Proposing a New Theorem to Determine If an Algebraic Polynomial Is Nonnegative in an Interval
Abstract
1. Introduction
2. The Review of Previous Works
3. Proof of the Main Theorem
4. Application Examples
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lin, K.-P.; Luo, X.; Yau, S.S.-T.; Zuo, H.Q. On number theoretic conjecture of positive integral points in 5-dimensional tetrahedron and a sharp estimation of Dickman-De Bruijn function. J. Eur. Math. Soc. 2014, 16, 90–102. [Google Scholar]
- Lin, K.-P.; Yau, S.S.-T. Counting the number of integral points in general n-dimensional tetrahedra and Bernoulli polynomials. Can. Math. Bull. 2003, 46, 229–241. [Google Scholar] [CrossRef][Green Version]
- Yau, S.S.-T.; Zuo, H.Q. A sharp lower bound for the geometric genus and Zariski multiplicity question. Math. Z. 2018, 289, 1299–1310. [Google Scholar] [CrossRef]
- Zuo, H.Q. On strong vanishing property and plurigenera of isolated singularities. J. Algebra 2019, 529, 124–144. [Google Scholar] [CrossRef]
- Yau, S.S.-T.; Zuo, H.Q. Lower estimate of Milnor number and characterization of isolated homogeneous hypersurface singularities. Pac. J. Math. 2012, 260, 245–255. [Google Scholar] [CrossRef]
- Yau, S.S.-T.; Zuo, H.Q. Complete characterization of isolated homogeneous hypersurface singularities. Pac. J. Math. 2015, 273, 213–224. [Google Scholar]
- Yau, S.S.-T.; Zuo, H.Q. Characterization of isolated complete intersection singularities with C*-action of dimension ≥2 by means of geometric genus and irregularity. Comm. Anal. Geom. 2013, 21, 509–526. [Google Scholar] [CrossRef]
- Kang, J.Y.; Ryoo, C.S. Various Structures of the Roots and Explicit Properties of q-cosine Bernoulli Polynomials and q-sine Bernoulli Polynomials. Mathematics 2020, 8, 463. [Google Scholar] [CrossRef]
- Ragusa, M.A.; Tachikawa, A. Regularity for minimizers for functionals of double phase with variable exponents. Adv. Nonlinear Anal. 2020, 9, 710–728. [Google Scholar]
- Ragusa, M.A.; Scapellato, A. Mixed Morrey spaces and their applications to partial differential equations. Nonlinear Anal. Theory Methods Appl. 2017, 151, 51–65. [Google Scholar] [CrossRef]
- Luo, X.; Yau, S.S.-T.; Zuo, H.Q. A sharp estimate of Dickman-de Bruijin function and a sharp polynomial estimate of positive integral points in 4-dimensional tetrahedron. Math. Nachr. 2015, 288, 61–75. [Google Scholar] [CrossRef]
- Yau, S.S.-T.; Yuan, B.; Zuo, H.Q. Biggest sharp polynomial estimate of integral points in right-angled simplices. J. Number Theory 2016, 160, 254–286. [Google Scholar] [CrossRef]
- Zhao, L.; Yau, S.S.-T.; Zuo, H.Q. Biggest sharp polynomial estimate of integral points in right-angled simplices, Topology of algebraic varietiesand singularities. Contemp. Math. AMS 2011, 538, 433–467. [Google Scholar]
- Lin, K.-P.; Raghuvanshi, S.; Yau, S.S.-T.; Zuo, H.Q. On Yau geometric conjecture for weighted homogeneous singularities. Asian J. Math. 2018, 22, 599–646. [Google Scholar] [CrossRef]
- Lin, K.-P.; Yang, A.; Yau, S.S.-T.; Zuo, H.Q. On the Sharp Polynomial Upper Estimate Conjecture in Eight-Dimensional Simplex. Pure Appl. Math. Q. 2018, 12, 353–398. [Google Scholar] [CrossRef]
- Wang, X.-J.; Yau, S.S.-T. On the GLY conjecture of upper estimate of positive integral points in real right-angled simplices. J. Number Theory 2007, 122, 184–210. [Google Scholar] [CrossRef]
- Liang, A.; Yau, S.S.-T.; Zuo, H.Q. A sharp upper estimate of positive integral points in 6-dimensional tetrahedra and smooth numbers. Sci. China Math. 2016, 59, 425–444. [Google Scholar] [CrossRef]
- Chen, I.; Lin, K.-P.; Yau, S.S.-T.; Zuo, H.Q. Coordinate-free characterization of homogeneous polynomials with isolated singularities. Commun. Anal. Geom. 2011, 19, 661–704. [Google Scholar] [CrossRef]
- Kwong, M.K. Nonnegative Trigonometric Polynomials, Sturms Theorem, and Symbolic Computation. arXiv 2014, arXiv:1402.6778V1. [Google Scholar]
- Askey, I.R. Orthogonal Polynomials and Special Functions; SIAM: Philadelphia, PA, USA, 1975; Volume 21. [Google Scholar]
- Van der Waerden, B.L. Modern Algebra; Frederick Ungar Publishing Co.: New York, NY, USA, 1950; Volume I. [Google Scholar]
Polynomial | ||||||||
---|---|---|---|---|---|---|---|---|
Degree (n) | 5 | 10 | 20 | 40 | 100 | 300 | 500 | 1000 |
Number of terms (N) | 6 | 11 | 15 | 25 | 40 | 60 | 70 | 80 |
Sturm’s Theorem () | 0.016 s | 0.016 s | 0.016 s | 0.098 s | 0.859 s | 7.421 s | 36.531 s | 288.953 s |
Main Theorem () | 0.016 s | 0.016 s | 0.031 s | 0.047 s | 0.156 s | 0.578 s | 0.922 s | 1.594 s |
Ratio () | 1 | 1 | 0.52 | 2.09 | 5.51 | 12.84 | 39.62 | 181.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, K.-P.; Wang, Y.-F.; Wang, R.-Y.; Yang, A. Proposing a New Theorem to Determine If an Algebraic Polynomial Is Nonnegative in an Interval. Mathematics 2021, 9, 167. https://doi.org/10.3390/math9020167
Lin K-P, Wang Y-F, Wang R-Y, Yang A. Proposing a New Theorem to Determine If an Algebraic Polynomial Is Nonnegative in an Interval. Mathematics. 2021; 9(2):167. https://doi.org/10.3390/math9020167
Chicago/Turabian StyleLin, Ke-Pao, Yi-Fan Wang, Ruo-Yu Wang, and Andrew Yang. 2021. "Proposing a New Theorem to Determine If an Algebraic Polynomial Is Nonnegative in an Interval" Mathematics 9, no. 2: 167. https://doi.org/10.3390/math9020167
APA StyleLin, K.-P., Wang, Y.-F., Wang, R.-Y., & Yang, A. (2021). Proposing a New Theorem to Determine If an Algebraic Polynomial Is Nonnegative in an Interval. Mathematics, 9(2), 167. https://doi.org/10.3390/math9020167