Dynamic Graph Learning: A Structure-Driven Approach
Abstract
:1. Introduction
2. Problem Setup and Background
2.1. Definition of Graph and Graph Laplacian
2.2. Topological Basics
3. Dynamic Graph Learning
3.1. Static Graph Learning
3.2. Dynamic Graph Learning
3.3. Dynamic Graph Learning from Sparse Signals
Technical and Practical Constraints
3.4. Dynamic Graph Learning with Higher-Order Information
4. Algorithm Numerical Solution
4.1. Proximal Operator
4.2. Projection Method
4.3. Algorithm
Algorithm 1: algorithm for dynamic graph learning |
|
5. Experiments and Results
5.1. Computational Complexity
5.2. Synthetic Data Generation
5.2.1. Synthetic Data Model
5.2.2. Synthetic Data
5.2.3. Simulated Connectivity Graph
5.3. Neuronal-Activity Data
5.3.1. Real Experimental Data
5.3.2. Pre-Processing
5.3.3. Interval Partitioning of Data
5.3.4. Improvement with 2-Simplex Information
6. Discussion
7. Future Work
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jagadish, S.; Parikh, J. Discovery of Friends Using Social Network Graph Properties. U.S. Patent 8,744,976, 3 June 2014. [Google Scholar]
- Huang, Y.; Krim, H.; Panahi, A.; Dai, L. Community detection and improved detectability in multiplex networks. IEEE Trans. Netw. Sci. Eng. 2019, 7, 1697–1709. [Google Scholar] [CrossRef] [Green Version]
- Audi, G.; Wapstra, A.; Thibault, C. The AME2003 atomic mass evaluation: (II). Tables, graphs and references. Nucl. Phys. A 2003, 729, 337–676. [Google Scholar] [CrossRef]
- Canutescu, A.A.; Shelenkov, A.A.; Dunbrack, R.L., Jr. A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci. 2003, 12, 2001–2014. [Google Scholar] [CrossRef] [PubMed]
- Sporns, O. Discovering the Human Connectome; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Polanía, R.; Paulus, W.; Antal, A.; Nitsche, M.A. Introducing graph theory to track for neuroplastic alterations in the resting human brain: A transcranial direct current stimulation study. Neuroimage 2011, 54, 2287–2296. [Google Scholar] [CrossRef] [PubMed]
- Ocker, G.K.; Hu, Y.; Buice, M.A.; Doiron, B.; Josić, K.; Rosenbaum, R.; Shea-Brown, E. From the statistics of connectivity to the statistics of spike times in neuronal networks. Curr. Opin. Neurobiol. 2017, 46, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Stirman, J.N.; Dorsett, C.R.; Smith, S.L. Mesoscale correlation structure with single cell resolution during visual coding. bioRxiv 2018, 469114. [Google Scholar] [CrossRef]
- Sompolinsky, H.; Yoon, H.; Kang, K.; Shamir, M. Population coding in neuronal systems with correlated noise. Phys. Rev. E 2001, 64, 051904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maretic, H.P.; Thanou, D.; Frossard, P. Graph learning under sparsity priors. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 6523–6527. [Google Scholar]
- Chepuri, S.P.; Liu, S.; Leus, G.; Hero, A.O. Learning sparse graphs under smoothness prior. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 6508–6512. [Google Scholar]
- Goyal, P.; Chhetri, S.R.; Canedo, A. dyngraph2vec: Capturing network dynamics using dynamic graph representation learning. Knowl. Based Syst. 2019, 187, 104816. [Google Scholar] [CrossRef]
- Goyal, P.; Kamra, N.; He, X.; Liu, Y. Dyngem: Deep embedding method for dynamic graphs. arXiv 2018, arXiv:1805.11273. [Google Scholar]
- Zhang, Y.; Guizani, M. Game Theory for Wireless Communications and Networking; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Baloch, S.; Krim, H.; Kogan, I.; Zenkov, D. Rotation invariant topology coding of 2D and 3D objects using Morse theory. In Proceedings of the IEEE International Conference on Image Processing 2005, Genova, Italy, 14 September 2005; IEEE: Piscataway, NJ, USA, 2005; Volume 3, p. III-796. [Google Scholar] [CrossRef]
- Lee, H.; Chung, M.K.; Kang, H.; Lee, D.S. Hole detection in metabolic connectivity of Alzheimer’s disease using k- Laplacian. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Boston, MA, USA, 14–18 September 2014; Springer: Berlin, Germany, 2014; pp. 297–304. [Google Scholar]
