Revealing Sudden Sensory Neural Hearing Loss in Acute Tinnitus Patients. Int. Arch. Otorhinolaryngol. 2021, 25, e413–e415. [Google Scholar] [CrossRef]
- Jedrzejczak, W.W.; Pilka, E.; Ganc, M.; Kochanek, K.; Skarzynski, H. Ultra-High Frequency Distortion Product Otoacoustic Emissions for Detection of Hearing Loss and Tinnitus. Int. J. Environ. Res. Public Health 2022, 19, 2123. [Google Scholar] [CrossRef]
- Somma, G.; Pietroiusti, A.; Magrini, A.; Coppeta, L.; Ancona, C.; Gardi, S.; Messina, M.; Bergamaschi, A. Extended high-frequency audiometry and noise induced hearing loss in cement workers. Am. J. Ind. Med. 2008, 51, 452–462. [Google Scholar] [CrossRef]
- Dobie, R.A.; Hemel, S.V. Basics of Sound, the Ear, and Hearing. In Hearing Loss: Determining Eligibility for Social Security Benefits [Internet]; National Academies Press (US): Washington, DC, USA, 2004. Available online: https://www.ncbi.nlm.nih.gov/books/NBK207834/ (accessed on 14 April 2024).
- Biswas, N.; Alam, S.; Roy, D.; Rahman, A.; Rudra, R.; Rahman, B.; Arefin, M.; Ahmad, M.S.; Murshed, S.M.M. Prevalence of Hearing Loss among Noise Exposed Industrial Workers. Bangabandhu Sheikh Mujib Med. Coll. J. 2023, 1, 90–95. [Google Scholar]
- Gopinath, B.; McMahon, C.; Tang, D.; Burlutsky, G.; Mitchell, P. Workplace noise exposure and the prevalence and 10-year incidence of age-related hearing loss. PLoS ONE 2021, 16, e0255356. [Google Scholar] [CrossRef] [PubMed]
- Lie, A.; Skogstad, M.; Johannessen, H.A.; Tynes, T.; Mehlum, I.S.; Nordby, K.C.; Engdahl, B.; Tambs, K. Occupational noise exposure and hearing: A systematic review. Int. Arch. Occup. Environ. Health 2016, 89, 351–372. [Google Scholar] [CrossRef] [PubMed]
- Mehrparvar, A.H.; Mirmohammadi, S.J.; Ghoreyshi, A.; Mollasadeghi, A.; Loukzadeh, Z. High-frequency audiometry: A means for early diagnosis of noise-induced hearing loss. Noise Health 2011, 13, 402–406. [Google Scholar] [CrossRef] [PubMed]
- Mehrparvar, A.H.; Mirmohammadi, S.J.; Davari, M.H.; Mostaghaci, M.; Mollasadeghi, A.; Bahaloo, M.; Hashemi, S.H. Conventional Audiometry, Extended High-Frequency Audiometry, and DPOAE for Early Diagnosis of NIHL. Iran. Red Crescent Med. J. 2014, 16, e9628. [Google Scholar] [CrossRef]
- Dreisbach, L.E.; Long, K.M.; Lees, S.E. Repeatability of high-frequency distortion-product otoacoustic emissions in normal-hearing adults. Ear Hear. 2006, 27, 466–479. [Google Scholar] [CrossRef]
Characteristic. | Total | Bilateral Abnormal Hearing | |||
---|---|---|---|---|---|
n | % | n | % | ||
