# Minimal Systems of Binomial Generators for the Ideals of Certain Monomial Curves

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Physical and Mathematical Development

## 3. Electromagnetic Low-Frequency Consideration

## 4. Non-Trivial Magnetic and Electric Scattered Components

## 5. Analytical Validation of the Method

## 6. Conclusions and Discussion

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Stratton, J.A. Electromagnetic Theory; McGraw-Hill: New York, NY, USA, 1941. [Google Scholar]
- Dassios, G.; Kleinman, R.E. Low Frequency Scattering; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Ammari, H.; Kang, H. Polarization and Moment Tensors: With Applications to Inverse Problems and Effective Medium Theory; Applied Mathematical Sciences Series; Springer: New York, NY, USA, 2007; Volume 162. [Google Scholar]
- Ammari, H.; Garnier, J.; Jing, W.; Kang, H.; Lim, M.; Solna, K.; Wang, H. Mathematical and Statistical Methods for Multistatic Imaging; Lecture Notes in Mathematics; Springer: Cham, Switzerland, 2013; Volume 2098. [Google Scholar]
- Ammari, H.; Kang, H.; Lee, H.; Lim, M.; Zribi, H. Decomposition theorems and fine estimates for electrical fields in the presence of closely located circular inclusions. J. Differ. Equ.
**2009**, 247, 2897–2912. [Google Scholar] [CrossRef][Green Version] - Björkberg, J.; Kristenson, G. Three-dimensional subterranean target identification by use of optimization techniques. Prog. Electromagn. Res.
**1997**, 15, 141–164. [Google Scholar] [CrossRef][Green Version] - Yu, T.; Carin, L. Analysis of the electromagnetic inductive response of a void in a conducting-soil background. IEEE Trans. Geosci. Remote Sens.
**2000**, 38, 1320–1327. [Google Scholar] - Huang, H.; Won, I.J. Detecting metal objects in magnetic environments using a broadband electromagnetic method. Geophysics
**2003**, 68, 1877–1887. [Google Scholar] [CrossRef] - Cui, T.J.; Chew, W.C.; Wright, D.L.; Smith, D.V. Three dimensional imaging for buried objects in a very lossy earth by inversion of VETEM data. IEEE Trans. Geosci. Remote Sens.
**2003**, 4, 2197–2210. [Google Scholar] - Athanasiadis, C.; Costakis, G.; Stratis, I.G. Electromagnetic scattering by a perfectly conducting obstacle in a homogeneous chiral environment: Solvability and low-frequency theory. Math. Methods Appl. Sci.
**2002**, 25, 927–944. [Google Scholar] [CrossRef] - Vafeas, P.; Perrusson, G.; Lesselier, D. Low-frequency solution for a perfectly conducting sphere in a conductive medium with dipolar excitation. Prog. Electromagn. Res.
**2004**, 49, 87–111. [Google Scholar] [CrossRef][Green Version] - March, H.W. The field of a magnetic dipole in the presence of a conducting sphere. Geophysics
**1953**, 16, 671–684. [Google Scholar] [CrossRef] - Perrusson, G.; Vafeas, P.; Chatjigeorgiou, I.Κ.; Lesselier, D. Low-frequency on-site identification of a highly conductive body buried in Earth from a model ellipsoid. IMA J. Appl. Math.
**2015**, 80, 963–980. [Google Scholar] [CrossRef] - Vafeas, P.; Papadopoulos, P.K.; Ding, P.-P.; Lesselier, D. Mathematical and numerical analysis of low-frequency scattering from a PEC ring torus in a conductive medium. Appl. Math. Model.
**2016**, 40, 6477–6500. [Google Scholar] [CrossRef][Green Version] - Wait, J.R. On the electromagnetic response of a conducting sphere to a dipole field. Geophysics
**1960**, 25, 649–658. [Google Scholar] [CrossRef] - Vafeas, P. Dipolar excitation of a perfectly electrically conducting spheroid in a lossless medium at the low-frequency regime. Adv. Math. Phys.
**2018**, 2018, 9587972. [Google Scholar] [CrossRef][Green Version] - Chan, E.; Ney, M.M. Near-field scattering of a conducting sphere irradiated by a dipole. In Proceedings of the 1988 Symposium on Antenna Technology and Applied Electromagnetics, Winnipeg, MB, Canada, 10–12 August 1988. [Google Scholar]
- Valagiannopoulos, C. Single-series solution to the radiation of loop antenna in the presence of a conducting sphere. Prog. Electromagn. Res.
**2007**, 71, 277–294. [Google Scholar] [CrossRef][Green Version] - Moon, P.; Spencer, E. Field Theory Handbook; Springer: Berlin, Germany, 1971. [Google Scholar]
- Hobson, E.W. The Theory of Spherical and Ellipsoidal Harmonics; Chelsea Publishing Company: New York, NY, USA, 1965. [Google Scholar]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Branco, M.B.; Colaço, I.; Ojeda, I.
Minimal Systems of Binomial Generators for the Ideals of Certain Monomial Curves. *Mathematics* **2021**, *9*, 3204.
https://doi.org/10.3390/math9243204

**AMA Style**

Branco MB, Colaço I, Ojeda I.
Minimal Systems of Binomial Generators for the Ideals of Certain Monomial Curves. *Mathematics*. 2021; 9(24):3204.
https://doi.org/10.3390/math9243204

**Chicago/Turabian Style**

Branco, Manuel B., Isabel Colaço, and Ignacio Ojeda.
2021. "Minimal Systems of Binomial Generators for the Ideals of Certain Monomial Curves" *Mathematics* 9, no. 24: 3204.
https://doi.org/10.3390/math9243204