- Dong, X.; Thanou, D.; Frossard, P.; Vandergheynst, P. Learning Laplacian matrix in smooth graph signal representations. IEEE Trans. Signal Process. 2016, 64, 6160–6173. [Google Scholar] [CrossRef] [Green Version]
- Chung, F.R.; Graham, F.C. Spectral Graph Theory; Number 92; American Mathematical Society: Providence, RI, USA, 1997. [Google Scholar]
- MacLane, S. Homology; Springer Science & Business Media: Berlin, Germany, 2012. [Google Scholar]
- Parikh, N.; Boyd, S. Proximal algorithms. Found. Trends Optim. 2014, 1, 127–239. [Google Scholar] [CrossRef]
- Combettes, P.L.; Pesquet, J.C. A proximal decomposition method for solving convex variational inverse problem. Inverse Probl. 2008, 24, 065014. [Google Scholar] [CrossRef]
- Kass, R.E.; Amari, S.I.; Arai, K.; Brown, E.N.; Diekman, C.O.; Diesmann, M.; Doiron, B.; Eden, U.T.; Fairhall, A.L.; Fiddyment, G.M.; et al. Computational neuroscience: Mathematical and statistical perspectives. Annu. Rev. Stat. Appl. 2018, 5, 183–214. [Google Scholar] [CrossRef] [PubMed]
- Crick, F.; Koch, C. Are we aware of neural activity in primary visual cortex? Nature 1995, 375, 121. [Google Scholar] [CrossRef] [PubMed]
- Niell, C.M.; Stryker, M.P. Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 2010, 65, 472–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hubel, D.H.; Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 1962, 160, 106–154. [Google Scholar] [CrossRef] [PubMed]
- Adelson, E.H.; Bergen, J.R. Spatiotemporal energy models for the perception of motion. JOSA A 1985, 2, 284–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, D.C.; Goyal, M.S. Velocity computation in the primate visual system. Nat. Rev. Neurosci. 2008, 9, 686–695. [Google Scholar] [CrossRef] [PubMed]
- Ji, N.; Freeman, J.; Smith, S.L. Technologies for imaging neural activity in large volumes. Nat. Neurosci. 2016, 19, 1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
State | Ground Truth | # Connectivity Selection in Our Model | # Correct Edges |
---|---|---|---|
Start state | 30 | 66 | 20 |
Mid state | 30 | 59 | 18 |
End state | 30 | 57 | 21 |
Related Group | Correlation with 2-Simplex Connection | Correlation without 2-Simplex Connection |
---|---|---|
graph 2–graph 6 | 0.49 | 0.47 |
graph 3–graph 7 | 0.55 | 0.51 |
graph 4–graph 8 | 0.39 | 0.30 |
Related Stimuli | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
graph 2–graph 6 | 0.486 | 0.623 | 0.250 | 0.443 | 0.266 | 0.266 |
graph 3–graph 7 | 0.475 | 0.531 | 0.337 | 0.419 | 0.361 | 0.361 |
graph 4–graph 8 | 0.219 | 0.640 | 0.150 | 0.142 | 0.201 | 0.201 |
Related Stimuli | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
graph 2–graph 6 | 0.499 | 0.727 | 0.444 | 0.448 | 0.471 | 0.685 |
graph 3–graph 7 | 0.464 | 0.650 | 0.488 | 0.457 | 0.474 | 0.651 |
graph 4–graph 8 | 0.268 | 0.610 | 0.246 | 0.209 | 0.247 | 0.567 |
Related Stimuli | 1’ | 2’ | 3’ | 4’ | 5’ | 6’ |
---|---|---|---|---|---|---|
graph 2–graph 6 | 0.697 | 0.347 | 0.205 | 0.204 | 0.204 | 0.180 |
graph 3–graph 7 | 0.653 | 0.508 | 0.331 | 0.373 | 0.351 | 0.317 |
graph 4–graph 8 | 0.254 | 0.234 | 0.000 | 0.000 | 0.000 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, B.; Huang, Y.; Panahi, A.; Yu, Y.; Krim, H.; Smith, S.L. Dynamic Graph Learning: A Structure-Driven Approach. Mathematics 2021, 9, 168. https://doi.org/10.3390/math9020168
Jiang B, Huang Y, Panahi A, Yu Y, Krim H, Smith SL. Dynamic Graph Learning: A Structure-Driven Approach. Mathematics. 2021; 9(2):168. https://doi.org/10.3390/math9020168
Chicago/Turabian StyleJiang, Bo, Yuming Huang, Ashkan Panahi, Yiyi Yu, Hamid Krim, and Spencer L. Smith. 2021. "Dynamic Graph Learning: A Structure-Driven Approach" Mathematics 9, no. 2: 168. https://doi.org/10.3390/math9020168
APA StyleJiang, B., Huang, Y., Panahi, A., Yu, Y., Krim, H., & Smith, S. L. (2021). Dynamic Graph Learning: A Structure-Driven Approach. Mathematics, 9(2), 168. https://doi.org/10.3390/math9020168