Exposure group | Loud exposure | 51 | 38.9 | 5 | 9.8 |
Chemical exposure | 29 | 22.1 | 3 | 10.3 | |
Mixed exposure | 51 | 38.9 | 8 | 15.7 | |
Workplace | Pharmacy department | 12 | 9.2 | 1 | 8.3 |
Operating room | 48 | 36.6 | 3 | 6.25 | |
Medical respiratory care unit | 10 | 7.6 | 2 | 20.0 | |
Emergency unit | 17 | 13.0 | 2 | 11.8 | |
Dental unit | 14 | 10.7 | 2 | 14.3 | |
Chemotherapy unit | 16 | 12.2 | 4 | 25.0 | |
Anatomical pathology unit | 14 | 10.7 | 2 | 14.3 | |
Age group | 21–30 | 34 | 26.0 | 3 | 8.8 |
31–40 | 55 | 42.0 | 1 | 1.8 | |
41–50 | 30 | 22.9 | 9 | 30.0 | |
51–60 | 12 | 9.2 | 3 | 25.0 | |
Working year group | 1–10 | 73 | 55.7 | 6 | 8.2 |
11–20 | 35 | 26.7 | 3 | 8.6 | |
21–30 | 7 | 13.0 | 6 | 85.7 | |
31–40 | 6 | 4.6 | 1 | 16.7 | |
Working hour | Within 8 h | 85 | 64.9 | 12 | 14.1 |
9–12 h | 40 | 30.5 | 4 | 10 | |
Over than 12 h | 6 | 4.6 | 0 | 0 |
Audiological Methods | Side | Total (n = 131) | Loud Exposure (n = 51) | Chemical Exposure (n = 29) | Mixed Exposure (n = 51) | p-Value * | ||||
---|---|---|---|---|---|---|---|---|---|---|
n | % | n | % | n | % | n | % | |||
CA | Right | 16 | 12.2 | 5 | 9.8 | 3 | 10.3 | 8 | 15.7 | 0.624 |
Left | 16 | 12.2 | 5 | 9.8 | 3 | 10.3 | 8 | 15.7 | 0.624 | |
EHFA | Right | 107 | 81.7 | 43 | 84.3 | 25 | 86.2 | 39 | 76.5 | 0.459 |
Left | 109 | 83.2 | 43 | 84.3 | 27 | 93.1 | 39 | 76.5 | 0.155 | |
Standard frequency DPOAEs | Right | 51 | 38.9 | 26 | 51.0 | 9 | 31.0 | 16 | 31.4 | 0.078 |
Left | 56 | 42.7 | 22 | 43.1 | 9 | 31.0 | 25 | 49.0 | 0.294 | |
Ultra-high- frequency DPOAEs | Right | 116 | 88.5 | 42 | 82.4 | 27 | 93.1 | 47 | 92.2 | 0.204 |
Left | 119 | 90.8 | 48 | 94.1 | 26 | 89.7 | 45 | 88.2 | 0.570 |
Frequency (kHz) | Side | Hearing Threshold (dBHL) Mean (SD) | p-Value * | |||
---|---|---|---|---|---|---|
Total (n = 131) | Loud Exposure (n = 51) | Chemical Exposure (n = 29) | Mixed Exposure (n = 51) | |||
0.25 | Right | 14.5 (5.1) | 13.8 (4.9) | 16.7 (5.0) | 14 (5.1) | 0.031 * |
Left | 16.8 (4.4) | 16.2 (4.3) | 18.4 (4.0) | 16.5 (4.5) | 0.066 | |
0.5 | Right | 15.5 (4.4) | 15.6 (3.7) | 15.7 (4.8) | 15.4 (4.8) | 0.952 |
Left | 16.1 (4.1) | 15.5 (3.8) | 17.2 (4.5) | 16.0 (4.1) | 0.185 | |
1 | Right | 16.3 (4.7) | 16.1 (5.3) | 16.4 (4.2) | 16.5 (4.4) | 0.911 |
Left | 16.8 (5.2) | 16.4 (5.1) | 17.8 (4.5) | 16.8 (5.6) | 0.518 | |
2 | Right | 18.5 (5.3) | 18.8 (6.0) | 18.4 (4.6) | 18.3 (5.1) | 0.893 |
Left | 16.9 (6.1) | 16.9 (6.3) | 16.9 (4.9) | 16.9 (6.5) | 1 | |
3 | Right | 19.1 (6.3) | 18.6 (6.3) | 17.2 (5.8) | 20.6 (6.5) | 0.059 |
Left | 18.3 (6.0) | 17.8 (6.5) | 17.8 (4.5) | 19.1 (6.1) | 0.477 | |
4 | Right | 18.2 (6.5) | 17.3 (6.6) | 17.1 (5.8) | 19.8 (6.7) | 0.081 |
Left | 19.3 (6.4) | 18.4 (6.6) | 19.0 (5.2) | 20.4 (6.8) | 0.292 | |
6 | Right | 13.3 (7.2) | 11.9 (6.1) | 14.3 (6.1) | 14.1 (8.5) | 0.194 |
Left | 15.1 (8.1) | 12.9 (7.1) | 16.2 (7.4) | 16.7 (9.0) | 0.047 * | |
8 | Right | 11.9 (8.8) | 10.1 (8.1) | 15.5 (10.4) | 11.8 (8.2) | 0.029 * |
Left | 12.6 (9.1) | 10.3 (7.8) | 16.4 (11.3) | 12.8 (8.3) | 0.014 * |
Frequency (kHz) | Side | Hearing Threshold (dBHL) Mean (SD) | p-Value * | |||
---|---|---|---|---|---|---|
Total (n = 131) | Loud Exposure (n = 51) | Chemical Exposure (n = 29) | Mixed Exposure (n = 51) | |||
9 | Right | 10.2 (11.4) | 8.0 (10.0) | 16.2 (15.6) | 8.9 (8.8) | 0.005 * |
Left | 11.5 (12.3) | 9.1 (10.5) | 17.1 (14.9) | 10.6 (11.5) | 0.015 * | |
10 | Right | 15.3 (14.4) | 12.3 (12.9) | 20.7 (19.2) | 15.3 (12.1) | 0.042 * |
Left | 16.0 (14.4) | 14.7 (13.6) | 20.5 (16.4) | 14.7 (13.6) | 0.157 | |
11.2 | Right | 20.6 (18.3) | 18.5 (16.2) | 25.7 (22.3) | 19.8 (17.4) | 0.223 |
Left | 19.8 (17.2) | 17.1 (14.2) | 25.7 (22.4) | 19.2 (16.2) | 0.093 | |
12.5 | Right | 29.5 (21.7) | 28.4 (19.0) | 35.5 (25.4) | 27.1 (21.9) | 0.226 |
Left | 29.1 (21.0) | 29.1 (20.4) | 34.7 (23.6) | 26.0 (19.8) | 0.208 | |
14 | Right | 39.2 (23.0) | 38.1 (21.4) | 42.4 (24.1) | 38.4 (24.2) | 0.697 |
Left | 38.5 (23.2) | 37.7 (23.0) | 44.5 (24.2) | 35.9 (22.8) | 0.271 | |
16 | Right | 44.6 (19.8) | 44.3 (17.5) | 48.6 (18.1) | 42.5 (22.6) | 0.420 |
Left | 44.8 (18.2) | 45.0 (16.0) | 50.8 (19.4) | 41.3 (19.0) | 0.078 |
Frequency (Hz) | Side | DP Amplitude (dBSPL) Mean (SD) | p-Value * | |||
---|---|---|---|---|---|---|
Total (n = 131) | Loud Exposure (n = 51) | Chemical Exposure (n = 29) | Mixed Exposure (n = 51) | |||
356 | Right | 3.7 (7.3) | 4.3 (7.7) | 3.4 (7.9) | 3.4 (6.5) | 0.818 |
Left | 3.9 (6.6) | 2.7 (7.3) | 5.1 (6.5) | 4.5 (5.8) | 0.230 | |
444 | Right | −3.3 (7.9) | −4.7 (8.7) | −1.6 (7.3) | −3 (7.4) | 0.225 |
Left | 4.6 (6.5) | 3.9 (7.3) | 5.1 (6.2) | 4.9 (5.8) | 0.620 | |
557 | Right | 5.3 (6.7) | 5.4 (6.3) | 4.6 (7.8) | 5.6 (6.6) | 0.794 |
Left | 5.4 (7.0) | 3.9 (8.0) | 6.8 (5.6) | 6.2 (6.6) | 0.128 | |
703 | Right | 8.0 (6.7) | 7.4 (6.5) | 7.0 (6.7) | 9.2 (6.7) | 0.262 |
Left | 7.8 (6.4) | 7.0 (7.2) | 7.8 (5.6) | 8.5 (6.1) | 0.481 | |
894 | Right | 9.6 (6.2) | 9.3 (6.4) | 9.3 (6.5) | 10.0 (6.0) | 0.786 |
Left | 9.4 (6.4) | 8.8 (6.9) | 8.8 (6.1) | 10.3 (6.1) | 0.451 | |
1118 | Right | 8.5 (6.0) | 7.4 (6.5) | 7.2 (5.8) | 10.2 (5.3) | 0.025 * |
Left | 8.3 (6.1) | 8.6 (6.2) | 6.8 (7.4) | 8.9 (5.1) | 0.314 | |
1416 | Right | 6.5 (6.7) | 5.5 (7.9) | 4.6 (7.0) | 8.5 (4.4) | 0.018 * |
Left | 6.6 (6.5) | 7.0 (6.7) | 5.0 (6.4) | 7.0 (6.4) | 0.332 | |
1777 | Right | 5.5 (5.7) | 5.2 (5.9) | 4.0 (6.9) | 6.5 (4.8) | 0.168 |
Left | 4.8 (6.4) | 4.6 (6.7) | 4.6 (7.0) | 5.0 (6.0) | 0.933 | |
2246 | Right | 2.2 (5.8) | 1.3 (6.0) | 2.0 (6.7) | 3.2 (4.9) | 0.253 |
Left | 1.7 (6.8) | 0.7 (7.4) | 2.2 (7.3) | 2.4 (5.8) | 0.416 | |
2827 | Right | −2.5 (6.6) | −3.8 (6.1) | −2.6 (7.9) | −1.1 (6.0) | 0.107 |
Left | −3.5 (7.0) | −4.8 (7.8) | −1.4 (5.0) | −3.2 (6.9) | 0.111 | |
3555 | Right | −3.3 (7.9) | −4.7 (8.7) | −1.6 (7.3) | −3.0 (7.4) | 0.225 |
Left | −4.6 (8.4) | −4.9 (8.5) | −2.7 (7.1) | −5.3 (9.0) | 0.380 | |
4482 | Right | −5.2 (8.0) | −5.9 (9.4) | −4.6 (7.1) | −4.7 (6.9) | 0.670 |
Left | −5.9 (8.0) | −5.4 (8.6) | −5.2 (6.2) | −6.6 (8.3) | 0.668 | |
5645 | Right | −3.4 (8.7) | −1.7 (8.0) | −5.7 (10.1) | −3.8 (8.4) | 0.129 |
Left | −4.6 (9.2) | −4.1 (10.4) | −4.4 (6.9) | −5.3 (9.2) | 0.809 |
Frequency (Hz) | Side | DP Amplitude (dBSPL) Mean (SD) | p-Value * | |||
---|---|---|---|---|---|---|
Total (n = 131) | Loud Exposure (n = 51) | Chemical Exposure (n = 29) | Mixed Exposure (n = 51) | |||
7119 | Right | −4.2 (8.6) | −3.9 (7.9) | −5.6 (9.9) | −3.6 (8.6) | 0.582 |
Left | −5.9 (9.1) | −7.3 (9.8) | −4.1 (8.9) | −5.5 (8.5) | 0.307 | |
8970 | Right | −12.4 (6.1) | −11.9 (5.6) | −12.5 (6.7) | −12.8 (6.4) | 0.756 |
Left | −13 (6.4) | −11.5 (5.8) | −13.4 (6.1) | −14.2 (6.9) | 0.103 | |
11,304 | Right | −13.7 (9.7) | −11.4 (5.6) | −15.8 (6.6) | −15 (13.5) | 0.079 |
Left | −13.5 (5.4) | −14.0 (5.3) | −12.9 (4.9) | −13.4 (5.9) | 0.651 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dindamrongkul, R.; Choosong, T.; Khaimook, W. Audiological Methods for Early Detection of Hearing Loss in Healthcare Worker. Healthcare 2025, 13, 1113. https://doi.org/10.3390/healthcare13101113
Dindamrongkul R, Choosong T, Khaimook W. Audiological Methods for Early Detection of Hearing Loss in Healthcare Worker. Healthcare. 2025; 13(10):1113. https://doi.org/10.3390/healthcare13101113
Chicago/Turabian StyleDindamrongkul, Ramida, Thitiworn Choosong, and Wandee Khaimook. 2025. "Audiological Methods for Early Detection of Hearing Loss in Healthcare Worker" Healthcare 13, no. 10: 1113. https://doi.org/10.3390/healthcare13101113
APA StyleDindamrongkul, R., Choosong, T., & Khaimook, W. (2025). Audiological Methods for Early Detection of Hearing Loss in Healthcare Worker. Healthcare, 13(10), 1113. https://doi.org/10.3390/healthcare13101113